1
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
2
|
Cai S, Erfle P, Dietzel A. A Digital Twin of the Coaxial Lamination Mixer for the Systematic Study of Mixing Performance and the Prediction of Precipitated Nanoparticle Properties. MICROMACHINES 2022; 13:2076. [PMID: 36557375 PMCID: PMC9780925 DOI: 10.3390/mi13122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The synthesis of nanoparticles in microchannels promises the advantages of small size, uniform shape and narrow size distribution. However, only with insights into the mixing processes can the most suitable designs and operating conditions be systematically determined. Coaxial lamination mixers (CLM) built by 2-photon polymerization can operate long-term stable nanoparticle precipitation without fouling issues. Contact of the organic phase with the microchannel walls is prevented while mixing with the aqueous phase is intensified. A coaxial nozzle allows 3D hydrodynamic focusing followed by a sequence of stretch-and-fold units. By means of a digital twin based on computational fluid dynamics (CFD) and numerical evaluation of mixing progression, the influences of operation conditions are now studied in detail. As a measure for homogenization, the mixing index (MI) was extracted as a function of microchannel position for different operating parameters such as the total flow rate and the share of solvent flow. As an exemplary result, behind a third stretch-and-fold unit, practically perfect mixing (MI>0.9) is predicted at total flow rates between 50 µL/min and 400 µL/min and up to 20% solvent flow share. Based on MI values, the mixing time, which is decisive for the size and dispersity of the nanoparticles, can be determined. Under the conditions considered, it ranges from 5 ms to 54 ms. A good correlation between the predicted mixing time and nanoparticle properties, as experimentally observed in earlier work, could be confirmed. The digital twin combining CFD with the MI methodology can in the future be used to adjust the design of a CLM or other micromixers to the desired total flow rates and flow rate ratios and to provide valuable predictions for the mixing time and even the properties of nanoparticles produced by microfluidic antisolvent precipitation.
Collapse
Affiliation(s)
- Songtao Cai
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Peer Erfle
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Osouli-Bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022; 14:pharmaceutics14091940. [PMID: 36145688 PMCID: PMC9506151 DOI: 10.3390/pharmaceutics14091940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticulate technologies have revolutionized drug delivery allowing for passive and active targeting, altered biodistribution, controlled drug release (temporospatial or triggered), enhanced stability, improved solubilization capacity, and a reduction in dose and adverse effects. However, their manufacture remains immature, and challenges exist on an industrial scale due to high batch-to-batch variability hindering their clinical translation. Lipid-based nanomedicines remain the most widely approved nanomedicines, and their current manufacturing methods remain discontinuous and face several problems such as high batch-to-batch variability affecting the critical quality attributes (CQAs) of the product, laborious multistep processes, need for an expert workforce, and not being easily amenable to industrial scale-up involving typically a complex process control. Several techniques have emerged in recent years for nanomedicine manufacture, but a paradigm shift occurred when microfluidic strategies able to mix fluids in channels with dimensions of tens of micrometers and small volumes of liquid reagents in a highly controlled manner to form nanoparticles with tunable and reproducible structure were employed. In this review, we summarize the recent advancements in the manufacturing of lipid-based nanomedicines using microfluidics with particular emphasis on the parameters that govern the control of CQAs of final nanomedicines. The impact of microfluidic environments on formation dynamics of nanomaterials, and the application of microdevices as platforms for nanomaterial screening are also discussed.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Sara Puliga
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| | - Andrea Bucchi
- School of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Gavin Halbert
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Aikaterini Lalatsa
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| |
Collapse
|
4
|
Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091886. [PMID: 36145632 PMCID: PMC9503303 DOI: 10.3390/pharmaceutics14091886] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are an alternate carrier system to liposomes, polymeric nanoparticles, and inorganic carriers. SLNs have attracted increasing attention in recent years for delivering drugs, nucleic acids, proteins, peptides, nutraceuticals, and cosmetics. These nanocarriers have attracted industrial attention due to their ease of preparation, physicochemical stability, and scalability. These characteristics make SLNs attractive for manufacture on a large scale. Currently, several products with SLNs are in clinical trials, and there is a high possibility that SLN carriers will quickly increase their presence in the market. A large-scale manufacturing unit is required for commercial applications to prepare enough formulations for clinical studies. Furthermore, continuous processing is becoming more popular in the pharmaceutical sector to reduce product batch-to-batch differences. This review paper discusses some conventional methods and the rationale for large-scale production. It further covers recent progress in scale-up methods for the synthesis of SLNs, including high-pressure homogenization (HPH), hot melt extrusion coupled with HPH, microchannels, nanoprecipitation using static mixers, and microemulsion-based methods. These scale-up technologies enable the possibility of commercialization of SLNs. Furthermore, ongoing studies indicate that these technologies will eventually reach the pharmaceutical market.
Collapse
|
5
|
Erfle P, Riewe J, Cai S, Bunjes H, Dietzel A. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles. LAB ON A CHIP 2022; 22:3025-3044. [PMID: 35829631 DOI: 10.1039/d2lc00240j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microfluidic mixers promise unique conditions for the controlled and continuous preparation of nanoparticles by antisolvent precipitation. Nanoparticles may enable encapsulation of drug or mRNA molecules in the form of carrier nanoparticles or can provide higher bioavailability in the form of drug nanoparticles. The ultimate goal in microfluidic approaches is the production of nanoparticles with narrow size distributions while avoiding contaminations and achieving sufficiently high throughput. To achieve this, a novel microfluidic precipitation device was developed and realized by two-photon polymerization: mixing elements were designed in such a way that the liquids undergo a repeated Smale horseshoe transformation resulting in an increased interfacial area and mixing times of less than 10 ms. These elements and an additional 3D flow focusing ensure that no organic phase is exposed to the channel walls. The integration of a fluidic shield layer in the flow focusing proved to be useful to delay the precipitation process until reaching a sufficient distance to the injection nozzle. Lipid nanoparticle preparation with different concentrations of castor oil or the hard fat Softisan® 100 were performed at different flow rates and mixing ratios with and without a shield layer. Flow rates of up to 800 μl min-1 and organic phase mixing ratios of up to 20% resulted in particle sizes ranging from 42 nm to 166 nm with polydispersity indices from 0.04 to 0.11, indicating very narrowly distributed, and in most cases even monodisperse, nanoparticles. The occurrence of fouling can be completely suppressed with this new type of mixing elements, as long as Dean vortices are prevented. Moreover, this parameter range in the horseshoe lamination mixer provided a stable and continuous process, which enables a scalable production.
Collapse
Affiliation(s)
- Peer Erfle
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Juliane Riewe
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Songtao Cai
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
| | - Heike Bunjes
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Formation dynamics and size prediction of bubbles for slurry system in T-shape microchannel. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Erfle P, Riewe J, Bunjes H, Dietzel A. Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles. LAB ON A CHIP 2021; 21:2178-2193. [PMID: 33861294 DOI: 10.1039/d1lc00047k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poorly soluble drugs can be incorporated in lipid carrier nanoparticles to achieve sufficient bioavailability and open up diverse routes of administration. Preparation by antisolvent precipitation in microfluidic systems enables excellent control of lipid nanoparticle size. However, particle-containing flows bear the risk of material deposition on microchannel surfaces, limiting reproducibility, prolonged continuous processing and scale-up by parallelization as required for practical use. The coaxial lamination mixer (CLM) introduced in this study can fully eliminate contact of the organic phase with the channel walls while efficiently mixing organic and aqueous phases. This unique micromixer, including a nozzle for coaxial injection, a sequence of stretch-and-fold elements and inlet filters, cannot be realized by conventional 2.5D microfabrication but only by 3D two-photon polymerization. Hydrodynamic focusing of the organic phase and fast coaxial lamination were studied in simulations and flow visualization experiments. Different concentrations of castor oil or a hard fat and polysorbate 80 dissolved in ethanol were injected and combined with purified water. Total flow rates of 100 and 200 μL min-1 and flow rate ratios of 15% or less resulted in particle sizes between 67 and 153 nm and polydispersity indices of 0.04 to 0.10. Extended preparation time revealed stable particle sizes and displayed no fouling, indicating that CLMs will even allow high throughput parallelization. Stable castor oil nanoemulsions loaded with the poorly soluble drugs fenofibrate or cannabidiol were prepared. In conclusion, the unique 3D design of the CLM enables prolonged, stable and scalable production of small as well as very narrowly distributed, in most cases even monodisperse drug-loaded lipid nanoparticles.
Collapse
Affiliation(s)
- Peer Erfle
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany. and Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Juliane Riewe
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany and Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany and Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany. and Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Ye X, Cheng Y, Chen Y, Hao T, Lan Z, Wen R, Ma X. Microcavity-Enabled Local Oscillation of Taylor Bubbles in a Microchannel. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Ye
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yaqi Cheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yansong Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tingting Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhong Lan
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Rongfu Wen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
9
|
Ashraf W, Latif A, Lianfu Z, Jian Z, Chenqiang W, Rehman A, Hussain A, Siddiquy M, Karim A. Technological Advancement in the Processing of Lycopene: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1749653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Anam Latif
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhang Lianfu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhang Jian
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wang Chenqiang
- Technical Center, Guannong Fruit & Antler Co.,Ltd, Korla City, Xinjiang, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arif Hussain
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study. Int J Pharm 2020; 579:119167. [DOI: 10.1016/j.ijpharm.2020.119167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
|
11
|
Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, Iqbal MW, Rashed MM, Mushtaq BS, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci 2020; 275:102048. [PMID: 31757387 DOI: 10.1016/j.cis.2019.102048] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Carotenoids retain plenty of health benefits and attracting much attention recently, but they have less resistance to processing stresses, easily oxidized and chemically unstable. Additionally, their application in food and pharmaceuticals are restricted due to some limitations such as poor bioavailability, less solubility and quick release. Nanoencapsulation techniques can be used to protect the carotenoids and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. The importance of nanocarriers in foods and pharmaceuticals cannot be denied. This review comprehensively covers recent advances in nanoencapsulation of carotenoids with biopolymeric nanocarriers (polysaccharides and proteins), and lipid-based nanocarriers, their functionalities, aptness and innovative developments in preparation strategies. Furthermore, the present state of the art encapsulation of different carotenoids via biopolymeric and lipid-based nanocarriers have been enclosed and tabulated well. Nanoencapsulation has a vast range of applications for protection of carotenoids. Polysaccharides in combination with different proteins can offer a great avenue to achieve the desired formulation for encapsulation of carotenoids by using different nanoencapsulation strategies. In terms of lipid based nanocarriers, solid lipid nanoparticles and nanostructure lipid carriers are proving as the encouraging candidates for entrapment of carotenoids. Additionally, nanoliposomes and nanoemulsion are also promising and novel-vehicles for the protection of carotenoids against challenging aspects as well as offering an effectual controlled release on the targeted sites. In the future, further studies could be conducted for exploring the application of nanoencapsulated systems in food and gastrointestinal tract (GIT) for industrial applications.
Collapse
|
12
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Erfle P, Riewe J, Bunjes H, Dietzel A. Stabilized Production of Lipid Nanoparticles of Tunable Size in Taylor Flow Glass Devices with High-Surface-Quality 3D Microchannels. MICROMACHINES 2019; 10:mi10040220. [PMID: 30934803 PMCID: PMC6523713 DOI: 10.3390/mi10040220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Nanoparticles as an application platform for active ingredients offer the advantage of efficient absorption and rapid dissolution in the organism, even in cases of poor water solubility. Active substances can either be presented directly as nanoparticles or can be integrated in a colloidal carrier system (e.g., lipid nanoparticles). For bottom-up nanoparticle production minimizing particle contamination, precipitation processes provide an adequate approach. Microfluidic systems ensure a precise control of mixing for the precipitation, which enables a tunable particle size definition. In this work, a gas/liquid Taylor flow micromixer made of chemically inert glass is presented, in which the organic phases are injected through a symmetric inlet structure. The 3D structuring of the glass was performed by femtosecond laser ablation. Rough microchannel walls are typically obtained by laser ablation but were smoothed by a subsequent annealing process resulting in lower hydrophilicity and even rounder channel cross-sections. Only with such smooth channel walls can a substantial reduction of fouling be obtained, allowing for stable operation over longer periods. The ultrafast mixing of the solutions could be adjusted by simply changing the gas volume flow rate. Narrow particle size distributions are obtained for smaller gas bubbles with a low backflow and when the rate of liquid volume flow has a small influence on particle precipitation. Therefore, nanoparticles with adjustable sizes of down to 70 nm could be reliably produced in continuous mode. Particle size distributions could be narrowed to a polydispersity value of 0.12.
Collapse
Affiliation(s)
- Peer Erfle
- Technische Universität Braunschweig , Institute of Microtechnology, 38124 Braunschweig, Germany.
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
| | - Juliane Riewe
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, 38106 Braunschweig, Germany.
| | - Andreas Dietzel
- Technische Universität Braunschweig , Institute of Microtechnology, 38124 Braunschweig, Germany.
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
| |
Collapse
|
14
|
Tao J, Chow SF, Zheng Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm Sin B 2019; 9:4-18. [PMID: 30766774 PMCID: PMC6361851 DOI: 10.1016/j.apsb.2018.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles are considered to be a powerful approach for the delivery of poorly water-soluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation (FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles, polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer (CIJM), multi-inlet vortex mixer (MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly water-soluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up.
Collapse
Key Words
- ACN, acetonitrile
- CA 320S Seb, cellulose acetate 320S sebacate
- CAP Adp 0.33, cellulose acetate propionate 504-0.2 adipate 0.33
- CAP Adp 0.85, cellulose acetate propionate adipate 0.85
- CFA, cefuroxime axetil
- CIJM, confined impinging jets mixer
- CMCAB, carboxymethyl cellulose acetate butyrate
- CTACl, cetyltrimethylammonium chloride
- DMF, dimethyl formamide
- DMSO, dimethyl sulfoxide
- DSPE-PEG, distearyl phosphatidyl ethanolamine-poly(ethylene glycol)
- Dex-PLLA, dextrose-poly(l-lactic acid)
- FNP, flash nanoprecipitation
- Flash nanoprecipitation
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methyl cellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- MIVM, multi-inlet vortex mixer
- Microfluidic mixer device
- NaAlg, sodium alginate
- NaCMC, carboxymethyl cellulose sodium
- Nanoparticles
- P(MePEGCA-co-HDCA), poly(methoxy polyethylene glycol cyanoacrylate-co-hexadecyl cyanoacrylate)
- PAA, poly(acrylic acid)
- PAH, polyallylamine hydrochloride
- PCL, poly(ε-caprolactone)
- PEG, polyethylene glycol
- PEG-PCL, poly(ethylene glycol)-poly(ε-caprolactone)
- PEG-PLA, poly(ethylene glycol)-poly(lactic acid)
- PEG-PLGA, poly(ethylene glycol)-poly(lactic-co-glycolic acid)
- PEG-PS, poly(ethylene glycol)-polystyrene
- PEI, polyethyleneimine
- PEO-PDLLA, poly(ethylene oxide)-poly(d,l-lactic acid)
- PLA, poly(lactic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PMMA, polymethyl methacrylate
- PSS, polyprotomine sulfate
- PVA, polyvinyl alcohol
- PVP, polyvinyl pyrrolidone
- Poorly water-soluble drug
- SDS, sodium dodecyl sulfonate
- SLS, sodium lauryl sulfate
- THF, tetrahydrofuran
- TPGS, tocopheryl polyethylene glycol 1000 succinate
- ε-PL, ε-polylysine
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| |
Collapse
|
15
|
Trucillo P, Campardelli R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology. Eur J Pharm Sci 2017; 99:328-336. [PMID: 28062259 DOI: 10.1016/j.ejps.2017.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 11/22/2022]
Abstract
Biodegradable polymeric nanoparticles (NPs) have potential therapeutic applications; however, preparing NPs of a specific diameter and uniform size distribution is a challenge. In this work, we fabricated a microchannel system for the preparation of curcumin (Cur)-loaded NPs by the interfacial precipitation method, which rapidly and consistently generated stable NPs with a relatively smaller diameter, narrow size distribution, and higher drug-loading capacity and entrapment efficiency. Poly(ε-caprolactone)-poly(ethylene glycol)-poly (ε-caprolactone) triblock copolymers(PCEC) used as the carrier material was synthesized and characterized. Cur-loaded PCEC NPs had an average size of 167.2nm with a zeta potential of -29.23mV, and showed a loading capacity and drug entrapment efficiency of 15.28%±0.23% and 96.11%±0.13%, respectively. Meanwhile, the NPs demonstrated good biocompatibility and bioavailability, efficient cellular uptake, and long circulation time and a possible liver targeting effect in vivo. These results indicate that the Cur-loaded PCEC NPs can be used as drug carriers in controlled delivery systems and other biomedical applications.
Collapse
|
17
|
Othman R, Vladisavljević GT, Nagy ZK. Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.06.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhao W, Zhang S, Lu M, Shen S, Yun J, Yao K, Xu L, Lin DQ, Guan YX, Yao SJ. Immiscible liquid–liquid slug flow characteristics in the generation of aqueous drops within a rectangular microchannel for preparation of poly(2-hydroxyethylmethacrylate) cryogel beads. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Ye J, Yun J, Lin DQ, Xu L, Kirsebom H, Shen S, Yang G, Yao K, Guan YX, Yao SJ. Poly(hydroxyethyl methacrylate)-based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin. J Sep Sci 2013; 36:3813-20. [DOI: 10.1002/jssc.201300911] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jialei Ye
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Dong-Qiang Lin
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Linhong Xu
- Faculty of Mechanical and Electronic Information; China University of Geosciences (Wuhan); Wuhan China
| | | | - Shaochuan Shen
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Gensheng Yang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Kejian Yao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Yi-Xin Guan
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Shan-Jing Yao
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| |
Collapse
|
20
|
Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev 2013; 65:1496-532. [PMID: 23933616 DOI: 10.1016/j.addr.2013.08.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
Abstract
In recent years, advancements in the fields of microfluidic and lab-on-a-chip technologies have provided unique opportunities for the implementation of nanomaterial production processes owing to the miniaturisation of the fluidic environment. It has been demonstrated that microfluidic reactors offer a range of advantages compared to conventional batch reactors, including improved controllability and uniformity of nanomaterial characteristics. In addition, the fast mixing achieved within microchannels, and the predictability of the laminar flow conditions, can be leveraged to investigate the nanomaterial formation dynamics. In this article recent developments in the field of microfluidic production of nanomaterials for drug delivery applications are reviewed. The features that make microfluidic reactors a suitable technological platform are discussed in terms of controllability of nanomaterials production. An overview of the various strategies developed for the production of organic nanoparticles and colloidal assemblies is presented, focusing on those nanomaterials that could have an impact on nanomedicine field such as drug nanoparticles, polymeric micelles, liposomes, polymersomes, polyplexes and hybrid nanoparticles. The effect of microfluidic environment on nanomaterials formation dynamics, as well as the use of microdevices as tools for nanomaterial investigation is also discussed.
Collapse
|
21
|
Gañán-Calvo A, Montanero J, Martín-Banderas L, Flores-Mosquera M. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Adv Drug Deliv Rev 2013; 65:1447-69. [PMID: 23954401 DOI: 10.1016/j.addr.2013.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 12/11/2022]
Abstract
In this review, we aim at establishing a relationship between the fundamentals of the microfluidics technologies used in the Pharmacy field, and the achievements accomplished by those technologies. We describe the main methods for manufacturing micrometer drops, bubbles, and capsules, as well as the corresponding underlying physical mechanisms. In this regard, the review is intended to show non-specialist readers the dynamical processes which determine the success of microfluidics techniques. Flow focusing (FF) is a droplet-based method widely used to produce different types of fluid entities on a continuous basis by applying an extensional co-flow. We take this technique as an example to illustrate how microfluidics technologies for drug delivery are progressing from a deep understanding of the physics of fluids involved. Specifically, we describe the limitations of FF, and review novel methods which enhance its stability and robustness. In the last part of this paper, we review some of the accomplishments of microfluidics when it comes to drug manufacturing and delivery. Special attention is paid to the production of the microencapsulated form because this fluidic structure gathers the main functionalities sought for in Pharmacy. We also show how FF has been adapted to satisfy an ample variety of pharmaceutical requirements to date.
Collapse
|
22
|
Petschacher C, Eitzlmayr A, Besenhard M, Wagner J, Barthelmes J, Bernkop-Schnürch A, Khinast JG, Zimmer A. Thinking continuously: a microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polym Chem 2013. [DOI: 10.1039/c3py20939c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Xu L, Tan X, Yun J, Shen S, Zhang S, Tu C, Zhao W, Tian B, Yang G, Yao K. Formulation of Poorly Water-Soluble Compound Loaded Solid Lipid Nanoparticles in a Microchannel System Fabricated by Mechanical Microcutting Method: Puerarin as a Model Drug. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300592u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linhong Xu
- Faculty of Mechanical &
Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
- State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
| | - Xu Tan
- Faculty of Mechanical &
Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | | | | | | | | | | | - Bing Tian
- Key Laboratory for Nuclear-Agricultural
Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
24
|
Yun J, Tu C, Lin DQ, Xu L, Guo Y, Shen S, Zhang S, Yao K, Guan YX, Yao SJ. Microchannel liquid-flow focusing and cryo-polymerization preparation of supermacroporous cryogel beads for bioseparation. J Chromatogr A 2012; 1247:81-8. [DOI: 10.1016/j.chroma.2012.05.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/22/2012] [Indexed: 01/30/2023]
|
25
|
Xu LM, Zhang QX, Zhou Y, Zhao H, Wang JX, Chen JF. Engineering drug ultrafine particles of beclomethasone dipropionate for dry powder inhalation. Int J Pharm 2012; 436:1-9. [PMID: 22732674 DOI: 10.1016/j.ijpharm.2012.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/14/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Beclomethasone dipropionate (BDP), which is a member in the inhaled glucocorticosteroid class, is commonly used in the treatment of asthma by pulmonary delivery. The purpose of this study is to prepare ultrafine BDP particles for dry powder inhalation (DPI) administration by combining microfluidic antisolvent precipitation without surfactant, high-pressure homogenization (HPH) and spray drying. T-junction microchannel was adopted for the preparation of needle-like BDP particles. The needle-like particles could be easily broken down into smaller particles during HPH, which were assembled into uniform low-density spherical BDP aggregates by spray drying. The effects of the operation parameters, such as the flow rates of BDP methanol solution and antisolvent, the overall flow rate, the BDP concentration, and the change of the injection phase on BDP particle size were explored. The results indicated that the BDP particle size greatly decreased with the reduction of BDP solution flow rate and the increase of antisolvent flow rate. However, the BDP particle size firstly decreased and then increased with the increase of the overall flow rate and the increase of BDP concentration. Also, BDP solution as the injection phase could form the smaller BDP particles. 10 HPH cycles are enough to forming short rod-like particles. After spray drying, the BDP spherical aggregates with a 2-3 μm size could be achieved. They have an excellent aerosol performance, 2.8 and 1.4 times as many as raw BDP and vacuum-dried BDP particles, respectively.
Collapse
Affiliation(s)
- Li-Min Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf B Biointerfaces 2012; 94:68-72. [DOI: 10.1016/j.colsurfb.2012.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/22/2022]
|
27
|
Zhang QX, Xu LM, Zhou Y, Wang JX, Chen JF. Preparation of Drug Nanoparticles Using a T-Junction Microchannel System. Ind Eng Chem Res 2011. [DOI: 10.1021/ie201291r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qian-Xia Zhang
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P.R.China
| | | | | | | | | |
Collapse
|
28
|
Density and Viscosity of Ternary Systems (Poloxamer 188 + Ethanol/Acetone + Water) at Temperatures from 288.15 K to 308.15 K. Chin J Chem Eng 2011. [DOI: 10.1016/s1004-9541(11)60009-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Abstract
Ocular drug delivery remains challenging because of the complex nature and structure of the eye. Conventional systems, such as eye drops and ointments, are inefficient, whereas systemic administration requires high doses resulting in significant toxicity. There is a need to develop novel drug delivery carriers capable of increasing ocular bioavailability and decreasing both local and systemic cytotoxicity. Nanotechnology is expected to revolutionize ocular drug delivery. Many nano-structured systems have been employed for ocular drug delivery and yielded some promising results. Solid lipid nanoparticles (SLNs) have been looked at as a potential drug carrier system since the 1990s. SLNs do not show biotoxicity as they are prepared from physiological lipids. SLNs are especially useful in ocular drug delivery as they can enhance the corneal absorption of drugs and improve the ocular bioavailability of both hydrophilic and lipophilic drugs. SLNs have another advantage of allowing autoclave sterilization, a necessary step towards formulation of ocular preparations. This review outlines in detail the various production, characterization, sterilization, and stabilization techniques for SLNs. In-vitro and in-vivo methods to study the drug release profile of SLNs have been explained. Special attention has been given to the nature of lipids and surfactants commonly used for SLN production. A summary of previous studies involving the use of SLNs in ocular drug delivery is provided, along with a critical evaluation of SLNs as a potential ocular delivery system.
Collapse
Affiliation(s)
- Ali Seyfoddin
- University of Auckland, Faculty of Medical and Health Sciences, School of Pharmacy, Auckland, New Zealand
| | | | | |
Collapse
|
30
|
Yun J, Lei Q, Zhang S, Shen S, Yao K. Slug flow characteristics of gas–miscible liquids in a rectangular microchannel with cross and T-shaped junctions. Chem Eng Sci 2010. [DOI: 10.1016/j.ces.2010.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|