1
|
Grome MW, Nguyen MTA, Moonan DW, Mohler K, Gurara K, Wang S, Hemez C, Stenton BJ, Cao Y, Radford F, Kornaj M, Patel J, Prome M, Rogulina S, Sozanski D, Tordoff J, Rinehart J, Isaacs FJ. Engineering a genomically recoded organism with one stop codon. Nature 2025:10.1038/s41586-024-08501-x. [PMID: 39910296 DOI: 10.1038/s41586-024-08501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/05/2024] [Indexed: 02/07/2025]
Abstract
The genetic code is conserved across all domains of life, yet exceptions have revealed variations in codon assignments and associated translation factors1-3. Inspired by this natural malleability, synthetic approaches have demonstrated whole-genome replacement of synonymous codons to construct genomically recoded organisms (GROs)4,5 with alternative genetic codes. However, no efforts have fully leveraged translation factor plasticity and codon degeneracy to compress translation function to a single codon and assess the possibility of a non-degenerate code. Here we describe construction and characterization of Ochre, a GRO that fully compresses a translational function into a single codon. We replaced 1,195 TGA stop codons with the synonymous TAA in ∆TAG Escherichia coli C321.∆A4. We then engineered release factor 2 (RF2) and tRNATrp to mitigate native UGA recognition, translationally isolating four codons for non-degenerate functions. Ochre thus utilizes UAA as the sole stop codon, with UGG encoding tryptophan and UAG and UGA reassigned for multi-site incorporation of two distinct non-standard amino acids into single proteins with more than 99% accuracy. Ochre fully compresses degenerate stop codons into a single codon and represents an important step toward a 64-codon non-degenerate code that will enable precise production of multi-functional synthetic proteins with unnatural encoded chemistries and broad utility in biotechnology and biotherapeutics.
Collapse
Affiliation(s)
- Michael W Grome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Michael T A Nguyen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Daniel W Moonan
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kebron Gurara
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Shenqi Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Colin Hemez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Benjamin J Stenton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Yunteng Cao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Felix Radford
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maya Kornaj
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Jaymin Patel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maisha Prome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Svetlana Rogulina
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - David Sozanski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Tordoff
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Tsoumbris PR, Vincent RM, Jaschke PR. Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA. Arch Virol 2024; 169:248. [PMID: 39557717 DOI: 10.1007/s00705-024-06170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Multidrug-resistant infections are becoming increasingly prevalent worldwide. One of the fastest-emerging alternative and adjuvant therapies being proposed is phage therapy. Naturally isolated phages are used in the vast majority of phage therapy treatments today. Engineered phages are being developed to enhance the effectiveness of phage therapy, but concerns over their potential escape remain a salient issue. To address this problem, we designed a biocontained phage system based on conditional replication using amber stop codon suppression. This system can be easily installed on any natural phage with a known genome sequence. To test the system, we individually mutated the start codons of three essential capsid genes in phage φX174 to the amber stop codon (UAG). These phages were able to efficiently infect host cells expressing the amber initiator tRNA, which suppresses the amber stop codon and initiates translation at TAG stop codons. The amber phage mutants were also able to successfully infect host cells and reduce their population on solid agar and liquid culture but could not produce infectious particles in the absence of the amber initiator tRNA or complementing capsid gene. We did not detect any growth-inhibiting effects on E. coli strains known to lack a receptor for φX174 and we showed that engineered phages have a limited propensity for reversion. The approach outlined here may be useful to control engineered phage replication in both the lab and clinic.
Collapse
Affiliation(s)
- Pamela R Tsoumbris
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Russel M Vincent
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
4
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
5
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
7
|
Hemez C, Mohler K, Radford F, Moen J, Rinehart J, Isaacs FJ. Genomically recoded Escherichia coli with optimized functional phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610322. [PMID: 39257802 PMCID: PMC11383693 DOI: 10.1101/2024.08.29.610322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Genomically recoded organisms hold promise for many biotechnological applications, but they may exhibit substantial fitness defects relative to their non-recoded counterparts. We used targeted metabolic screens, genetic analysis, and proteomics to identify the origins of fitness impairment in a model recoded organism, Escherichia coli C321.∆A. We found that defects in isoleucine biosynthesis and release factor activity, caused by mutations extant in all K-12 lineage strains, elicited profound fitness impairments in C321.∆A, suggesting that genome recoding exacerbates suboptimal traits present in precursor strains. By correcting these and other C321.∆A-specific mutations, we engineered C321.∆A strains with doubling time reductions of 17% and 42% in rich and minimal medium, respectively, compared to ancestral C321. Strains with improved growth kinetics also demonstrated enhanced ribosomal non-standard amino acid incorporation capabilities. Proteomic analysis indicated that C321.∆A lacks the ability to regulate essential amino acid and nucleotide biosynthesis pathways, and that targeted mutation reversion restored regulatory capabilities. Our work outlines a strategy for the rapid and precise phenotypic optimization of genomically recoded organisms and other engineered microbes.
Collapse
Affiliation(s)
- Colin Hemez
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Felix Radford
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Jack Moen
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| |
Collapse
|
8
|
Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, Ostrov N, Liu M, Wang M, Zheng Q, Hu F, Chen K, Rudolph A, Chen D, Ahn J, Spencer O, Ayalavarapu V, Tarver A, Harmon-Smith M, Hamilton M, Blaby I, Yoshikuni Y, Hajian B, Jin A, Kintses B, Szamel M, Seregi V, Shen Y, Li Z, Church GM. Synthetic genomes unveil the effects of synonymous recoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599206. [PMID: 38915524 PMCID: PMC11195188 DOI: 10.1101/2024.06.16.599206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers1-4. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored. Here, we explore these effects using whole-genome synthesis, multiplexed directed evolution, and genome-transcriptome-translatome-proteome co-profiling on multiple recoded genomes. Using this information, we assemble a synthetic Escherichia coli genome in seven sections using only 57 codons to encode proteins. By discovering the rules responsible for the lethality of synonymous recoding and developing a data-driven multi-omics-based genome construction workflow that troubleshoots synthetic genomes, we overcome the lethal effects of 62,007 synonymous codon swaps and 11,108 additional genomic edits. We show that synonymous recoding induces transcriptional noise including new antisense RNAs, leading to drastic transcriptome and proteome perturbation. As the elimination of select codons from an organism's genetic code results in the widespread appearance of cryptic promoters, we show that synonymous codon choice may naturally evolve to minimize transcriptional noise. Our work provides the first genome-scale description of how synonymous codon changes influence organismal fitness and paves the way for the construction of functional genomes that provide genetic firewalls from natural ecosystems and safely produce biopolymers, drugs, and enzymes with an expanded chemistry.
Collapse
Affiliation(s)
- Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Regan Flynn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shirui Yan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- BGI Research, Shenzhen 518083, China
| | - Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | | | | | | | | | - Alexandra Rudolph
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dawn Chen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny Ahn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Owen Spencer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Angela Tarver
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew Hamilton
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ian Blaby
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yasuo Yoshikuni
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Behnoush Hajian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adeline Jin
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - Balint Kintses
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Monika Szamel
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Viktoria Seregi
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Yue Shen
- BGI Research, Shenzhen 518083, China
- BGI Research, Changzhou 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| | - Zilong Li
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Fujino T, Sonoda R, Higashinagata T, Mishiro-Sato E, Kano K, Murakami H. Ser/Leu-swapped cell-free translation system constructed with natural/in vitro transcribed-hybrid tRNA set. Nat Commun 2024; 15:4143. [PMID: 38755134 PMCID: PMC11099018 DOI: 10.1038/s41467-024-48056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
The Ser/Leu-swapped genetic code can act as a genetic firewall, mitigating biohazard risks arising from horizontal gene transfer in genetically modified organisms. Our prior work demonstrated the orthogonality of this swapped code to the standard genetic code using a cell-free translation system comprised of 21 in vitro transcribed tRNAs. In this study, to advance this system for protein engineering, we introduce a natural/in vitro transcribed-hybrid tRNA set. This set combines natural tRNAs from Escherichia coli (excluding Ser, Leu, and Tyr) and in vitro transcribed tRNAs, encompassing anticodon-swapped tRNASerGAG and tRNALeuGGA. This approach reduces the number of in vitro transcribed tRNAs required from 21 to only 4. In this optimized system, the production of a model protein, superfolder green fluorescent protein, increases to 3.5-fold. With this hybrid tRNA set, the Ser/Leu-swapped cell-free translation system will stand as a potent tool for protein production with reduced biohazard concerns in future biological endeavors.
Collapse
MESH Headings
- Cell-Free System
- Protein Biosynthesis
- Escherichia coli/genetics
- Escherichia coli/metabolism
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Ser/genetics
- Genetic Code
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Green Fluorescent Proteins/metabolism
- Green Fluorescent Proteins/genetics
- Protein Engineering/methods
- Transcription, Genetic
- Anticodon/genetics
- Anticodon/metabolism
Collapse
Affiliation(s)
- Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ryogo Sonoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Taito Higashinagata
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko Kano
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.
| |
Collapse
|
10
|
Rudolph A, Nyerges A, Chiappino-Pepe A, Landon M, Baas-Thomas M, Church G. Strategies to identify and edit improvements in synthetic genome segments episomally. Nucleic Acids Res 2023; 51:10094-10106. [PMID: 37615546 PMCID: PMC10570025 DOI: 10.1093/nar/gkad692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Genome engineering projects often utilize bacterial artificial chromosomes (BACs) to carry multi-kilobase DNA segments at low copy number. However, all stages of whole-genome engineering have the potential to impose mutations on the synthetic genome that can reduce or eliminate the fitness of the final strain. Here, we describe improvements to a multiplex automated genome engineering (MAGE) protocol to improve recombineering frequency and multiplexability. This protocol was applied to recoding an Escherichia coli strain to replace seven codons with synonymous alternatives genome wide. Ten 44 402-47 179 bp de novo synthesized DNA segments contained in a BAC from the recoded strain were unable to complement deletion of the corresponding 33-61 wild-type genes using a single antibiotic resistance marker. Next-generation sequencing (NGS) was used to identify 1-7 non-recoding mutations in essential genes per segment, and MAGE in turn proved a useful strategy to repair these mutations on the recoded segment contained in the BAC when both the recoded and wild-type copies of the mutated genes had to exist by necessity during the repair process. Finally, two web-based tools were used to predict the impact of a subset of non-recoding missense mutations on strain fitness using protein structure and function calls.
Collapse
Affiliation(s)
- Alexandra Rudolph
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anush Chiappino-Pepe
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Matthieu Landon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| |
Collapse
|
11
|
Asin-Garcia E, Robaey Z, Kampers LFC, Martins Dos Santos VAP. Exploring the Impact of Tensions in Stakeholder Norms on Designing for Value Change: The Case of Biosafety in Industrial Biotechnology. SCIENCE AND ENGINEERING ETHICS 2023; 29:9. [PMID: 36882674 PMCID: PMC9992083 DOI: 10.1007/s11948-023-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Synthetic biologists design and engineer organisms for a better and more sustainable future. While the manifold prospects are encouraging, concerns about the uncertain risks of genome editing affect public opinion as well as local regulations. As a consequence, biosafety and associated concepts, such as the Safe-by-design framework and genetic safeguard technologies, have gained notoriety and occupy a central position in the conversation about genetically modified organisms. Yet, as regulatory interest and academic research in genetic safeguard technologies advance, the implementation in industrial biotechnology, a sector that is already employing engineered microorganisms, lags behind. The main goal of this work is to explore the utilization of genetic safeguard technologies for designing biosafety in industrial biotechnology. Based on our results, we posit that biosafety is a case of a changing value, by means of further specification of how to realize biosafety. Our investigation is inspired by the Value Sensitive Design framework, to investigate scientific and technological choices in their appropriate social context. Our findings discuss stakeholder norms for biosafety, reasonings about genetic safeguards, and how these impact the practice of designing for biosafety. We show that tensions between stakeholders occur at the level of norms, and that prior stakeholder alignment is crucial for value specification to happen in practice. Finally, we elaborate in different reasonings about genetic safeguards for biosafety and conclude that, in absence of a common multi-stakeholder effort, the differences in informal biosafety norms and the disparity in biosafety thinking could end up leading to design requirements for compliance instead of for safety.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands.
| | - Zoë Robaey
- Department of Social Sciences, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Linde F C Kampers
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| |
Collapse
|
12
|
Nyerges A, Vinke S, Flynn R, Owen SV, Rand EA, Budnik B, Keen E, Narasimhan K, Marchand JA, Baas-Thomas M, Liu M, Chen K, Chiappino-Pepe A, Hu F, Baym M, Church GM. A swapped genetic code prevents viral infections and gene transfer. Nature 2023; 615:720-727. [PMID: 36922599 PMCID: PMC10151025 DOI: 10.1038/s41586-023-05824-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/10/2023] [Indexed: 03/17/2023]
Abstract
Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.
Collapse
Affiliation(s)
- Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Svenja Vinke
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Regan Flynn
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eleanor A Rand
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Eric Keen
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | | | - Jorge A Marchand
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | | | - Min Liu
- GenScript USA Inc., Piscataway, NJ, USA
| | | | | | | | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
13
|
Multiplex base editing to convert TAG into TAA codons in the human genome. Nat Commun 2022; 13:4482. [PMID: 35918324 PMCID: PMC9345975 DOI: 10.1038/s41467-022-31927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Whole-genome recoding has been shown to enable nonstandard amino acids, biocontainment and viral resistance in bacteria. Here we take the first steps to extend this to human cells demonstrating exceptional base editing to convert TAG to TAA for 33 essential genes via a single transfection, and examine base-editing genome-wide (observing ~40 C-to-T off-target events in essential gene exons). We also introduce GRIT, a computational tool for recoding. This demonstrates the feasibility of recoding, and highly multiplex editing in mammalian cells. Whole-genome recoding has been shown to enable nonstandard amino acids, biocontainment and viral resistance in bacteria. Here the authors extend this to human cells using base editing to convert TAG to TAA for 33 essential genes via a single transfection followed by examining base-editing genome-wide.
Collapse
|
14
|
McNerney MP, Doiron KE, Ng TL, Chang TZ, Silver PA. Theranostic cells: emerging clinical applications of synthetic biology. Nat Rev Genet 2021; 22:730-746. [PMID: 34234299 PMCID: PMC8261392 DOI: 10.1038/s41576-021-00383-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Synthetic biology seeks to redesign biological systems to perform novel functions in a predictable manner. Recent advances in bacterial and mammalian cell engineering include the development of cells that function in biological samples or within the body as minimally invasive diagnostics or theranostics for the real-time regulation of complex diseased states. Ex vivo and in vivo cell-based biosensors and therapeutics have been developed to target a wide range of diseases including cancer, microbiome dysbiosis and autoimmune and metabolic diseases. While probiotic therapies have advanced to clinical trials, chimeric antigen receptor (CAR) T cell therapies have received regulatory approval, exemplifying the clinical potential of cellular therapies. This Review discusses preclinical and clinical applications of bacterial and mammalian sensing and drug delivery platforms as well as the underlying biological designs that could enable new classes of cell diagnostics and therapeutics. Additionally, we describe challenges that must be overcome for more rapid and safer clinical use of engineered systems.
Collapse
Affiliation(s)
- Monica P McNerney
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kailyn E Doiron
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Timothy Z Chang
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
15
|
Asin-Garcia E, Martin-Pascual M, Garcia-Morales L, van Kranenburg R, Martins dos Santos VAP. ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding Pseudomonas putida. ACS Synth Biol 2021; 10:2672-2688. [PMID: 34547891 PMCID: PMC8524654 DOI: 10.1021/acssynbio.1c00297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Genome recoding enables incorporating new functions into the DNA of microorganisms. By reassigning codons to noncanonical amino acids, the generation of new-to-nature proteins offers countless opportunities for bioproduction and biocontainment in industrial chassis. A key bottleneck in genome recoding efforts, however, is the low efficiency of recombineering, which hinders large-scale applications at acceptable speed and cost. To relieve this bottleneck, we developed ReScribe, a highly optimized recombineering tool enhanced by CRISPR-Cas9-mediated counterselection built upon the minimal PAM 5'-NNG-3' of the Streptococcus canis Cas9 (ScCas9). As a proof of concept, we used ReScribe to generate a minimally recoded strain of the industrial chassis Pseudomonas putida by replacing TAG stop codons (functioning as PAMs) of essential metabolic genes with the synonymous TAA. We showed that ReScribe enables nearly 100% engineering efficiency of multiple loci in P. putida, opening promising avenues for genome editing and applications thereof in this bacterium and beyond.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Maria Martin-Pascual
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands
- Laboratory
of Microbiology, Wageningen University &
Research, Wageningen 6708 WE, The Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
- LifeGlimmer
GmbH, Berlin 12163, Germany
- Bioprocess
Engineering Group, Wageningen University
& Research, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
16
|
Robertson WE, Funke LFH, de la Torre D, Fredens J, Elliott TS, Spinck M, Christova Y, Cervettini D, Böge FL, Liu KC, Buse S, Maslen S, Salmond GPC, Chin JW. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 2021; 372:1057-1062. [PMID: 34083482 DOI: 10.1126/science.abg3029] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
It is widely hypothesized that removing cellular transfer RNAs (tRNAs)-making their cognate codons unreadable-might create a genetic firewall to viral infection and enable sense codon reassignment. However, it has been impossible to test these hypotheses. In this work, following synonymous codon compression and laboratory evolution in Escherichia coli, we deleted the tRNAs and release factor 1, which normally decode two sense codons and a stop codon; the resulting cells could not read the canonical genetic code and were completely resistant to a cocktail of viruses. We reassigned these codons to enable the efficient synthesis of proteins containing three distinct noncanonical amino acids. Notably, we demonstrate the facile reprogramming of our cells for the encoded translation of diverse noncanonical heteropolymers and macrocycles.
Collapse
Affiliation(s)
| | - Louise F H Funke
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Julius Fredens
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Martin Spinck
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yonka Christova
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Franz L Böge
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Salvador Buse
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sarah Maslen
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
17
|
Arnolds KL, Dahlin LR, Ding L, Wu C, Yu J, Xiong W, Zuniga C, Suzuki Y, Zengler K, Linger JG, Guarnieri MT. Biotechnology for secure biocontainment designs in an emerging bioeconomy. Curr Opin Biotechnol 2021; 71:25-31. [PMID: 34091124 DOI: 10.1016/j.copbio.2021.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Genetically modified organisms (GMOs) have emerged as an integral component of a sustainable bioeconomy, with an array of applications in agriculture, bioenergy, and biomedicine. However, the rapid development of GMOs and associated synthetic biology approaches raises a number of biosecurity concerns related to environmental escape of GMOs, detection thereof, and impact upon native ecosystems. A myriad of genetic safeguards have been deployed in diverse microbial hosts, ranging from classical auxotrophies to global genome recoding. However, to realize the full potential of microbes as biocatalytic platforms in the bioeconomy, a deeper understanding of the fundamental principles governing microbial responsiveness to biocontainment constraints, and interactivity of GMOs with the environment, is required. Herein, we review recent analytical biotechnological advances and strategies to assess biocontainment and microbial bioproductivity, as well as opportunities for predictive systems biodesigns towards securing a viable bioeconomy.
Collapse
Affiliation(s)
| | - Lukas R Dahlin
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Lin Ding
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Chao Wu
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Jianping Yu
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Wei Xiong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Cristal Zuniga
- University of California, San Diego, La Jolla, CA, United States
| | - Yo Suzuki
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Karsten Zengler
- University of California, San Diego, La Jolla, CA, United States
| | | | | |
Collapse
|
18
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
19
|
Parker MT, Kunjapur AM. Deployment of Engineered Microbes: Contributions to the Bioeconomy and Considerations for Biosecurity. Health Secur 2021; 18:278-296. [PMID: 32816583 DOI: 10.1089/hs.2020.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineering at microscopic scales has an immense effect on the modern bioeconomy. Microbes contribute to such disparate markets as chemical manufacturing, fuel production, crop optimization, and pharmaceutical synthesis, to name a few. Due to new and emerging synthetic biology technologies, and the sophistication and control afforded by them, we are on the brink of deploying engineered microbes to not only enhance traditional applications but also to introduce these microbes to sectors, contexts, and formats not previously attempted. In microbially managed medicine, microbial engineering holds promise for increasing efficacy, improving tissue penetration, and sustaining treatment. In the environment, the most effective areas for deployment are in the management of crops and protection of ecosystems. However, caution is warranted before introducing engineered organisms to new environments where they may proliferate without control and could cause unforeseen effects. We summarize ideas and data that can inform identification and assessment of the risks that these tools present to ensure that realistic hazards are described and unrealistic ones do not hinder advancement. Further, because modes of containment are crucial complements to deployment, we describe the state of the art in microbial biocontainment strategies, current gaps, and how these gaps might be addressed through technological advances in synthetic engineering. Collectively, this work highlights engineered microbes as a foundational and expanding facet of the bioeconomy, projects their utility in upcoming deployments outside the laboratory, and identifies knowns and unknowns that will be necessary considerations and points of focus in this endeavor.
Collapse
Affiliation(s)
- Michael T Parker
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Aditya M Kunjapur
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
20
|
Singh T, Yadav SK, Vainstein A, Kumar V. Genome recoding strategies to improve cellular properties: mechanisms and advances. ABIOTECH 2021; 2:79-95. [PMID: 34377578 PMCID: PMC7675020 DOI: 10.1007/s42994-020-00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
The genetic code, once believed to be universal and immutable, is now known to contain many variations and is not quite universal. The basis for genome recoding strategy is genetic code variation that can be harnessed to improve cellular properties. Thus, genome recoding is a promising strategy for the enhancement of genome flexibility, allowing for novel functions that are not commonly documented in the organism in its natural environment. Here, the basic concept of genetic code and associated mechanisms for the generation of genetic codon variants, including biased codon usage, codon reassignment, and ambiguous decoding, are extensively discussed. Knowledge of the concept of natural genetic code expansion is also detailed. The generation of recoded organisms and associated mechanisms with basic targeting components, including aminoacyl-tRNA synthetase-tRNA pairs, elongation factor EF-Tu and ribosomes, are highlighted for a comprehensive understanding of this concept. The research associated with the generation of diverse recoded organisms is also discussed. The success of genome recoding in diverse multicellular organisms offers a platform for expanding protein chemistry at the biochemical level with non-canonical amino acids, genetically isolating the synthetic organisms from the natural ones, and fighting viruses, including SARS-CoV2, through the creation of attenuated viruses. In conclusion, genome recoding can offer diverse applications for improving cellular properties in the genome-recoded organisms.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | | | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
21
|
Guevara Salazar JA, Morán Díaz JR, Ramírez Segura E, Trujillo Ferrara JG. What are the origins of growing microbial resistance? Both Lamarck and Darwin were right. Expert Rev Anti Infect Ther 2020; 19:563-569. [PMID: 33073640 DOI: 10.1080/14787210.2021.1839418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Microorganisms of clinical importance frequently develop resistance to drug therapy, now a growing problem. The experience with Mycobacterium tuberculosis is a representative example of increasing multi-drug resistance. To avoid reaching a crisis in which patients could be left without adequate treatment, a new strategy is needed. Anti-microbial therapy has historically targeted the mechanisms rather than origin of drug resistance, thus allowing microorganisms to adapt and survive. AREAS COVERED This contribution analyses the historical development (1943-2020) of the evolution of multi-drug resistance by M. tuberculosis strains in light of Darwin's and Lamarck's theories of evolution. EXPERT OPINION Regarding the molecular origin of microbial drug resistance, genetic mutations and epigenetic modifications are known to participate. The analysis of the history of drug resistance by M. tuberculosis evidences a gradual development of resistance to some antibiotics, undoubtedly due to random mutations together with natural selection based on environmental pressures (e.g., antibiotics), representing Darwin's idea. More rapid adaptation of M. tuberculosis to new antibiotic treatments has also occurred, probably because of heritable acquired characteristics, evidencing Lamarck's proposal. Therefore, microbial infections should be treated with an antibiotic producing null or low mutagenic activity along with a resistance inhibitor, preferably in a single medication.
Collapse
Affiliation(s)
- Juan Alberto Guevara Salazar
- Departamento De Farmacología, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| | - Jessica Rubí Morán Díaz
- Departamento De Farmacología, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| | - Enrique Ramírez Segura
- Laboratorio De Bioquímica Médica, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| | - José Guadalupe Trujillo Ferrara
- Laboratorio De Bioquímica Médica, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| |
Collapse
|
22
|
Abstract
Preventing the escape of hazardous genes from genetically modified organisms (GMOs) into the environment is one of the most important issues in biotechnology research. Various strategies were developed to create "genetic firewalls" that prevent the leakage of GMOs; however, they were not specially designed to prevent the escape of genes. To address this issue, we developed amino acid (AA)-swapped genetic codes orthogonal to the standard genetic code, namely SL (Ser and Leu were swapped) and SLA genetic codes (Ser, Leu, and Ala were swapped). From mRNAs encoded by the AA-swapped genetic codes, functional proteins were only synthesized in translation systems featuring the corresponding genetic codes. These results clearly demonstrated the orthogonality of the AA-swapped genetic codes against the standard genetic code and their potential to function as "genetic firewalls for genes". Furthermore, we propose "a codon-bypass strategy" to develop a GMO with an AA-swapped genetic code.
Collapse
Affiliation(s)
- Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Masahiro Tozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
23
|
The Boggarts of biology: how non-genetic changes influence the genotype. Curr Genet 2020; 67:65-77. [PMID: 33037901 DOI: 10.1007/s00294-020-01108-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023]
Abstract
The notion that there is a one-one mapping from genotype to phenotype was overturned a long time ago. Along with genotype and environment, 'non-genetic changes' orchestrated by altered RNA and protein molecules also guide the development of phenotype. The idea that there is a route through which changes in phenotype can lead to changes in genotype impinges on several phenomena of molecular, developmental, evolutionary and applied interest. Phenotypic changes that do not alter the underlying DNA sequence have been studied across model systems (eg: DNA and histone modifications, RNA editing, prion formation) and are known to play an important role in short-term adaptation. However, because of their transient nature and unstable inheritance, the role of such changes in long-term evolution has remained controversial. I classify and review three ways in which non-genetic changes can influence genotype and impact cellular fitness across generations, with an emphasis on the enticing idea that they may act as stepping stones for genetic adaptation. I focus on work from microbial systems and attempt to highlight recent experiments and models that bear on this idea. Overall, I review evidence which suggests that non-genetic changes can impact phenotype via their influence on the genotype, and thus play a role in evolutionary change.
Collapse
|
24
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
25
|
Kuru E, Määttälä RM, Noguera K, Stork DA, Narasimhan K, Rittichier J, Wiegand D, Church GM. Release Factor Inhibiting Antimicrobial Peptides Improve Nonstandard Amino Acid Incorporation in Wild-type Bacterial Cells. ACS Chem Biol 2020; 15:1852-1861. [PMID: 32603088 DOI: 10.1021/acschembio.0c00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a tunable chemical genetics approach for enhancing genetic code expansion in different wild-type bacterial strains that employ apidaecin-like, antimicrobial peptides observed to temporarily sequester and thereby inhibit Release Factor 1 (RF1). In a concentration-dependent matter, these peptides granted a conditional lambda phage resistance to a recoded Escherichia coli strain with nonessential RF1 activity and promoted multisite nonstandard amino acid (nsAA) incorporation at in-frame amber stop codons in vivo and in vitro. When exogenously added, the peptides stimulated specific nsAA incorporation in a variety of sensitive, wild-type (RF1+) strains, including Agrobacterium tumefaciens, a species in which nsAA incorporation has not been previously reported. Improvement in nsAA incorporation was typically 2-15-fold in E. coli BL21, MG1655, and DH10B strains and A. tumefaciens with the >20-fold improvement observed in probiotic E. coli Nissle 1917. In-cell expression of these peptides promoted multisite nsAA incorporation in transcripts with up to 6 amber codons, with a >35-fold increase in BL21 showing moderate toxicity. Leveraging this RF1 sensitivity allowed multiplexed partial recoding of MG1655 and DH10B that rapidly resulted in resistant strains that showed an additional approximately twofold boost to nsAA incorporation independent of the peptide. Finally, in-cell expression of an apidaecin-like peptide library allowed the discovery of new peptide variants with reduced toxicity that still improved multisite nsAA incorporation >25-fold. In parallel to genetic reprogramming efforts, these new approaches can facilitate genetic code expansion technologies in a variety of wild-type bacterial strains.
Collapse
Affiliation(s)
- Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Rosa-Maria Määttälä
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Arts and Sciences, MCPHS University, Boston, Massachusetts 02115, United States
| | - Karen Noguera
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Devon A. Stork
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kamesh Narasimhan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jonathan Rittichier
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Daniel Wiegand
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Whitfill T, Oh J. Recoding the metagenome: microbiome engineering in situ. Curr Opin Microbiol 2019; 50:28-34. [PMID: 31622928 DOI: 10.1016/j.mib.2019.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Synthetic biology has enabled a new generation of tools for engineering the microbiome, including targeted antibiotics, protein delivery, living biosensors and diagnostics, and metabolic factories. Here, we discuss opportunities and limitations in microbiome engineering, focusing on a new generation of tools for in situ genetic modification of a microbiome that hold particular promise in circumventing these limitations.
Collapse
Affiliation(s)
- Travis Whitfill
- Azitra, Inc., 400 Farmington Ave, Farmington, CT 06032, United States
| | - Julia Oh
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT 06032, United States.
| |
Collapse
|
27
|
Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, Stelly DM, Stewart CN. Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:165-188. [PMID: 31150590 DOI: 10.1146/annurev-phyto-080417-045954] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), 56237 Texcoco, Mexico;
| | - Jose B Falck-Zepeda
- International Food Policy Research Institute (IFPRI), Washington, DC 20005-3915, USA
| | - Ken E Giller
- Plant Production Systems Group, Wageningen University & Research (WUR), 6700 AK Wageningen, The Netherlands
| | - Leland L Glenna
- Department of Agricultural Economics, Sociology, and Education, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fred Gould
- Genetic Engineering and Society Center and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
28
|
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation. Genes (Basel) 2018; 10:genes10010017. [PMID: 30597824 PMCID: PMC6356944 DOI: 10.3390/genes10010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. Here, we present the strategies that have been utilized to fundamentally alter the genetic code in its decoding rules or its molecular representation and anticipate future avenues in the pursuit of robust biocontainment.
Collapse
|
29
|
Ma NJ, Hemez CF, Barber KW, Rinehart J, Isaacs FJ. Organisms with alternative genetic codes resolve unassigned codons via mistranslation and ribosomal rescue. eLife 2018; 7:34878. [PMID: 30375330 PMCID: PMC6207430 DOI: 10.7554/elife.34878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organisms possessing genetic codes with unassigned codons raise the question of how cellular machinery resolves such codons and how this could impact horizontal gene transfer. Here, we use a genomically recoded Escherichia coli to examine how organisms address translation at unassigned UAG codons, which obstruct propagation of UAG-containing viruses and plasmids. Using mass spectrometry, we show that recoded organisms resolve translation at unassigned UAG codons via near-cognate suppression, dramatic frameshifting from at least −3 to +19 nucleotides, and rescue by ssrA-encoded tmRNA, ArfA, and ArfB. We then demonstrate that deleting tmRNA restores expression of UAG-ending proteins and propagation of UAG-containing viruses and plasmids in the recoded strain, indicating that tmRNA rescue and nascent peptide degradation is the cause of impaired virus and plasmid propagation. The ubiquity of tmRNA homologs suggests that genomic recoding is a promising path for impairing horizontal gene transfer and conferring genetic isolation in diverse organisms. Usually, DNA passes from parent to offspring, vertically down the generations. But not always. In some cases, it can move directly from one organism to another by a process called horizontal gene transfer. In bacteria, this happens when DNA segments pass through a bacterium’s cell wall, which can then be picked up by another bacterium. Because the vast majority of organisms share the same genetic code, the bacteria can read this DNA with ease, as it is in the same biological language. Horizontal gene transfer helps bacteria adapt and evolve to their surroundings, letting them swap and share genetic information that could be useful. The process also poses a threat to human health because the DNA that bacteria share can help spread antibiotic resistance. However, some organisms use an alternative genetic code, which obstructs horizontal gene transfer. They cannot read the DNA transmitted to them, because it is in a different ‘biological language’. The mechanism of how this language barrier works has been poorly understood until now. Ma, Hemez, Barber et al. investigated this using Escherichia coli bacteria with an artificially alternated genetic code. In this E. coli, one of the three-letter DNA ‘words’ in the sequence is a blank – it does not exist in the bacterium’s biological language. This three-letter DNA word normally corresponds to a particular protein building block. Using a technique called mass spectrometry, Ma et al. analyzed the proteins this E. coli forms. The results showed that it has several strategies to deal with DNA transmitted horizontally into the bacterium. One method is destroying the proteins that are half-created from the DNA, using molecules called tmRNAs. These are part of a rescue system that intervenes when protein translation stalls on the blank word. The tmRNAs help to add a tag to half-formed proteins, marking them for destruction. This mechanism creates a ‘genetic firewall’ that prevents horizontal gene transfer. In organisms engineered to work from an altered genetic code, this helps to isolate them from outside interference. The findings could have applications in creating engineered bacteria that are safer for use in fields such as medicine and biofuel production.
Collapse
Affiliation(s)
- Natalie Jing Ma
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Colin F Hemez
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Biomedical Engineering, Yale University, New Haven, United States
| | - Karl W Barber
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| |
Collapse
|
30
|
Arranz-Gibert P, Vanderschuren K, Isaacs FJ. Next-generation genetic code expansion. Curr Opin Chem Biol 2018; 46:203-211. [PMID: 30072242 DOI: 10.1016/j.cbpa.2018.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Engineering of the translation apparatus has permitted the site-specific incorporation of nonstandard amino acids (nsAAs) into proteins, thereby expanding the genetic code of organisms. Conventional approaches have focused on porting tRNAs and aminoacyl-tRNA synthetases (aaRS) from archaea into bacterial and eukaryotic systems where they have been engineered to site-specifically encode nsAAs. More recent work in genome engineering has opened up the possibilities of whole genome recoding, in which organisms with alternative genetic codes have been constructed whereby codons removed from the genetic code can be repurposed as new sense codons dedicated for incorporation of nsAAs. These advances, together with the advent of engineered ribosomes and new molecular evolution methods, enable multisite incorporation of nsAAs and nonstandard monomers (nsM) paving the way for the template-directed production of functionalized proteins, new classes of polymers, and genetically encoded materials.
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Equal contribution
| | - Koen Vanderschuren
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Equal contribution
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
31
|
Goold HD, Wright P, Hailstones D. Emerging Opportunities for Synthetic Biology in Agriculture. Genes (Basel) 2018; 9:E341. [PMID: 29986428 PMCID: PMC6071285 DOI: 10.3390/genes9070341] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Rapid expansion in the emerging field of synthetic biology has to date mainly focused on the microbial sciences and human health. However, the zeitgeist is that synthetic biology will also shortly deliver major outcomes for agriculture. The primary industries of agriculture, fisheries and forestry, face significant and global challenges; addressing them will be assisted by the sector’s strong history of early adoption of transformative innovation, such as the genetic technologies that underlie synthetic biology. The implementation of synthetic biology within agriculture may, however, be hampered given the industry is dominated by higher plants and mammals, where large and often polyploid genomes and the lack of adequate tools challenge the ability to deliver outcomes in the short term. However, synthetic biology is a rapidly growing field, new techniques in genome design and synthesis, and more efficient molecular tools such as CRISPR/Cas9 may harbor opportunities more broadly than the development of new cultivars and breeds. In particular, the ability to use synthetic biology to engineer biosensors, synthetic speciation, microbial metabolic engineering, mammalian multiplexed CRISPR, novel anti microbials, and projects such as Yeast 2.0 all have significant potential to deliver transformative changes to agriculture in the short, medium and longer term. Specifically, synthetic biology promises to deliver benefits that increase productivity and sustainability across primary industries, underpinning the industry’s prosperity in the face of global challenges.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| | - Philip Wright
- New South Wales Department of Primary Industries, Locked Bag 21, 161 Kite St, Orange, NSW 2800, Australia.
| | - Deborah Hailstones
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| |
Collapse
|
32
|
Kuo J, Stirling F, Lau YH, Shulgina Y, Way JC, Silver PA. Synthetic genome recoding: new genetic codes for new features. Curr Genet 2018; 64:327-333. [PMID: 28983660 PMCID: PMC5849531 DOI: 10.1007/s00294-017-0754-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Full genome recoding, or rewriting codon meaning, through chemical synthesis of entire bacterial chromosomes has become feasible in the past several years. Recoding an organism can impart new properties including non-natural amino acid incorporation, virus resistance, and biocontainment. The estimated cost of construction that includes DNA synthesis, assembly by recombination, and troubleshooting, is now comparable to costs of early stage development of drugs or other high-tech products. Here, we discuss several recently published assembly methods and provide some thoughts on the future, including how synthetic efforts might benefit from the analysis of natural recoding processes and organisms that use alternative genetic codes.
Collapse
Affiliation(s)
- James Kuo
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Finn Stirling
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yu Heng Lau
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yekaterina Shulgina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jeffrey C Way
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angew Chem Int Ed Engl 2018; 57:4313-4328. [DOI: 10.1002/anie.201707976] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/14/2017] [Indexed: 12/20/2022]
|
34
|
Kohman RE, Kunjapur AM, Hysolli E, Wang Y, Church GM. Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNA-Technologien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richie E. Kohman
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | | | - Eriona Hysolli
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
| | - Yu Wang
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | - George M. Church
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| |
Collapse
|
35
|
Abstract
Accurate incorporation of nonstandard amino acids (nsAAs) is central for genetic code expansion to increase the chemical diversity of proteins. However, aminoacyl-tRNA synthetases are polyspecific and facilitate incorporation of multiple nsAAs. We investigated and repurposed a natural protein degradation pathway, the N-end rule pathway, to devise an innovative system for rapid assessment of the accuracy of nsAA incorporation. Using this tool to monitor incorporation of the nsAA biphenylalanine allowed the identification of tyrosyl-tRNA synthetase (TyrRS) variants with improved amino acid specificity. The evolved TyrRS variants enhanced our ability to contain unwanted proliferation of genetically modified organisms. This posttranslational proofreading system will aid the evolution of orthogonal translation systems for specific incorporation of diverse nsAAs. Incorporation of nonstandard amino acids (nsAAs) leads to chemical diversification of proteins, which is an important tool for the investigation and engineering of biological processes. However, the aminoacyl-tRNA synthetases crucial for this process are polyspecific in regard to nsAAs and standard amino acids. Here, we develop a quality control system called “posttranslational proofreading” to more accurately and rapidly evaluate nsAA incorporation. We achieve this proofreading by hijacking a natural pathway of protein degradation known as the N-end rule, which regulates the lifespan of a protein based on its amino-terminal residue. We find that proteins containing certain desired N-terminal nsAAs have much longer half-lives compared with those proteins containing undesired amino acids. We use the posttranslational proofreading system to further evolve a Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (TyrRS) variant and a tRNATyr species for improved specificity of the nsAA biphenylalanine in vitro and in vivo. Our newly evolved biphenylalanine incorporation machinery enhances the biocontainment and growth of genetically engineered Escherichia coli strains that depend on biphenylalanine incorporation. Finally, we show that our posttranslational proofreading system can be designed for incorporation of other nsAAs by rational engineering of the ClpS protein, which mediates the N-end rule. Taken together, our posttranslational proofreading system for in vivo protein sequence verification presents an alternative paradigm for molecular recognition of amino acids and is a major advance in our ability to accurately expand the genetic code.
Collapse
|
36
|
Lau YH, Stirling F, Kuo J, Karrenbelt MAP, Chan YA, Riesselman A, Horton CA, Schäfer E, Lips D, Weinstock MT, Gibson DG, Way JC, Silver PA. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res 2017; 45:6971-6980. [PMID: 28499033 PMCID: PMC5499800 DOI: 10.1093/nar/gkx415] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023] Open
Abstract
The ability to rewrite large stretches of genomic DNA enables the creation of new organisms with customized functions. However, few methods currently exist for accumulating such widespread genomic changes in a single organism. In this study, we demonstrate a rapid approach for rewriting bacterial genomes with modified synthetic DNA. We recode 200 kb of the Salmonella typhimurium LT2 genome through a process we term SIRCAS (stepwise integration of rolling circle amplified segments), towards constructing an attenuated and genetically isolated bacterial chassis. The SIRCAS process involves direct iterative recombineering of 10–25 kb synthetic DNA constructs which are assembled in yeast and amplified by rolling circle amplification. Using SIRCAS, we create a Salmonella with 1557 synonymous leucine codon replacements across 176 genes, the largest number of cumulative recoding changes in a single bacterial strain to date. We demonstrate reproducibility over sixteen two-day cycles of integration and parallelization for hierarchical construction of a synthetic genome by conjugation. The resulting recoded strain grows at a similar rate to the wild-type strain and does not exhibit any major growth defects. This work is the first instance of synthetic bacterial recoding beyond the Escherichia coli genome, and reveals that Salmonella is remarkably amenable to genome-scale modification.
Collapse
Affiliation(s)
- Yu Heng Lau
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Finn Stirling
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - James Kuo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Michiel A P Karrenbelt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Yujia A Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Adam Riesselman
- Program in Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Connor A Horton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Elena Schäfer
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - David Lips
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Matthew T Weinstock
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel G Gibson
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA.,Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| |
Collapse
|
37
|
Abstract
The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; .,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
38
|
Kuznetsov G, Goodman DB, Filsinger GT, Landon M, Rohland N, Aach J, Lajoie MJ, Church GM. Optimizing complex phenotypes through model-guided multiplex genome engineering. Genome Biol 2017; 18:100. [PMID: 28545477 PMCID: PMC5445303 DOI: 10.1186/s13059-017-1217-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/21/2017] [Indexed: 11/29/2022] Open
Abstract
We present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.∆A. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Collapse
Affiliation(s)
- Gleb Kuznetsov
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.,Program in Biophysics, Harvard University, Boston, MA, USA
| | - Daniel B Goodman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA
| | - Gabriel T Filsinger
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.,Systems Biology Graduate Program, Harvard Medical School, Boston, MA, USA
| | - Matthieu Landon
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Systems Biology Graduate Program, Harvard Medical School, Boston, MA, USA.,Ecole des Mines de Paris, Mines Paristech, Paris, France
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marc J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|