1
|
Mohan AV, Escuer P, Cornet C, Lucek K. A three-dimensional genomics view for speciation research. Trends Genet 2024; 40:638-641. [PMID: 38880723 DOI: 10.1016/j.tig.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Genomic information is folded in a three-dimensional (3D) structure, a rarely explored evolutionary driver of speciation. Technological advances now enable the study of 3D genome structures (3DGSs) across the Tree of Life. At the onset of 3D speciation genomics, we discuss the putative roles of 3DGSs in speciation.
Collapse
Affiliation(s)
- Ashwini V Mohan
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Paula Escuer
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Camille Cornet
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
2
|
Bergman S, Tuller T. Strong association between genomic 3D structure and CRISPR cleavage efficiency. PLoS Comput Biol 2024; 20:e1012214. [PMID: 38848440 PMCID: PMC11189236 DOI: 10.1371/journal.pcbi.1012214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
CRISPR is a gene editing technology which enables precise in-vivo genome editing; but its potential is hampered by its relatively low specificity and sensitivity. Improving CRISPR's on-target and off-target effects requires a better understanding of its mechanism and determinants. Here we demonstrate, for the first time, the chromosomal 3D spatial structure's association with CRISPR's cleavage efficiency, and its predictive capabilities. We used high-resolution Hi-C data to estimate the 3D distance between different regions in the human genome and utilized these spatial properties to generate 3D-based features, characterizing each region's density. We evaluated these features based on empirical, in-vivo CRISPR efficiency data and compared them to 425 features used in state-of-the-art models. The 3D features ranked in the top 13% of the features, and significantly improved the predictive power of LASSO and xgboost models trained with these features. The features indicated that sites with lower spatial density demonstrated higher efficiency. Understanding how CRISPR is affected by the 3D DNA structure provides insight into CRISPR's mechanism in general and improves our ability to correctly predict CRISPR's cleavage as well as design sgRNAs for therapeutic and scientific use.
Collapse
Affiliation(s)
- Shaked Bergman
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Okhovat M, VanCampen J, Nevonen KA, Harshman L, Li W, Layman CE, Ward S, Herrera J, Wells J, Sheng RR, Mao Y, Ndjamen B, Lima AC, Vigh-Conrad KA, Stendahl AM, Yang R, Fedorov L, Matthews IR, Easow SA, Chan DK, Jan TA, Eichler EE, Rugonyi S, Conrad DF, Ahituv N, Carbone L. TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function. Nat Commun 2023; 14:8111. [PMID: 38062027 PMCID: PMC10703881 DOI: 10.1038/s41467-023-43841-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find 14% of all human TAD boundaries to be shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons compared to species-specific boundaries. CRISPR-Cas9 knockouts of an ultraconserved boundary in a mouse model lead to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in the upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations and showcases the functional importance of TAD evolution.
Collapse
Affiliation(s)
- Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Jake VanCampen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Weiyu Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Samantha Ward
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jarod Herrera
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Blaise Ndjamen
- Histology and Light Microscopy Core Facility, Gladstone Institutes, San Francisco, CA, USA
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Ran Yang
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Lev Fedorov
- OHSU Transgenic Mouse Models Core Lab, Oregon Health and Science University, Portland, OR, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Sarah A Easow
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA.
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Brand CM, Kuang S, Gilbertson EN, McArthur E, Pollard KS, Webster TH, Capra JA. Sequence-based machine learning reveals 3D genome differences between bonobos and chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564272. [PMID: 37961120 PMCID: PMC10634871 DOI: 10.1101/2023.10.26.564272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Phenotypic divergence between closely related species, including bonobos and chimpanzees (genus Pan), is largely driven by variation in gene regulation. The 3D structure of the genome mediates gene expression; however, genome folding differences in Pan are not well understood. Here, we apply machine learning to predict genome-wide 3D genome contact maps from DNA sequence for 56 bonobos and chimpanzees, encompassing all five extant lineages. We use a pairwise approach to estimate 3D divergence between individuals from the resulting contact maps in 4,420 1 Mb genomic windows. While most pairs were similar, ∼17% were predicted to be substantially divergent in genome folding. The most dissimilar maps were largely driven by single individuals with rare variants that produce unique 3D genome folding in a region. We also identified 89 genomic windows where bonobo and chimpanzee contact maps substantially diverged, including several windows harboring genes associated with traits implicated in Pan phenotypic divergence. We used in silico mutagenesis to identify 51 3D-modifying variants in these bonobo-chimpanzee divergent windows, finding that 34 or 66.67% induce genome folding changes via CTCF binding motif disruption. Our results reveal 3D genome variation at the population-level and identify genomic regions where changes in 3D folding may contribute to phenotypic differences in our closest living relatives.
Collapse
Affiliation(s)
- Colin M. Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Shuzhen Kuang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
| | - Erin N. Gilbertson
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Katherine S. Pollard
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | | | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA
| |
Collapse
|
5
|
Zhuo X, Hsu S, Purushotham D, Kuntala PK, Harrison JK, Du AY, Chen S, Li D, Wang T. Comparing genomic and epigenomic features across species using the WashU Comparative Epigenome Browser. Genome Res 2023; 33:824-835. [PMID: 37156621 PMCID: PMC10317122 DOI: 10.1101/gr.277550.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Genome browsers have become an intuitive and critical tool to visualize and analyze genomic features and data. Conventional genome browsers display data/annotations on a single reference genome/assembly; there are also genomic alignment viewer/browsers that help users visualize alignment, mismatch, and rearrangement between syntenic regions. However, there is a growing need for a comparative epigenome browser that can display genomic and epigenomic data sets across different species and enable users to compare them between syntenic regions. Here, we present the WashU Comparative Epigenome Browser. It allows users to load functional genomic data sets/annotations mapped to different genomes and display them over syntenic regions simultaneously. The browser also displays genetic differences between the genomes from single-nucleotide variants (SNVs) to structural variants (SVs) to visualize the association between epigenomic differences and genetic differences. Instead of anchoring all data sets to the reference genome coordinates, it creates independent coordinates of different genome assemblies to faithfully present features and data mapped to different genomes. It uses a simple, intuitive genome-align track to illustrate the syntenic relationship between different species. It extends the widely used WashU Epigenome Browser infrastructure and can be expanded to support multiple species. This new browser function will greatly facilitate comparative genomic/epigenomic research, as well as support the recent growing needs to directly compare and benchmark the T2T CHM13 assembly and other human genome assemblies.
Collapse
Affiliation(s)
- Xiaoyu Zhuo
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Silas Hsu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deepak Purushotham
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Prashant Kumar Kuntala
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jessica K Harrison
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Samuel Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
6
|
Okhovat M, VanCampen J, Lima AC, Nevonen KA, Layman CE, Ward S, Herrera J, Stendahl AM, Yang R, Harshman L, Li W, Sheng RR, Mao Y, Fedorov L, Ndjamen B, Vigh-Conrad KA, Matthews IR, Easow SA, Chan DK, Jan TA, Eichler EE, Rugonyi S, Conrad DF, Ahituv N, Carbone L. TAD Evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531534. [PMID: 36945527 PMCID: PMC10028908 DOI: 10.1101/2023.03.07.531534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species, and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find that only 14% of all human TAD boundaries are shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons, compared to species-specific boundaries. CRISPR-Cas9 knockouts of two ultraconserved boundaries in mouse models leads to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations, and showcase the functional importance of TAD evolution.
Collapse
|
7
|
Liu L, Megens HJ, Crooijmans RP, Bosse M, Huang Q, Sonsbeek GBV, Groenen MA, Madsen O. The Visayan warty pig (Sus cebifrons) genome provides insight into chromosome evolution and sensory adaptation in pigs. Mol Biol Evol 2022; 39:6596366. [PMID: 35642310 PMCID: PMC9178973 DOI: 10.1093/molbev/msac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks post-zygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent post-divergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.
Collapse
Affiliation(s)
- Langqing Liu
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| | | | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| | - Qitong Huang
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands.,Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | - Martien Am Groenen
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| |
Collapse
|
8
|
Li D, He M, Tang Q, Tian S, Zhang J, Li Y, Wang D, Jin L, Ning C, Zhu W, Hu S, Long K, Ma J, Liu J, Zhang Z, Li M. Comparative 3D genome architecture in vertebrates. BMC Biol 2022; 20:99. [PMID: 35524220 PMCID: PMC9077971 DOI: 10.1186/s12915-022-01301-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene transcription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene expression that determine evolutionary differences among species, the way 3D genome architecture is affected by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species. RESULTS This analysis shows a correlation between genome size and chromosome length that affects chromosome territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, including local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conservation of topologically associating domains (TADs) appears strongly associated with the modularity of expression profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and euchromatin organization, respectively, during the evolution of genome architecture. CONCLUSIONS Our analysis uncovers organizational features that appear to determine the conservation and transcriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome evolution by extending our understanding of the mechanisms shaping genome architecture.
Collapse
Affiliation(s)
- Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Zhao C, Liu T, Wang Z. Functional Similarities of Protein-Coding Genes in Topologically Associating Domains and Spatially-Proximate Genomic Regions. Genes (Basel) 2022; 13:genes13030480. [PMID: 35328034 PMCID: PMC8951421 DOI: 10.3390/genes13030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Topologically associating domains (TADs) are the structural and functional units of the genome. However, the functions of protein-coding genes existing in the same or different TADs have not been fully investigated. We compared the functional similarities of protein-coding genes existing in the same TAD and between different TADs, and also in the same gap region (the region between two consecutive TADs) and between different gap regions. We found that the protein-coding genes from the same TAD or gap region are more likely to share similar protein functions, and this trend is more obvious with TADs than the gap regions. We further created two types of gene–gene spatial interaction networks: the first type is based on Hi-C contacts, whereas the second type is based on both Hi-C contacts and the relationship of being in the same TAD. A graph auto-encoder was applied to learn the network topology, reconstruct the two types of networks, and predict the functions of the central genes/nodes based on the functions of the neighboring genes/nodes. It was found that better performance was achieved with the second type of network. Furthermore, we detected long-range spatially-interactive regions based on Hi-C contacts and calculated the functional similarities of the gene pairs from these regions.
Collapse
|
10
|
Abstract
We found the three-dimensional (3D) structure of chromatin at the chromosome level to be highly conserved for more than 50 million y of carnivore evolution. Intrachromosomal contacts were maintained even after chromosome rearrangements within carnivore lineages, demonstrating that the maintenance of 3D chromatin architecture is essential for conserved genome functions. These discoveries enabled the identification of orthologous chromosomal DNA segments among related species, a method we call 3D comparative scaffotyping. The method has application for putative chromosome assignment of chromosome-scale DNA sequence scaffolds produced by de novo genome sequencing. Broadly applied to biodiversity genome sequencing efforts, the approach can reduce costs associated with karyotyping and the physical mapping of DNA segments to chromosomes. High throughput chromatin conformation capture (Hi-C) of leukocyte DNA was used to investigate the evolutionary stability of chromatin conformation at the chromosomal level in 11 species from three carnivore families: Felidae, Canidae, and Ursidae. Chromosome-scale scaffolds (C-scaffolds) of each species were initially used for whole-genome alignment to a reference genome within each family. This approach established putative orthologous relationships between C-scaffolds among the different species. Hi-C contact maps for all C-scaffolds were then visually compared and found to be distinct for a given reference chromosome or C-scaffold within a species and indistinguishable for orthologous C-scaffolds having a 1:1 relationship within a family. The visual patterns within families were strongly supported by eigenvectors from the Hi-C contact maps. Analysis of Hi-C contact maps and eigenvectors across the three carnivore families revealed that most cross-family orthologous subchromosomal fragments have a conserved three-dimensional (3D) chromatin structure and thus have been under strong evolutionary constraint for ∼54 My of carnivore evolution. The most pronounced differences in chromatin conformation were observed for the X chromosome and the red fox genome, whose chromosomes have undergone extensive rearrangements relative to other canids. We also demonstrate that Hi-C contact map pattern analysis can be used to accurately identify orthologous relationships between C-scaffolds and chromosomes, a method we termed “3D comparative scaffotyping.” This method provides a powerful means for estimating karyotypes in de novo sequenced species that have unknown karyotype and no physical mapping information.
Collapse
|
11
|
Lee DI, Roy S. GRiNCH: simultaneous smoothing and detection of topological units of genome organization from sparse chromatin contact count matrices with matrix factorization. Genome Biol 2021; 22:164. [PMID: 34034791 PMCID: PMC8152090 DOI: 10.1186/s13059-021-02378-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
High-throughput chromosome conformation capture assays, such as Hi-C, have shown that the genome is organized into organizational units such as topologically associating domains (TADs), which can impact gene regulatory processes. The sparsity of Hi-C matrices poses a challenge for reliable detection of these units. We present GRiNCH, a constrained matrix-factorization-based approach for simultaneous smoothing and discovery of TADs from sparse contact count matrices. GRiNCH shows superior performance against seven TAD-calling methods and three smoothing methods. GRiNCH is applicable to multiple platforms including SPRITE and HiChIP and can predict novel boundary factors with potential roles in genome organization.
Collapse
Affiliation(s)
- Da-Inn Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53715, USA
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53715, USA.
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, 53715, USA.
| |
Collapse
|
12
|
Eres IE, Gilad Y. A TAD Skeptic: Is 3D Genome Topology Conserved? Trends Genet 2021; 37:216-223. [PMID: 33203573 PMCID: PMC8120795 DOI: 10.1016/j.tig.2020.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The notion that topologically associating domains (TADs) are highly conserved across species is prevalent in the field of 3D genomics. However, what exactly is meant by 'highly conserved' and what are the actual comparative data that support this notion? To address these questions, we performed a historical review of the relevant literature and retraced numerous citation chains to reveal the primary data that were used as the basis for the widely accepted conclusion that TADs are highly conserved across evolution. A thorough review of the available evidence suggests the answer may be more complex than what is commonly presented.
Collapse
Affiliation(s)
- Ittai E Eres
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., N417, MC6091, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Liao Y, Zhang X, Chakraborty M, Emerson JJ. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res 2021; 31:397-410. [PMID: 33563719 PMCID: PMC7919452 DOI: 10.1101/gr.266130.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Topologically associating domains (TADs) were recently identified as fundamental units of three-dimensional eukaryotic genomic organization, although our knowledge of the influence of TADs on genome evolution remains preliminary. To study the molecular evolution of TADs in Drosophila species, we constructed a new reference-grade genome assembly and accompanying high-resolution TAD map for D. pseudoobscura Comparison of D. pseudoobscura and D. melanogaster, which are separated by ∼49 million years of divergence, showed that ∼30%-40% of their genomes retain conserved TADs. Comparative genomic analysis of 17 Drosophila species revealed that chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted within TADs. Additionally, genes within conserved TADs show lower expression divergence than those located in nonconserved TADs. Furthermore, we found that a substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D. pseudoobscura (26%) constitute their own TADs, implying transcript structure may be one of the deterministic factors for TAD formation. By using structural variants (SVs) identified from 14 D. melanogaster strains, its three closest sibling species from the D. simulans species complex, and two obscura clade species, we uncovered evidence of selection acting on SVs at TAD boundaries, but with the nature of selection differing between SV types. Deletions are depleted at TAD boundaries in both divergent and polymorphic SVs, suggesting purifying selection, whereas divergent tandem duplications are enriched at TAD boundaries relative to polymorphism, suggesting they are adaptive. Our findings highlight how important TADs are in shaping the acquisition and retention of structural mutations that fundamentally alter genome organization.
Collapse
Affiliation(s)
- Yi Liao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Xinwen Zhang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, California 92697, USA
| |
Collapse
|
14
|
McArthur E, Capra JA. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am J Hum Genet 2021; 108:269-283. [PMID: 33545030 PMCID: PMC7895846 DOI: 10.1016/j.ajhg.2021.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
Topologically associating domains (TADs) are fundamental units of three-dimensional (3D) nuclear organization. The regions bordering TADs-TAD boundaries-contribute to the regulation of gene expression by restricting interactions of cis-regulatory sequences to their target genes. TAD and TAD-boundary disruption have been implicated in rare-disease pathogenesis; however, we have a limited framework for integrating TADs and their variation across cell types into the interpretation of common-trait-associated variants. Here, we investigate an attribute of 3D genome architecture-the stability of TAD boundaries across cell types-and demonstrate its relevance to understanding how genetic variation in TADs contributes to complex disease. By synthesizing TAD maps across 37 diverse cell types with 41 genome-wide association studies (GWASs), we investigate the differences in disease association and evolutionary pressure on variation in TADs versus TAD boundaries. We demonstrate that genetic variation in TAD boundaries contributes more to complex-trait heritability, especially for immunologic, hematologic, and metabolic traits. We also show that TAD boundaries are more evolutionarily constrained than TADs. Next, stratifying boundaries by their stability across cell types, we find substantial variation. Compared to boundaries unique to a specific cell type, boundaries stable across cell types are further enriched for complex-trait heritability, evolutionary constraint, CTCF binding, and housekeeping genes. Thus, considering TAD boundary stability across cell types provides valuable context for understanding the genome's functional landscape and enabling variant interpretation that takes 3D structure into account.
Collapse
Affiliation(s)
- Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94158; Bakar Institute for Computational Health Sciences, University of California, San Francisco, CA, 94158.
| |
Collapse
|
15
|
Abstract
The study of chromosome evolution is undergoing a resurgence of interest owing to advances in DNA sequencing technology that facilitate the production of chromosome-scale whole-genome assemblies de novo. This review focuses on the history, methods, discoveries, and current challenges facing the field, with an emphasis on vertebrate genomes. A detailed examination of the literature on the biology of chromosome rearrangements is presented, specifically the relationship between chromosome rearrangements and phenotypic evolution, adaptation, and speciation. A critical review of the methods for identifying, characterizing, and visualizing chromosome rearrangements and computationally reconstructing ancestral karyotypes is presented. We conclude by looking to the future, identifying the enormous technical and scientific challenges presented by the accumulation of hundreds and eventually thousands of chromosome-scale assemblies.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Marco Corbo
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Harris A Lewin
- The Genome Center, University of California, Davis, California 95616, USA; , , .,Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
16
|
Galan S, Machnik N, Kruse K, Díaz N, Marti-Renom MA, Vaquerizas JM. CHESS enables quantitative comparison of chromatin contact data and automatic feature extraction. Nat Genet 2020; 52:1247-1255. [PMID: 33077914 PMCID: PMC7610641 DOI: 10.1038/s41588-020-00712-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Dynamic changes in the three-dimensional (3D) organization of chromatin are associated with central biological processes, such as transcription, replication and development. Therefore, the comprehensive identification and quantification of these changes is fundamental to understanding of evolutionary and regulatory mechanisms. Here, we present Comparison of Hi-C Experiments using Structural Similarity (CHESS), an algorithm for the comparison of chromatin contact maps and automatic differential feature extraction. We demonstrate the robustness of CHESS to experimental variability and showcase its biological applications on (1) interspecies comparisons of syntenic regions in human and mouse models; (2) intraspecies identification of conformational changes in Zelda-depleted Drosophila embryos; (3) patient-specific aberrant chromatin conformation in a diffuse large B-cell lymphoma sample; and (4) the systematic identification of chromatin contact differences in high-resolution Capture-C data. In summary, CHESS is a computationally efficient method for the comparison and classification of changes in chromatin contact data.
Collapse
Affiliation(s)
- Silvia Galan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- National Centre for Genomic Analysis, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nick Machnik
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marc A Marti-Renom
- National Centre for Genomic Analysis, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Medical Research Council London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
17
|
Halstead MM, Kern C, Saelao P, Wang Y, Chanthavixay G, Medrano JF, Van Eenennaam AL, Korf I, Tuggle CK, Ernst CW, Zhou H, Ross PJ. A comparative analysis of chromatin accessibility in cattle, pig, and mouse tissues. BMC Genomics 2020; 21:698. [PMID: 33028202 PMCID: PMC7541309 DOI: 10.1186/s12864-020-07078-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Although considerable progress has been made towards annotating the noncoding portion of the human and mouse genomes, regulatory elements in other species, such as livestock, remain poorly characterized. This lack of functional annotation poses a substantial roadblock to agricultural research and diminishes the value of these species as model organisms. As active regulatory elements are typically characterized by chromatin accessibility, we implemented the Assay for Transposase Accessible Chromatin (ATAC-seq) to annotate and characterize regulatory elements in pigs and cattle, given a set of eight adult tissues. Results Overall, 306,304 and 273,594 active regulatory elements were identified in pig and cattle, respectively. 71,478 porcine and 47,454 bovine regulatory elements were highly tissue-specific and were correspondingly enriched for binding motifs of known tissue-specific transcription factors. However, in every tissue the most prevalent accessible motif corresponded to the insulator CTCF, suggesting pervasive involvement in 3-D chromatin organization. Taking advantage of a similar dataset in mouse, open chromatin in pig, cattle, and mice were compared, revealing that the conservation of regulatory elements, in terms of sequence identity and accessibility, was consistent with evolutionary distance; whereas pig and cattle shared about 20% of accessible sites, mice and ungulates only had about 10% of accessible sites in common. Furthermore, conservation of accessibility was more prevalent at promoters than at intergenic regions. Conclusions The lack of conserved accessibility at distal elements is consistent with rapid evolution of enhancers, and further emphasizes the need to annotate regulatory elements in individual species, rather than inferring elements based on homology. This atlas of chromatin accessibility in cattle and pig constitutes a substantial step towards annotating livestock genomes and dissecting the regulatory link between genome and phenome.
Collapse
Affiliation(s)
- Michelle M Halstead
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Colin Kern
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Perot Saelao
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Ying Wang
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Juan F Medrano
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | | | - Ian Korf
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | | | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, 48824, MI, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA.
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Crosetto N, Bienko M. Radial Organization in the Mammalian Nucleus. Front Genet 2020; 11:33. [PMID: 32117447 PMCID: PMC7028756 DOI: 10.3389/fgene.2020.00033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, most of the genetic material is contained within a highly specialized organelle-the nucleus. A large body of evidence indicates that, within the nucleus, chromatinized DNA is spatially organized at multiple length scales. The higher-order organization of chromatin is crucial for proper execution of multiple genome functions, including DNA replication and transcription. Here, we review our current knowledge on the spatial organization of chromatin in the nucleus of mammalian cells, focusing in particular on how chromatin is radially arranged with respect to the nuclear lamina. We then discuss the possible mechanisms by which the radial organization of chromatin in the cell nucleus is established. Lastly, we propose a unifying model of nuclear spatial organization, and suggest novel approaches to test it.
Collapse
Affiliation(s)
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, Esquerré D, Zytnicki M, Derrien T, Bardou P, Blanc F, Cabau C, Crisci E, Dhorne-Pollet S, Drouet F, Faraut T, Gonzalez I, Goubil A, Lacroix-Lamandé S, Laurent F, Marthey S, Marti-Marimon M, Momal-Leisenring R, Mompart F, Quéré P, Robelin D, Cristobal MS, Tosser-Klopp G, Vincent-Naulleau S, Fabre S, der Laan MHPV, Klopp C, Tixier-Boichard M, Acloque H, Lagarrigue S, Giuffra E. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol 2019; 17:108. [PMID: 31884969 PMCID: PMC6936065 DOI: 10.1186/s12915-019-0726-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.
Collapse
Affiliation(s)
- Sylvain Foissac
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Sarah Djebali
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Kylie Munyard
- Curtin University, School of Pharmacy & Biomedical Sciences, CHIRI Biosciences, Perth, 24105 Australia
| | - Nathalie Vialaneix
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Andrea Rau
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Kevin Muret
- PEGASE, Agrocampus-Ouest, INRA, Saint-Gilles Cedex, F-35590 France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
- INRA, US1426, GeT-PlaGe, Genotoul, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Matthias Zytnicki
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Fany Blanc
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Cédric Cabau
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Elisa Crisci
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607 USA
| | - Sophie Dhorne-Pollet
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Ignacio Gonzalez
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Adeline Goubil
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | | | - Sylvain Marthey
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Maria Marti-Marimon
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Florence Mompart
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - David Robelin
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Magali San Cristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Gwenola Tosser-Klopp
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Christophe Klopp
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Hervé Acloque
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | - Elisabetta Giuffra
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| |
Collapse
|
20
|
Lu J, Cao X, Zhong S. EpiAlignment: alignment with both DNA sequence and epigenomic data. Nucleic Acids Res 2019; 47:W11-W19. [PMID: 31114924 PMCID: PMC6602515 DOI: 10.1093/nar/gkz426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022] Open
Abstract
Comparative epigenomics, which subjects both epigenome and genome to interspecies comparison, has become a powerful approach to reveal regulatory features of the genome. Thus elucidated regulatory features surpass the information derived from comparison of genomic sequences alone. Here, we present EpiAlignment, a web-based tool to align genomic regions with both DNA sequence and epigenomic data. EpiAlignment takes DNA sequence and epigenomic profiles derived by ChIP-seq from two species as input data, and outputs the best semi-global alignments. These alignments are based on EpiAlignment scores, computed by a dynamic programming algorithm that accounts for both sequence alignment and epigenome similarity. For timely response, the EpiAlignment web server automatically initiates up to 140 computing threads depending on the size of user input data. For users’ convenience, we have pre-compiled the comparable human and mouse epigenome datasets in matched cell types and tissues from the Roadmap Epigenomics and ENCODE consortia. Users can either upload their own data or select pre-compiled datasets as inputs for EpiAlignment analyses. Results are presented in graphical and tabular formats where the entries can be interactively expanded to visualize additional features of these aligned regions. EpiAlignment is available at https://epialign.ucsd.edu/.
Collapse
Affiliation(s)
- Jia Lu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- To whom correspondence should be addressed. Tel: +1 858 246 1118; Fax: +1 858 244 4543;
| |
Collapse
|