1
|
Decker L, Menge S, Freischmidt A. Cryptic exon inclusion in TDP-43 proteinopathies: opportunities and challenges. Neural Regen Res 2025; 20:2003-2004. [PMID: 39254559 DOI: 10.4103/nrr.nrr-d-24-00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Lorena Decker
- Department of Neurology, Ulm University, Ulm, Germany
| | | | | |
Collapse
|
2
|
Zhang N, Westerhaus A, Wilson M, Wang E, Goff L, Sockanathan S. Physiological regulation of neuronal Wnt activity is essential for TDP-43 localization and function. EMBO J 2024; 43:3388-3413. [PMID: 38918634 PMCID: PMC11329687 DOI: 10.1038/s44318-024-00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons, which is sufficient to cause NCT deficits, nuclear pore abnormalities, and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further, GDE2 deficits are evident in human neural cell models of ALS, which display erroneous Wnt activation that, when inhibited, increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease.
Collapse
Affiliation(s)
- Nan Zhang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Westerhaus
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Macey Wilson
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- Department of Cellular Biology, University of Georgia, Biological Sciences 302, 120 Cedar St., Athens, GA, 30602, USA
| | - Ethan Wang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Kavli Neurodiscovery Institute, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Li W, Shi J, Yu Z, Garcia-Gabilondo M, Held A, Huang L, Deng W, Ning M, Ji X, Rosell A, Wainger BJ, Lo EH. SLC22A17 as a Cell Death-Linked Regulator of Tight Junctions in Cerebral Ischemia. Stroke 2024; 55:1650-1659. [PMID: 38738428 DOI: 10.1161/strokeaha.124.046736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jingfei Shi
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Aaron Held
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lena Huang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wenjun Deng
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mingming Ning
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xunming Ji
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eng H Lo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
4
|
Liu Y, Yan D, Yang L, Chen X, Hu C, Chen M. Stathmin 2 is a potential treatment target for TDP-43 proteinopathy in amyotrophic lateral sclerosis. Transl Neurodegener 2024; 13:20. [PMID: 38600555 PMCID: PMC11007978 DOI: 10.1186/s40035-024-00413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Yunqing Liu
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Dejun Yan
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Lin Yang
- Department of Anesthesiology, the Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, 511499, China
| | - Xian Chen
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
5
|
Marques C, Held A, Dorfman K, Sung J, Song C, Kavuturu AS, Aguilar C, Russo T, Oakley DH, Albers MW, Hyman BT, Petrucelli L, Lagier-Tourenne C, Wainger BJ. Neuronal STING activation in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol 2024; 147:56. [PMID: 38478117 PMCID: PMC10937762 DOI: 10.1007/s00401-024-02688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 03/17/2024]
Abstract
The stimulator of interferon genes (STING) pathway has been implicated in neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis (ALS). While prior studies have focused on STING within immune cells, little is known about STING within neurons. Here, we document neuronal activation of the STING pathway in human postmortem cortical and spinal motor neurons from individuals affected by familial or sporadic ALS. This process takes place selectively in the most vulnerable cortical and spinal motor neurons but not in neurons that are less affected by the disease. Concordant STING activation in layer V cortical motor neurons occurs in a mouse model of C9orf72 repeat-associated ALS and frontotemporal dementia (FTD). To establish that STING activation occurs in a neuron-autonomous manner, we demonstrate the integrity of the STING signaling pathway, including both upstream activators and downstream innate immune response effectors, in dissociated mouse cortical neurons and neurons derived from control human induced pluripotent stem cells (iPSCs). Human iPSC-derived neurons harboring different familial ALS-causing mutations exhibit increased STING signaling with DNA damage as a main driver. The elevated downstream inflammatory markers present in ALS iPSC-derived neurons can be suppressed with a STING inhibitor. Our results reveal an immunophenotype that consists of innate immune signaling driven by the STING pathway and occurs specifically within vulnerable neurons in ALS/FTD.
Collapse
Affiliation(s)
- Christine Marques
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine Dorfman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Joon Sung
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine Song
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Amey S Kavuturu
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Corey Aguilar
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Tommaso Russo
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Derek H Oakley
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Mark W Albers
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Alzheimer Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Alzheimer Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
6
|
Gomez N, Hsieh C, Li X, Dykstra M, Waksmacki J, Altheim C, Bechar Y, Klim J, Zaepfel B, Rothstein J, Tank EE, Barmada SJ. Counter-regulation of RNA stability by UPF1 and TDP43. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578310. [PMID: 38352350 PMCID: PMC10862862 DOI: 10.1101/2024.01.31.578310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
RNA quality control is crucial for proper regulation of gene expression. Disruption of nonsense mediated mRNA decay (NMD), the primary RNA decay pathway responsible for the degradation of transcripts containing premature termination codons (PTCs), can disrupt development and lead to multiple diseases in humans and other animals. Similarly, therapies targeting NMD may have applications in hematological, neoplastic and neurological disorders. As such, tools capable of accurately quantifying NMD status could be invaluable for investigations of disease pathogenesis and biomarker identification. Toward this end, we assemble, validate, and apply a next-generation sequencing approach (NMDq) for identifying and measuring the abundance of PTC-containing transcripts. After validating NMDq performance and confirming its utility for tracking RNA surveillance, we apply it to determine pathway activity in two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) characterized by RNA misprocessing and abnormal RNA stability. Despite the genetic and pathologic evidence implicating dysfunctional RNA metabolism, and NMD in particular, in these conditions, we detected no significant differences in PTC-encoding transcripts in ALS models or disease. Contrary to expectations, overexpression of the master NMD regulator UPF1 had little effect on the clearance of transcripts with PTCs, but rather restored RNA homeostasis through differential use and decay of alternatively poly-adenylated isoforms. Together, these data suggest that canonical NMD is not a significant contributor to ALS/FTD pathogenesis, and that UPF1 promotes neuronal survival by regulating transcripts with abnormally long 3'UTRs.
Collapse
|
7
|
Hruska-Plochan M, Wiersma VI, Betz KM, Mallona I, Ronchi S, Maniecka Z, Hock EM, Tantardini E, Laferriere F, Sahadevan S, Hoop V, Delvendahl I, Pérez-Berlanga M, Gatta B, Panatta M, van der Bourg A, Bohaciakova D, Sharma P, De Vos L, Frontzek K, Aguzzi A, Lashley T, Robinson MD, Karayannis T, Mueller M, Hierlemann A, Polymenidou M. A model of human neural networks reveals NPTX2 pathology in ALS and FTLD. Nature 2024; 626:1073-1083. [PMID: 38355792 PMCID: PMC10901740 DOI: 10.1038/s41586-024-07042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
Collapse
Affiliation(s)
| | - Vera I Wiersma
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Katharina M Betz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Izaskun Mallona
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Zurich, Switzerland
| | - Zuzanna Maniecka
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Hock
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Florent Laferriere
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Vanessa Hoop
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Beatrice Gatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Panatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Puneet Sharma
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- NCCR RNA and Disease Technology Platform, Bern, Switzerland
| | - Laura De Vos
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological diseases, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Martin Mueller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
8
|
Rothstein JD, Warlick C, Coyne AN. Highly variable molecular signatures of TDP-43 loss of function are associated with nuclear pore complex injury in a population study of sporadic ALS patient iPSNs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571299. [PMID: 38168312 PMCID: PMC10760028 DOI: 10.1101/2023.12.12.571299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The nuclear depletion and cytoplasmic aggregation of the RNA binding protein TDP-43 is widely considered a pathological hallmark of Amyotrophic Lateral Sclerosis (ALS) and related neurodegenerative diseases. Recent studies have artificially reduced TDP-43 in wildtype human neurons to replicate loss of function associated events. Although this prior work has defined a number of gene expression and mRNA splicing changes that occur in a TDP-43 dependent manner, it is unclear how these alterations relate to authentic ALS where TDP-43 is not depleted from the cell but miscompartmentalized to variable extents. Here, in this population study, we generate ~30,000 qRT-PCR data points spanning 20 genes in induced pluripotent stem cell (iPSC) derived neurons (iPSNs) from >150 control, C9orf72 ALS/FTD, and sALS patients to examine molecular signatures of TDP-43 dysfunction. This data set defines a time dependent and variable profile of individual molecular hallmarks of TDP-43 loss of function within and amongst individual patient lines. Importantly, nearly identical changes are observed in postmortem CNS tissues obtained from a subset of patients whose iPSNs were examined. Notably, these studies provide evidence that induction of nuclear pore complex (NPC) injury via reduction of the transmembrane Nup POM121 in wildtype iPSNs is sufficient to phenocopy disease associated signatured of TDP-43 loss of function thereby directly linking NPC integrity to TDP-43 loss of function. Therapeutically, we demonstrate that the expression of all mRNA species associated with TDP-43 loss of function can be restored in sALS iPSNs via two independent methods to repair NPC injury. Collectively, this data 1) represents a substantial resource for the community to examine TDP-43 loss of function events in authentic sALS patient iPSNs, 2) demonstrates that patient derived iPSNs can accurately reflect actual TDP-43 associated alterations in patient brain, and 3) that targeting NPC injury events can be preclinically and reliably accomplished in an iPSN based platform of a sporadic disease.
Collapse
Affiliation(s)
- Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Caroline Warlick
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| |
Collapse
|