1
|
Bhat-Nakshatri P, Gao H, Khatpe AS, Adebayo AK, McGuire PC, Erdogan C, Chen D, Jiang G, New F, German R, Emmert L, Sandusky G, Storniolo AM, Liu Y, Nakshatri H. Single-nucleus chromatin accessibility and transcriptomic map of breast tissues of women of diverse genetic ancestry. Nat Med 2024:10.1038/s41591-024-03011-9. [PMID: 39122969 DOI: 10.1038/s41591-024-03011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 08/12/2024]
Abstract
Single-nucleus analysis allows robust cell-type classification and helps to establish relationships between chromatin accessibility and cell-type-specific gene expression. Here, using samples from 92 women of several genetic ancestries, we developed a comprehensive chromatin accessibility and gene expression atlas of the breast tissue. Integrated analysis revealed ten distinct cell types, including three major epithelial subtypes (luminal hormone sensing, luminal adaptive secretory precursor (LASP) and basal-myoepithelial), two endothelial and adipocyte subtypes, fibroblasts, T cells, and macrophages. In addition to the known cell identity genes FOXA1 (luminal hormone sensing), EHF and ELF5 (LASP), TP63 and KRT14 (basal-myoepithelial), epithelial subtypes displayed several uncharacterized markers and inferred gene regulatory networks. By integrating breast epithelial cell gene expression signatures with spatial transcriptomics, we identified gene expression and signaling differences between lobular and ductal epithelial cells and age-associated changes in signaling networks. LASP cells and fibroblasts showed genetic ancestry-dependent variability. An estrogen receptor-positive subpopulation of LASP cells with alveolar progenitor cell state was enriched in women of Indigenous American ancestry. Fibroblasts from breast tissues of women of African and European ancestry clustered differently, with accompanying gene expression differences. Collectively, these data provide a vital resource for further exploring genetic ancestry-dependent variability in healthy breast biology.
Collapse
Affiliation(s)
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aditi S Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adedeji K Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick C McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cihat Erdogan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Felicia New
- NanoString Technology Inc., Seattle, WA, USA
| | - Rana German
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lydia Emmert
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anna Maria Storniolo
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- VA Roudebush Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Brugge J, Chang KC, Silvestri F, Olipant M, Martinez-Gakidis MA, Orgill D, Garber J, Dillon D. Breast organoid suspension cultures maintain long-term estrogen receptor expression and responsiveness. RESEARCH SQUARE 2024:rs.3.rs-4463390. [PMID: 38947074 PMCID: PMC11213202 DOI: 10.21203/rs.3.rs-4463390/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Organoid cultures offer a powerful technology to investigate many different aspects of development, physiology, and pathology of diverse tissues. Unlike standard tissue culture of primary breast epithelial cells, breast organoids preserve the epithelial lineages and architecture of the normal tissue. However, existing organoid culture methods are tedious, difficult to scale, and do not robustly retain estrogen receptor (ER) expression and responsiveness in long-term culture. Here, we describe a modified culture method to generate and maintain organoids as suspension cultures in reconstituted basement membrane (™Matrigel). This method improves organoid growth and uniformity compared to the conventional Matrigel dome embedding method, while maintaining the fidelity of the three major epithelial lineages. Using this adopted method, we are able to culture and passage purified hormone sensing (HS) cells that retain ER responsiveness upon estrogen stimulation in long-term culture. This culture system presents a valuable platform to study the events involved in initiation and evolution of ER-positive breast cancer.
Collapse
|
3
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Madubata C, Fragiadakis GK, Ye CJ, Kim S, Gartner ZJ, Sirota M, Neely J. Coordinated immune dysregulation in juvenile dermatomyositis revealed by single-cell genomics. JCI Insight 2024; 9:e176963. [PMID: 38743491 PMCID: PMC11383589 DOI: 10.1172/jci.insight.176963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I IFN response and autoantibodies. Treatment options are limited due to an incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of patients with JDM at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment toward an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I IFN response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK cells, CD8+ T cells, and γδ T cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, and
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - George C Hartoularos
- Graduate Program in Biological and Medical Informatics
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
| | - Yang Sun
- Division of Rheumatology, Department of Medicine
| | - Chioma Madubata
- Division of Pediatric Rheumatology, Department of Pediatrics
- CoLabs
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
- Department of Epidemiology and Biostatistics, and
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics
| |
Collapse
|
4
|
Reed AD, Pensa S, Steif A, Stenning J, Kunz DJ, Porter LJ, Hua K, He P, Twigger AJ, Siu AJQ, Kania K, Barrow-McGee R, Goulding I, Gomm JJ, Speirs V, Jones JL, Marioni JC, Khaled WT. A single-cell atlas enables mapping of homeostatic cellular shifts in the adult human breast. Nat Genet 2024; 56:652-662. [PMID: 38548988 PMCID: PMC11018528 DOI: 10.1038/s41588-024-01688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/09/2024] [Indexed: 04/17/2024]
Abstract
Here we use single-cell RNA sequencing to compile a human breast cell atlas assembled from 55 donors that had undergone reduction mammoplasties or risk reduction mastectomies. From more than 800,000 cells we identified 41 cell subclusters across the epithelial, immune and stromal compartments. The contribution of these different clusters varied according to the natural history of the tissue. Age, parity and germline mutations, known to modulate the risk of developing breast cancer, affected the homeostatic cellular state of the breast in different ways. We found that immune cells from BRCA1 or BRCA2 carriers had a distinct gene expression signature indicative of potential immune exhaustion, which was validated by immunohistochemistry. This suggests that immune-escape mechanisms could manifest in non-cancerous tissues very early during tumor initiation. This atlas is a rich resource that can be used to inform novel approaches for early detection and prevention of breast cancer.
Collapse
Affiliation(s)
- Austin D Reed
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sara Pensa
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Adi Steif
- CRUK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jack Stenning
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Linsey J Porter
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kui Hua
- CRUK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Peng He
- EMBL European Bioinformatics Institute, Hinxton, UK
- Sanger Institute, Hinxton, UK
| | - Alecia-Jane Twigger
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Abigail J Q Siu
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Katarzyna Kania
- CRUK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Rachel Barrow-McGee
- Breast Cancer Now Tissue Bank, Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Iain Goulding
- Breast Cancer Now Tissue Bank, Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Jennifer J Gomm
- Breast Cancer Now Tissue Bank, Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, Aberdeen, UK
| | - J Louise Jones
- Breast Cancer Now Tissue Bank, Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, UK
| | - John C Marioni
- CRUK, Cambridge Institute, University of Cambridge, Cambridge, UK.
- EMBL European Bioinformatics Institute, Hinxton, UK.
- Sanger Institute, Hinxton, UK.
- Genentech, San Francisco, CA, USA.
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Moccia C, Cherubini M, Fortea M, Akinbote A, Padmanaban P, Beltran‐Sastre V, Haase K. Mammary Microvessels are Sensitive to Menstrual Cycle Sex Hormones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302561. [PMID: 37897317 PMCID: PMC10724440 DOI: 10.1002/advs.202302561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/04/2023] [Indexed: 10/30/2023]
Abstract
The mammary gland is a highly vascularized organ influenced by sex hormones including estrogen (E2) and progesterone (P4). Beyond whole-organism studies in rodents or cell monocultures, hormonal effects on the breast microvasculature remain largely understudied. Recent methods to generate 3D microvessels on-chip have enabled direct observation of complex vascular processes; however, these models often use non-tissue-specific cell types, such as human umbilical vein endothelial cells (HUVECs) and fibroblasts from various sources. Here, novel mammary-specific microvessels are generated by coculturing primary breast endothelial cells and fibroblasts under optimized culture conditions. These microvessels are mechanosensitive (to interstitial flow) and require endothelial-stromal interactions to develop fully perfusable vessels. These mammary-specific microvessels are also responsive to exogenous stimulation by sex hormones. When treated with combined E2 and P4, corresponding to the four phases of the menstrual cycle (period, follicular, ovular, and luteal), vascular remodeling and barrier function are altered in a phase-dependent manner. The presence of high E2 (ovulation) promotes vascular growth and remodeling, corresponding to high depletion of proangiogenic factors, whereas high P4 concentrations (luteal) promote vascular regression. The effects of combined E2 and P4 hormones are not only dose-dependent but also tissue-specific, as are shown by similarly treating non-tissue-specific HUVEC microvessels.
Collapse
Affiliation(s)
- Carmen Moccia
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Marta Cherubini
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Marina Fortea
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Akinola Akinbote
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
- Heidelberg UniversityHeidelbergGermany
| | - Prasanna Padmanaban
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | | | - Kristina Haase
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| |
Collapse
|
6
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Ye CJ, Kim S, Gartner Z, Sirota M, Neely J. Coordinated immune dysregulation in Juvenile Dermatomyositis revealed by single-cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566033. [PMID: 37986917 PMCID: PMC10659396 DOI: 10.1101/2023.11.07.566033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1 expression in monocytes as a composite measure of heterogeneous type I interferon activity in disease. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with dysfunctional protein processing and regulation of cell death programming. This analysis separated the ubiquitously expressed type I interferon response into a central hub and revealed previously masked cell states. Together, these findings reveal the coordinated immune dysregulation underpinning JDM and provide novel insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Emily Flynn
- CoLabs, UCSF, San Francisco, California, USA
| | - George C. Hartoularos
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
7
|
Clark IC, Fontanez KM, Meltzer RH, Xue Y, Hayford C, May-Zhang A, D'Amato C, Osman A, Zhang JQ, Hettige P, Ishibashi JSA, Delley CL, Weisgerber DW, Replogle JM, Jost M, Phong KT, Kennedy VE, Peretz CAC, Kim EA, Song S, Karlon W, Weissman JS, Smith CC, Gartner ZJ, Abate AR. Microfluidics-free single-cell genomics with templated emulsification. Nat Biotechnol 2023; 41:1557-1566. [PMID: 36879006 PMCID: PMC10635830 DOI: 10.1038/s41587-023-01685-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/20/2023] [Indexed: 03/08/2023]
Abstract
Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering, University of California, Berkeley, California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences, Watertown, MA, USA
| | | | | | | | | | | | | | | | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel W Weisgerber
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Jost
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kiet T Phong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa E Kennedy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cheryl A C Peretz
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Esther A Kim
- Division of Plastic and Reconstructive Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Siyou Song
- Division of Plastic and Reconstructive Surgery, University of California San Francisco, San Francisco, CA, USA
| | - William Karlon
- Departments of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine C Smith
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Gray GK, Girnius N, Kuiken HJ, Henstridge AZ, Brugge JS. Single-cell and spatial analyses reveal a tradeoff between murine mammary proliferation and lineage programs associated with endocrine cues. Cell Rep 2023; 42:113293. [PMID: 37858468 PMCID: PMC10840493 DOI: 10.1016/j.celrep.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Although distinct epithelial cell types have been distinguished in glandular tissues such as the mammary gland, the extent of heterogeneity within each cell type and the degree of endocrine control of this diversity across development are incompletely understood. By combining mass cytometry and cyclic immunofluorescence, we define a rich array of murine mammary epithelial cell subtypes associated with puberty, the estrous cycle, and sex. These subtypes are differentially proliferative and spatially segregate distinctly in adult versus pubescent glands. Further, we identify systematic suppression of lineage programs at the protein and RNA levels as a common feature of mammary epithelial expansion during puberty, the estrous cycle, and gestation and uncover a pervasive enrichment of ribosomal protein genes in luminal cells elicited specifically during progesterone-dominant expansionary periods. Collectively, these data expand our knowledge of murine mammary epithelial heterogeneity and connect endocrine-driven epithelial expansion with lineage suppression.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; The Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aylin Z Henstridge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Caruso JA, Wang X, Murrow LM, Rodriguez CI, Chen-Tanyolac C, Vu L, Chen YY, Gascard P, Gartner ZJ, Kerlikowske K, Tlsty TD. Loss of PPARγ activity characterizes early protumorigenic stromal reprogramming and dictates the therapeutic window of opportunity. Proc Natl Acad Sci U S A 2023; 120:e2303774120. [PMID: 37816052 PMCID: PMC10589683 DOI: 10.1073/pnas.2303774120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Xianhong Wang
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | | | | | - Lisa Vu
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Karla Kerlikowske
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, CA 94143
| |
Collapse
|
10
|
Kumar T, Nee K, Wei R, He S, Nguyen QH, Bai S, Blake K, Pein M, Gong Y, Sei E, Hu M, Casasent AK, Thennavan A, Li J, Tran T, Chen K, Nilges B, Kashikar N, Braubach O, Ben Cheikh B, Nikulina N, Chen H, Teshome M, Menegaz B, Javaid H, Nagi C, Montalvan J, Lev T, Mallya S, Tifrea DF, Edwards R, Lin E, Parajuli R, Hanson S, Winocour S, Thompson A, Lim B, Lawson DA, Kessenbrock K, Navin N. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 2023; 620:181-191. [PMID: 37380767 PMCID: PMC11443819 DOI: 10.1038/s41586-023-06252-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.
Collapse
Affiliation(s)
- Tapsi Kumar
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Runmin Wei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Siyuan He
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Shanshan Bai
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kerrigan Blake
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Maren Pein
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yanwen Gong
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Emi Sei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Min Hu
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anna K Casasent
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jianzhuo Li
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Tuan Tran
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Hui Chen
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mediget Teshome
- Department of Breast Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Menegaz
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Huma Javaid
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Jessica Montalvan
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Tatyana Lev
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Sharmila Mallya
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Delia F Tifrea
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Robert Edwards
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Erin Lin
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Ritesh Parajuli
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Summer Hanson
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA
| | | | | | - Bora Lim
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Nicholas Navin
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Srivastava V, Hu JL, Garbe JC, Veytsman B, Shalabi SF, Yllanes D, Thomson M, LaBarge MA, Huber G, Gartner ZJ. Configurational entropy is an intrinsic driver of tissue structural heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.546933. [PMID: 37425903 PMCID: PMC10327153 DOI: 10.1101/2023.07.01.546933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissues comprise ordered arrangements of cells that can be surprisingly disordered in their details. How the properties of single cells and their microenvironment contribute to the balance between order and disorder at the tissue-scale remains poorly understood. Here, we address this question using the self-organization of human mammary organoids as a model. We find that organoids behave like a dynamic structural ensemble at the steady state. We apply a maximum entropy formalism to derive the ensemble distribution from three measurable parameters - the degeneracy of structural states, interfacial energy, and tissue activity (the energy associated with positional fluctuations). We link these parameters with the molecular and microenvironmental factors that control them to precisely engineer the ensemble across multiple conditions. Our analysis reveals that the entropy associated with structural degeneracy sets a theoretical limit to tissue order and provides new insight for tissue engineering, development, and our understanding of disease progression.
Collapse
Affiliation(s)
- Vasudha Srivastava
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L. Hu
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - James C. Garbe
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Boris Veytsman
- Chan Zuckerberg Initiative, Redwood City, CA 94963, USA
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | | | - David Yllanes
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Instituto de Biocomputaciòn y Fìsica de Sistemas Complejos (BIFI), 50018 Zaragoza, Spain
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark A. LaBarge
- Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Greg Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Zev J. Gartner
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Nee K, Ma D, Nguyen QH, Pein M, Pervolarakis N, Insua-Rodríguez J, Gong Y, Hernandez G, Alshetaiwi H, Williams J, Rauf M, Dave KR, Boyapati K, Hasnain A, Calderon C, Markaryan A, Edwards R, Lin E, Parajuli R, Zhou P, Nie Q, Shalabi S, LaBarge MA, Kessenbrock K. Preneoplastic stromal cells promote BRCA1-mediated breast tumorigenesis. Nat Genet 2023; 55:595-606. [PMID: 36914836 PMCID: PMC10655552 DOI: 10.1038/s41588-023-01298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/28/2022] [Indexed: 03/16/2023]
Abstract
Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.
Collapse
Affiliation(s)
- Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maren Pein
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Nicholas Pervolarakis
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | | | - Yanwen Gong
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Grace Hernandez
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Department of Pathology, University of Hail, Hail, Saudi Arabia
| | - Justice Williams
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maha Rauf
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Kushal Rajiv Dave
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Keerti Boyapati
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Aliza Hasnain
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Christian Calderon
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Anush Markaryan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine Medical Center, Orange, CA, USA
| | - Erin Lin
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Ritesh Parajuli
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Sundus Shalabi
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|