1
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University , Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital , Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital , Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University , Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University , Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University , Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital , Shanghai, China
| |
Collapse
|
2
|
Nakayama Y, Ihara F, Okuzaki D, Nishikawa Y, Sasai M, Yamamoto M. Toxoplasma GRA15 expression on dendritic cells inhibits B cell differentiation and antibody production. Parasitol Int 2025; 105:102995. [PMID: 39557359 DOI: 10.1016/j.parint.2024.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
One of the dense granule proteins named GRA15 in Toxoplasma gondii (T. gondii), is known to support an innate immune response in host through activation of NF-κB. However, little is known about advantages of GRA15 for parasites. By examining the role of GRA15 in the host-parasite interactions, it was clarified that GRA15 in T. gondii suppressed acquired immune responses in host. Wild-type parasite infection to C57BL/6 mice resulted in lower titers of T. gondii antibody and lower plasma cell counts compared to Δgra15 T. gondii. To identify host cells in which GRA15 acts to suppress antibody production, we generated conditional knock-in mice that express GRA15 in specific cell lineages. Anti-T. gondii antibodies were not reduced in macrophages of conditional knock-in mice after infection with Δgra15 T. gondii, while the production of T. gondii antibody was suppressed in dendritic cells of the conditional knock-in mice (CD11c-Cre/GRA15cKI). In the CD11c-Cre/GRA15cKI immunized with ovalbumin (OVA), the titers of anti-OVA antibody were reduced compared to control mice. Furthermore, the number of OVA antigen-specific T cells was also decreased in CD11c-Cre/GRA15cKI. These data showed that GRA15 in dendritic cells suppressed T cell-mediated humoral immunity. These findings might implicate the pathological significance of GRA15 and facilitate Toxoplasma vaccines production.
Collapse
Affiliation(s)
- Yuki Nakayama
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumiaki Ihara
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Attias M, Alvarez F, Al-Aubodah TA, Istomine R, McCallum P, Huang F, Sleiman A, Nishimura T, Del Rincón SV, Riazalhosseini Y, Piccirillo CA. Anti-PD-1 amplifies costimulation in melanoma-infiltrating T h1-like Foxp3 + regulatory T cells to alleviate local immunosuppression. J Immunother Cancer 2025; 13:e009435. [PMID: 39762077 PMCID: PMC11748786 DOI: 10.1136/jitc-2024-009435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/14/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) are the first line of treatment for many solid tumors including melanoma. PD-1 blockade enhances the effector functions of melanoma-infiltrating CD8+ T cells, leading to durable tumor remissions. However, 55% of patients with melanoma do not respond to treatment. As Foxp3+ regulatory T (Treg) cells play an important role in tumor-induced immunosuppression and express PD-1, we hypothesized that anti-PD-1 also increases the functions of melanoma-infiltrating Treg cells, which could be detrimental to treatment efficacy. METHODS The cellular and functional dynamics of Treg cells were evaluated in C57Bl/6 Foxp3-reporter mice bearing highly immunogenic and PD-1 blockade-sensitive Yale University Mouse Melanoma Exposed to Radiation 1.7 (YUMMER1.7) tumors. Treg cell responses in tumors and lymphoid compartments were examined throughout tumor growth or therapy and were assessed ex vivo by multiparametric flow cytometry analysis, with in vitro suppression assays using tumor-infiltrating lymphocytes isolated by fluorescence-activated cell sorting (FACS) and in situ through spatial proteomic and transcriptomic profiling. RESULTS In this highly immunogenic melanoma model, anti-PD-1 monotherapy yielded high responders (HRs) and low responders (LRs). We show that the potent CD8+ T cell responses characteristic of HR tumors paradoxically coincide with the expansion of highly-activated, Helios-expressing Treg cells. In both HRs and LRs, Treg cells co-localize with CD8+ T cells in immunogenic regions of the tumor and display potent suppressive capacity in vitro. Further characterization revealed that melanoma-infiltrating Treg cells progressively acquire T-bet and interferon gamma expression, exclusively in HRs, and induction of this T helper cell 1 (Th1)-like phenotype in vitro led to CD8+ T cell evasion from Treg cell-mediated suppression. Using spatial proteomic and transcriptomic profiling, we demonstrate that Treg cells display an increased activity of PI3K/Akt signaling in regions of HR tumors with an elevated CD8:Treg cell ratio. CONCLUSIONS PD-1 blockade promotes the expansion of a subset of highly-activated Treg cells coexpressing PD-1 and Helios. While these cells are potently suppressive outside tumor environments, costimulatory and inflammatory signals present in the tumor microenvironment lead to their local acquisition of Th1-like characteristics and loss of suppression of effector T cells.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Paige McCallum
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Fan Huang
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Abrahim Sleiman
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Tamiko Nishimura
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Yasser Riazalhosseini
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Okamoto M, Kuratani A, Okuzaki D, Kamiyama N, Kobayashi T, Sasai M, Yamamoto M. IFN-γ-induced Th1-Treg polarization in inflamed brains limits exacerbation of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2024; 121:e2401692121. [PMID: 39560646 PMCID: PMC11621829 DOI: 10.1073/pnas.2401692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most widely used rodent model for multiple sclerosis. Interferon-γ (IFN-γ) and regulatory T cells (Tregs) are individually well known to play beneficial roles in amelioration of EAE. However, little is known about the relationship between IFN-γ and Tregs during the disease. Here, we show that IFN-γ polarizes Tregs into T helper 1 (Th1)-type Tregs (Th1-Tregs) to recover from EAE. Single-cell RNA sequencing analysis revealed that brain Tregs showed signs of IFN-γ stimulation during EAE. Loss of IFN-γ signaling in Tregs and of T cell-derived IFN-γ impaired the Th1-Treg polarization and worsened the disease. Moreover, selective ablation of Th1-Tregs using an intersectional genetic method promoted proinflammatory features of macrophages in the inflamed brains and exacerbated the EAE. Taken together, our study highlights a critical role of T cell-derived IFN-γ for Th1-Treg polarization in inflamed brain to ameliorate EAE.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita879-5593, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita879-5593, Japan
- Division of Pathophysiology, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Oita879-5593, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
5
|
Savage P. Macrophage modulation of tumor immunity. Science 2024; 386:850-851. [PMID: 39571039 DOI: 10.1126/science.adt5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Macrophages deliver polarizing messages to promote immune suppression in tumors.
Collapse
Affiliation(s)
- Peter Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Kuratani A, Okamoto M, Kishida K, Okuzaki D, Sasai M, Sakaguchi S, Arase H, Yamamoto M. Platelet factor 4-induced T H1-T reg polarization suppresses antitumor immunity. Science 2024; 386:eadn8608. [PMID: 39571033 DOI: 10.1126/science.adn8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/08/2024] [Indexed: 11/24/2024]
Abstract
The tumor microenvironment (TME) contains a number of immune-suppressive cells such as T helper 1-polarized regulatory T cells (TH1-Treg cells). However, little is known about the mechanism behind the abundant presence of TH1-Treg cells in the TME. We demonstrate that selective depletion of arginase I (Arg1)-expressing tumor-associated macrophages (Arg1+ TAMs) inhibits tumor growth and concurrently reduces the ratio of TH1-Treg cells in the TME. Arg1+ TAMs secrete the chemokine platelet factor 4 (PF4), which reinforces interferon-γ (IFN-γ)-induced Treg cell polarization into TH1-Treg cells in a manner dependent on CXCR3 and the IFN-γ receptor. Both genetic PF4 inactivation and PF4 neutralization hinder TH1-Treg cell accumulation in the TME and reduce tumor growth. Collectively, our study highlights the importance of Arg1+ TAM-produced PF4 for high TH1-Treg cell levels in the TME to suppress antitumor immunity.
Collapse
Affiliation(s)
- Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Kazuki Kishida
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
- Department of Immunochemistry, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Tsogtsaikhan S, Inoue SI, Bayarsaikhan G, Macalinao ML, Kimura D, Miyakoda M, Yamamoto M, Hara H, Yoshida H, Yui K. Regulation of memory CD4+ T-cell generation by intrinsic and extrinsic IL-27 signaling during malaria infection. Int Immunol 2024; 36:629-640. [PMID: 38895753 DOI: 10.1093/intimm/dxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The generation and maintenance of memory T cells are regulated by various factors, including cytokines. Previous studies have shown that IL-27 is produced during the early acute phase of Plasmodium chabaudi chabaudi AS (Pcc) infection and inhibits the development of Th1-type memory CD4+ T cells. However, whether IL-27 acts directly on its receptor on Plasmodium-specific CD4+ T cells or indirectly via its receptor on other immune cells remains unclear. We aimed to determine the role of IL-27 receptor signaling in different immune cell types in regulating the generation and phenotype of memory CD4+ T cells during Plasmodium infection. We utilized Plasmodium-specific T-cell antigen receptor (TCR) transgenic mice, PbT-II, and Il27rα-/- mice to assess the direct and indirect effects of IL-27 signaling on memory CD4+ T-cell generation. Mice were transferred with PbT-II or Il27rα-/- PbT-II cells and infected with Pcc. Conditional knockout mice lacking the IL-27 receptor in T cells or dendritic cells were employed to discern the specific immune cell types involved in IL-27 receptor signaling. High levels of memory in PbT-II cells with Th1-shift occurred only when both PbT-II and host cells lacked the IL-27 receptor, suggesting the predominant inhibitory role of IL-27 signaling in both cell types. Furthermore, IL-27 receptor signaling in T cells limited the number of memory CD4+ T cells, while signaling in both T and dendritic cells contributed to the Th1 dominance of memory CD4+ T cells. These findings underscore the complex cytokine signaling network regulating memory CD4+ T cells during Plasmodium infection.
Collapse
Affiliation(s)
- Sanjaadorj Tsogtsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Maria Lourdes Macalinao
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
8
|
Okamoto M, Kuratani A, Okuzaki D, Kamiyama N, Kobayashi T, Sasai M, Yamamoto M. Tff1-expressing Tregs in lung prevent exacerbation of Bleomycin-induced pulmonary fibrosis. Front Immunol 2024; 15:1440918. [PMID: 39286257 PMCID: PMC11402662 DOI: 10.3389/fimmu.2024.1440918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Bleomycin (BLM) induces lung injury, leading to inflammation and pulmonary fibrosis. Regulatory T cells (Tregs) maintain self-tolerance and control host immune responses. However, little is known about their involvement in the pathology of pulmonary fibrosis. Here we show that a unique Treg subset expressing trefoil factor family 1 (Tff1) emerges in the BLM-injured lung. These Tff1-expressing Tregs (Tff1-Tregs) were induced by IL-33. Moreover, although Tff1 ablation in Tregs did not change the pathological condition, selective ablation of Tff1-Tregs using an intersectional genetic method promoted pro-inflammatory features of macrophages in the injured lung and exacerbated the fibrosis. Taken together, our study revealed the presence of a unique Treg subset expressing Tff1 in BLM-injured lungs and their critical role in the injured lung to ameliorate fibrosis.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Oita, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
11
|
Mortezaee K. FOXP3 (in)stability and cancer immunotherapy. Cytokine 2024; 178:156589. [PMID: 38547750 DOI: 10.1016/j.cyto.2024.156589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Dysregulation of regulatory T cells (Tregs) is described in the context of inflammatory and autoimmune diseases, and cancer. Forkhead box P3 (FOXP3) is a transcription factor that its activity is an indicator of Treg identity. FOXP3 induces metabolic versatility in intra-tumoral Tregs, so that its deficiency mediates Treg instability or even gives rise to the acquisition of effector T cell phenotype. FOXP3 dysregulation and defectiveness occurs upon ubiquitination, methylation and presumably acetylation. Stimulators of PTEN, mammalian target of rapamycin complex 2 (mTORC2), and nucleus accumbens-associated protein-1 (NAC1), and inhibitors of B lymphocyte-induced maturation protein-1 (Blimp-1), Deltex1 (DTX1) and ubiquitin-specific peptidase 22 (USP22) are suggested to hamper FOXP3 stability, and to promote its downregulation and further Treg depletion. A point is that Treg subsets reveal different reliance on FOXP3, which indicates that not all Tregs are strictly dependent on FOXP3, and presumably Tregs with different origin rely on diverse regulators of FOXP3 stability. The focus of this review is over the current understanding toward FOXP3, its activity in Tregs and influence from different regulators within tumor microenvironment (TME). Implication of FOXP3 targeting in cancer immunotherapy is another focus of this paper.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
12
|
Kawakami R, Sakaguchi S. Regulatory T Cells for Control of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:67-82. [PMID: 38467973 DOI: 10.1007/978-981-99-9781-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FoxP3, are indispensable for the maintenance of immunological self-tolerance and homeostasis. Their functional or numerical anomalies can be causative of autoimmune and other inflammatory diseases. Recent advances in the research of the cellular and molecular basis of how Treg cells develop, exert suppression, and maintain their function have enabled devising various ways for controlling physiological and pathological immune responses by targeting Treg cells. It is now envisaged that Treg cells as a "living drug" are able to achieve antigen-specific immune suppression of various immune responses and reestablish immunological self-tolerance in the clinic.
Collapse
Affiliation(s)
- Ryoji Kawakami
- Kyoto University, Kyoto, Japan
- Osaka University, Osaka, Japan
| | | |
Collapse
|