1
|
Dias RC, Korhonen O, Ketolainen J, Ervasti T, Lopes JA. The effect of process parameters on a continuous blending process monitored in-line by near-infrared spectroscopy. Eur J Pharm Sci 2024; 202:106890. [PMID: 39214317 DOI: 10.1016/j.ejps.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The continuous feeding-mixing system ensures the composition uniformity down to the tableting continuous manufacturing line so that a quality end-product is consistently delivered. Near-infrared spectroscopy (NIRS) enables in-line assessment of the blend's critical quality attributes in real-time. In this study, the effect of total feed rate and impeller speed on the continuous blending process monitored in-line by NIRS was examined by principal component analysis (PCA), ANOVA simultaneous component analysis (ASCA) and partial least squares (PLS) regression. Process data were generated by a factorial experimental design with process parameters and a constant formulation comprised of: 30 % (wt/wt) ibuprofen, 67.5 % (wt/wt) microcrystalline cellulose, 2 % (wt/wt) of sodium starch glycolate and 0.5 % (wt/wt) of magnesium stearate. The PCA hinted at the prevalence of impeller speed effect on ibuprofen concentration due to path length variation of the NIR light caused by the fluidized behaviour in the powder blend as a result of high speed ranges (>300 rpm). The ASCA model indicated that while both impeller speed and total feed rate effects were statistically significant (p-value=0.004), the impeller speed was the factor that contributed the most to the spectral variance (55.5 %). The PLS regression model for the ibuprofen content resulted in a RMSECV of 1.3 % (wt/wt) and showed that impeller speed was yet again the factor that exerted the major influence on spectral variance, owing to its wavelength-dependent effect that prevents common pre-processing techniques from eliminating it across the entire NIR range. The best sample presentation to the NIR probe was achieved at low impeller speed ranges (<600 rpm) and low total feed rates (<15 kg/h), such that it enhanced the PLS model ability to predict the ibuprofen concentration in the blend.
Collapse
Affiliation(s)
- Rute C Dias
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
| | - Ossi Korhonen
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jarkko Ketolainen
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Tuomas Ervasti
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - João A Lopes
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| |
Collapse
|
2
|
Awotunde O, Lu J, Cai J, Roseboom N, Honegger S, Joseph O, Wicks A, Hayes K, Lieberman M. Mitigating the impact of gelatin capsule variability on detection of substandard and falsified pharmaceuticals with near-IR spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1611-1622. [PMID: 38406859 DOI: 10.1039/d4ay00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Portable NIR spectrometers are effective in detecting authentic pharmaceutical products in intact capsule formulations, which can be used to screen for substandard or falsified versions of those authentic products. However, the chemometric models are trained on libraries of authentic products, and are generally unreliable for detection of quality problems in products from outside their training set, even for products that are nominally the same active pharmaceutical ingredient and same dosage as products in the training set. As part of our research directed at developing better non-brand-specific strategies for pharmaceutical screening, we investigated the impact of capsule composition on NIR modeling. We found that capsule features like gelatin type, color, or thickness, give rise to a similar amount of variance in the NIR spectra as the type of API stored within the capsules. Our results highlight the efficacy of orthogonal projection to latent structures in mitigating the impacts of different types of capsules on the accuracy of NIR chemometric models for classification and regression analysis of lab-made samples. The models showed good performance for classification of field-collected doxycycline capsules as good or bad quality when an NIR-based % w/w metric was used, identifying five samples that were adulterated with talc. However, the % w/w was systematically underestimated, so when evaluating the capsules based on their absolute API content according to the monograph standard, the classification accuracy decreased from 100% to 70%. The underestimation was attributed to an unforeseen variability in the quantities and types of excipients present in the capsules.
Collapse
Affiliation(s)
- Olatunde Awotunde
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jiaqi Lu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jin Cai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nicholas Roseboom
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Sarah Honegger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Ornella Joseph
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alyssa Wicks
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kathleen Hayes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Marya Lieberman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
3
|
Velez-Silva NL, Drennen JK, Anderson CA. Continuous manufacturing of pharmaceutical products: A density-insensitive near infrared method for the in-line monitoring of continuous powder streams. Int J Pharm 2024; 650:123699. [PMID: 38081558 DOI: 10.1016/j.ijpharm.2023.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Near infrared (NIR) spectroscopy is a valuable analytical technique for monitoring chemical composition of powder blends in continuous pharmaceutical processes. However, the variation in density captured by NIR during spectral collection of dynamic powder streams at different flow rates often reduces the performance and robustness of NIR models. To overcome this challenge, quantitative NIR measurements are commonly collected across all potential manufacturing conditions, including multiple flow rates to account for the physical variations. The utility of this approach is limited by the considerable quantity of resources required to run and analyze an extensive calibration design at variable flow rates in a continuous manufacturing (CM) process. It is hypothesized that the primary variation introduced to NIR spectra from changing flow rates is a change in the density of the powder from which NIR spectra are collected. In this work, powder stream density was used as an efficient surrogate for flow rate in developing a quantitative NIR method with enhanced robustness against process rate variation. A density design space of two process parameters was generated to determine the conditions required to encompass the apparent density and spectral variance from increases in process rate. This apparent density variance was included in calibration at a constant low flow rate to enable the development of a density-insensitive NIR quantitative model with limited consumption of materials. The density-insensitive NIR model demonstrated comparable prediction performance and flow rate robustness to a traditional NIR model including flow rate variation ("gold standard" model) when applied to monitoring drug content in continuous runs at varying flow rates. The proposed platform for the development of in-line density-insensitive NIR methods is expected to facilitate robust analytical model performance across variable continuous manufacturing production scales while improving the material efficiency over traditional robust modeling approaches for calibration development.
Collapse
Affiliation(s)
- Natasha L Velez-Silva
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
4
|
Gorla G, Ferrer A, Giussani B. Process understanding and monitoring: A glimpse into data strategies for miniaturized NIR spectrometers. Anal Chim Acta 2023; 1281:341902. [PMID: 38783741 DOI: 10.1016/j.aca.2023.341902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND The implementation of process analytical technologies (PAT) has gained attention since 2004 when its formal introduction through the U.S. Food and Drug Administration was introduced. Manufacturers that need to evaluate the employment of new monitoring systems could face different challenges: identification of suitable sensors, verification of data meaning, evaluation of several statistical strategies to obtain insights about data and achieve process understanding and finally, the actual possibilities for monitoring. Kefir fermentations were chosen as an example because of the chemical and physical transformations that occurred during the process, which could be common to several other fermentation processes. In order to pave the way for monitoring establish the information contained in the data and find the right tools for extracting them is of extreme importance. Strategies to identify different experimental conditions in the spectra acquired with a miniaturized NIR (1350-2550 nm) during process occurrence were addressed. RESULTS The study aims to offer insights into good practices and steps to pave the way for process monitoring with handheld NIR data. The main aspects of interest for batch processes in preliminary evaluations were investigated and discussed. On the one hand, process understanding and, on the other, the possibilities for process monitoring and endpoint determination were examined. The combination of different statistical tools allowed the extraction of information from the data and the identification of the link between them and the chemical and physical changes during the process. In addition, insights into the spectra characteristics in the studied spectroscopic range for kefir fermentation were reported. SIGNIFICANCE The capabilities for miniaturized NIR spectra to represent and statistical strategies to characterize different experimental conditions in a real case fermentation occurrence were proved. The strengths and limitations of some of the common approaches to catch changes in fermentation condition were highlighted. For the various statistical approaches, the chances offered in the research and development stages and to set the scene for monitoring and end-point detection were explored.
Collapse
Affiliation(s)
- Giulia Gorla
- Science and High Technology Department, Università degli Studi dell'Insubria, 22100, Como, Italy
| | - Alberto Ferrer
- Multivariate Statistical Engineering Group, Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, 46022, València, Spain
| | - Barbara Giussani
- Science and High Technology Department, Università degli Studi dell'Insubria, 22100, Como, Italy.
| |
Collapse
|
5
|
Feng Báez JP, George De la Rosa MV, Alvarado-Hernández BB, Romañach RJ, Stelzer T. Evaluation of a compact composite sensor array for concentration monitoring of solutions and suspensions via multivariate analysis. J Pharm Biomed Anal 2023; 233:115451. [PMID: 37182364 PMCID: PMC10330539 DOI: 10.1016/j.jpba.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Compact composite probes were identified as a priority to alleviate space constraints in miniaturized unit operations and pharmaceutical manufacturing platforms. Therefore, in this proof of principle study, a compact composite sensor array (CCSA) combining ultraviolet and near infrared features at four different wavelengths (280, 340, 600, 860 nm) in a 380 × 30 mm housing (length x diameter, 7 mm diameter at the probe head), was evaluated for its capabilities to monitor in situ concentration of solutions and suspensions via multivariate analysis using partial least squares (PLS) regression models. Four model active pharmaceutical ingredients (APIs): warfarin sodium isopropanol solvate (WS), lidocaine hydrochloride monohydrate (LID), 6-mercaptopurine monohydrate (6-MP), and acetaminophen (ACM) in their aqueous solution and suspension formulation were used for the assessment. The results demonstrate that PLS models can be applied for the CCSA prototype to measure the API concentrations with similar accuracy (validation samples within the United States Pharmacopeia (USP) limits), compared to univariate CCSA models and multivariate models for an established Raman spectrometer. Specifically, the multivariate CCSA models applied to the suspensions of 6-MP and ACM demonstrate improved accuracy of 63% and 31%, respectively, compared to the univariate CCSA models [1]. On the other hand, the PLS models for the solutions WS and LID showed a reduced accuracy compared to the univariate models [1].
Collapse
Affiliation(s)
- Jean P Feng Báez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | | | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, USA
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
| |
Collapse
|
6
|
Rangel-Gil RS, Sierra-Vega NO, Romañach RJ, Méndez R. Assessment of blend uniformity in a stream sampler device using Raman spectroscopy. Int J Pharm 2023; 639:122934. [PMID: 37061209 DOI: 10.1016/j.ijpharm.2023.122934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
This study describes the first implementation of Raman spectrometer in a stream sampler for the in-line monitoring of low drug concentration in poor flowability powder blends. Raman spectra were continuously acquired as the powder blends flowed through the stream sampler operating with a paddle wheel speed of 10 RPM and used to develop the calibration models. A calibration model was developed to quantify caffeine concentration from 1.50 to 4.50% w/w using Partial Least Squares Regression (PLS-R). Three test set blends were used to assess the prediction errors of the calibration model. Caffeine concentration was predicted for the test set blends with a root mean square error of prediction of 0.21% w/w and a low bias of -0.03% w/w. The calibration model showed good prediction performance with an estimated sample mass of 83 mg. Variographic analysis demonstrated the low process variance of the real-time spectral acquisition through minimum practical error and sill values. The results showed the ability of the Raman spectrometer coupled with the stream sampler to monitor low drug concentration for poor flowability blends.
Collapse
Affiliation(s)
- Raúl S Rangel-Gil
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States
| | - Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States
| | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States.
| |
Collapse
|
7
|
Rosas JG, Brush P, Thompson B, Miller C, Overton P, Tugby N, Stoliarskaia D, Hurley S, Ramasamy M, Conway SL. Implementation of a fully integrated CM direct compression and coating process at a commercial pharmaceutical facility - Part 2: PAT and RTD results for normal operational conditions batches. Int J Pharm 2023; 636:122814. [PMID: 36918116 DOI: 10.1016/j.ijpharm.2023.122814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
This is the second of two articles detailing the continuous manufacturing (CM) development and implementation activities for an marketed product which have been realized in novel, qualified equipment, using validated control strategy elements to enable manufacture of batches under current good manufacturing practices (cGMP) and compliant with data integrity principles. Here, the application of process analytical technologies (PAT) and automation tools on batches produced under normal operational conditions is reviewed. The results from residence time distribution (RTD) models for predicting API concentration, in-line near infrared (NIR) testing of blend uniformity (BU) and at-line NIR spectroscopy analysis of core tablet concentration and tablet identity for real-time release testing (RTRT) are discussed. The influences of process equipment and design choices on NIR and RTD model variability, as well as the use of the PAT tools for monitoring the evolving properties understanding of CM process development, such as overcoming flow instabilities, is described. Results demonstrate that the RTD and NIR models developed and validated are robust to operating conditions and are critical for assuring steady state control of the continuous manufacturing process. Finally, the NIR and RTD model lifecycle, including procedures for necessary and normal model upgrades in a cGMP production environment, are presented.
Collapse
Affiliation(s)
- Juan G Rosas
- MSD, Pharmaceutical Technical Operations PAT, UK.
| | - Peter Brush
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | - Bruce Thompson
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | - Charles Miller
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | | | - Neil Tugby
- MSD, Pharmaceutical Technical Operations, UK
| | | | - Samantha Hurley
- Merck & Co. Inc, Pharmaceutical Commercialization Technology, United States
| | - Manoharan Ramasamy
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | | |
Collapse
|
8
|
Razavi SM, Tao Y, Scicolone J, Morker T, Cunningham C, Rajabi-Siahboomi A, Hausner DB, Muzzio FJ. Starch Products as Candidate Excipients in a Continuous Direct Compression Line. J Pharm Innov 2022. [DOI: 10.1007/s12247-020-09504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wei K, Bin J, Wang F, Kang C. On-Line Monitoring of the Tobacco Leaf Composition during Flue-Curing by Near-Infrared Spectroscopy and Deep Transfer Learning. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2046021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kesu Wei
- Guizhou Academy of Tobacco Science, Guiyang, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang, China
| | - Jun Bin
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Feng Wang
- Guizhou Academy of Tobacco Science, Guiyang, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang, China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Kreiser MJ, Wabel C, Wagner KG. Impact of Vertical Blender Unit Parameters on Subsequent Process Parameters and Tablet Properties in a Continuous Direct Compression Line. Pharmaceutics 2022; 14:pharmaceutics14020278. [PMID: 35214014 PMCID: PMC8879867 DOI: 10.3390/pharmaceutics14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
The continuous manufacturing of solid oral-dosage forms represents an emerging technology among the pharmaceutical industry, where several process steps are combined in one production line. As all mixture components, including the lubricant (magnesium stearate), are passing simultaneously through one blender, an impact on the subsequent process steps and critical product properties, such as content uniformity and tablet tensile strength, is to be expected. A design of experiment (DoE) was performed to investigate the impact of the blender variables hold-up mass (HUM), impeller speed (IMP) and throughput (THR) on the mixing step and the subsequent continuous manufacturing process steps. Significant impacts on the mixing parameters (exit valve opening width (EV), exit valve opening width standard deviation (EV SD), torque of lower impeller (TL), torque of lower impeller SD (TL SD), HUM SD and blend potency SD), material attributes of the blend (conditioned bulk density (CBD), flow rate index (FRI) and particle size (d10 values)), tableting parameters (fill depth (FD), bottom main compression height (BCH) and ejection force (EF)) and tablet properties (tablet thickness (TT), tablet weight (TW) and tensile strength (TS)) could be found. Furthermore, relations between these process parameters were evaluated to define which process states were caused by which input variables. For example, the mixing parameters were mainly impacted by impeller speed, and material attributes, FD and TS were mainly influenced by variations in total blade passes (TBP). The current work presents a rational methodology to minimize process variability based on the main blender variables hold-up mass, impeller speed and throughput. Moreover, the results facilitated a knowledge-based optimization of the process parameters for optimum product properties.
Collapse
Affiliation(s)
- Marius J. Kreiser
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Christoph Wabel
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
- Correspondence:
| |
Collapse
|
11
|
Velez NL, Drennen JK, Anderson CA. Challenges, opportunities and recent advances in near infrared spectroscopy applications for monitoring blend uniformity in the continuous manufacturing of solid oral dosage forms. Int J Pharm 2022; 615:121462. [PMID: 35026317 DOI: 10.1016/j.ijpharm.2022.121462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Near infrared (NIR) spectroscopy has been widely recognized as a powerful PAT tool for monitoring blend uniformity in continuous manufacturing (CM) processes. However, the dynamic nature of the powder stream and the fast rate at which it moves, compared to batch processes, introduces challenges to NIR quantitative methods for monitoring blend uniformity. For instance, defining the effective sample size interrogated by NIR, selecting the best sampling location for blend monitoring, and ensuring NIR model robustness against influential sources of variability are challenges commonly reported for NIR applications in CM. This article reviews the NIR applications for powder blend monitoring in the continuous manufacturing of solid oral dosage forms, with a particular focus on the challenges, opportunities for method optimization and recent advances with respect three main aspects: effective sample size measured by NIR, probe location and method robustness.
Collapse
Affiliation(s)
- Natasha L Velez
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
12
|
Robert G, Gosselin R. Evaluating the impact of NIR pre-processing methods via multiblock partial least-squares. Anal Chim Acta 2022; 1189:339255. [PMID: 34815038 DOI: 10.1016/j.aca.2021.339255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Near-infrared (NIR) spectral data are used in many applications to predict physical and chemical properties. However, it can result in poor predictive models when untreated spectra are directly used to estimate these properties. Many pre-preprocessing techniques are available to reduce noise and variance unrelated to the studied property but choosing which one to apply can be tricky. Existing methods to select a pre-processing are time-consuming or do not allow for a meaningful comparison of the different techniques. Even though new methods focus on extracting complementary information from each pre-processing, an optimal combination is still required to obtain efficient predictive models and avoid extensive computational costs. Here, we propose an approach using multiblock partial least squares (MBPLS) to simultaneously compare the impact of the pre-processing techniques on spectral data and as a result on the regression models. Superloadings provide qualitative and quantitative information on pre-processed data. This tool helps compare and determine which pre-processing technique, or combinations thereof, that may be appropriate for a dataset, not just a single "best" one. Using this, the analyst is then better equipped to make a final choice when selecting which ones to include. This method is tested on artificial signals and NIR spectra from corn samples.
Collapse
Affiliation(s)
- Giverny Robert
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | - Ryan Gosselin
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
13
|
Bhalode P, Tian H, Gupta S, Razavi SM, Roman-Ospino A, Talebian S, Singh R, Scicolone JV, Muzzio FJ, Ierapetritou M. Using residence time distribution in pharmaceutical solid dose manufacturing - A critical review. Int J Pharm 2021; 610:121248. [PMID: 34748808 DOI: 10.1016/j.ijpharm.2021.121248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA's support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber, 2011), it is critical to enable full utilization of CM technology for robust production and commercialization (Schaber, 2011; Byrn, 2015). To do so, an important prerequisite is to obtain a detailed understanding of overall process characteristics to develop cost-effective and accurate predictive models for unit operations and process flowsheets. These models are utilized to predict product quality and maintain desired manufacturing efficiency (Ierapetritou et al., 2016). Residence time distribution (RTD) has been a widely used tool to characterize the extent of mixing in pharmaceutical unit operations (Vanhoorne, 2020; Rogers and Ierapetritou, 2015; Teżyk et al., 2015) and manufacturing lines and develop computationally cheap predictive models. These models developed using RTD have been demonstrated to be crucial for various flowsheet applications (Kruisz, 2017; Martinetz, 2018; Tian, 2021). Though extensively used in the literature (Gao et al., 2012), the implementation, execution, evaluation, and assessment of RTD studies has not been standardized by regulatory agencies and can thus lead to ambiguity regarding their accurate implementation. To address this issue and subsequently prevent unforeseen errors in RTD implementation, the presented article aims to aid in developing standardized guidelines through a detailed review and critical discussion of RTD studies in the pharmaceutical manufacturing literature. The review article is divided into two main sections - 1) determination of RTD including different steps for RTD evaluation including experimental approach, data acquisition and pre-treatment, RTD modeling, and RTD metrics and, 2) applications of RTD for solid dose manufacturing. Critical considerations, pertaining to the limitations of RTDs for solid dose manufacturing, are also examined along with a perspective discussion of future avenues of improvement.
Collapse
Affiliation(s)
- Pooja Bhalode
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Huayu Tian
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Shashwat Gupta
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sonia M Razavi
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Andres Roman-Ospino
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shahrzad Talebian
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ravendra Singh
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James V Scicolone
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Fernando J Muzzio
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
14
|
Mateo-Ortiz D, Villanueva-Lopez V, Muddu SV, Doddridge GD, Alhasson D, Dennis MC. Dry Powder Mixing Is Feasible in Continuous Twin Screw Extruder: Towards Lean Extrusion Process for Oral Solid Dosage Manufacturing. AAPS PharmSciTech 2021; 22:249. [PMID: 34648107 DOI: 10.1208/s12249-021-02148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Using discrete element method (DEM) modeling and near-infrared (NIR) spectroscopy, the feasibility of powder mixing in the initial pre-melting zones of a twin screw extruder using two independent feeders was studied. Previous work in the pharmaceutical and food industry has focused on mixing when materials are melted or on material homogeneity at the extruder's output. Depending on the formulation, ensuring a fully blended formulation prior to melting may be desired. Experiments were conducted using a Coperion ZSK-18 extruder to evaluate if blend uniformity can be achieved by exploring screw configuration, screw speed, and powder feed rate. As powder exited the extruder and deposited on a conveyor belt, an in-line NIR spectrophotometer measured spectra of material. Chemometric-based models predicted unknown concentrations to evaluate if blend uniformity was achieved. Using the EDEM software, Hertz-Mindlin contact model, and dimensions of the extruder, DEM simulations complemented the experimental work. The DEM computational models provided understanding of mixing patterns inside the extruder at particle scale and helped select the screw configuration before doing experimentation. The simulations showed good axial mixing for all the screw configurations studied, while good cross (radial) mixing was only observed for the screw configuration with 90-degree kneading elements. Therefore, the screw configuration with two 90-degree kneading elements was chosen for the experimental study. The RTD profiles when using a screw configuration with only conveying screw elements are comparable to a plug flow reactor (PFR), while the profiles when using kneading elements are more comparable to an ideal continuous stirred tank reactor (CSTR). For the screw configuration with 90 degrees kneading elements, the mean residence time (MRT) decreases with an increase in the screw speed. Experimental NIR spectra showed that concentrations can be predicted with an error of 2%. It was demonstrated that the twin screw extruder can provide proper dry powder mixing of two powder feed streams based on a unit dose scale, enabling continuous powder mixing prior to the melting zone in the extruder for the formulation studied with a cohesive API. This setup may also work for other types of formulations. These studies can help in developing lean hot melt as well as wet extrusion/granulation processes using twin screw extruders for the continuous manufacturing of oral solid dosage products.
Collapse
|
15
|
Wang K, He K, Du W, Long J. Novel adaptive sample space expansion approach of NIR model for in-situ measurement of gasoline octane number in online gasoline blending processes. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Huang YS, Sheriff MZ, Bachawala S, Gonzalez M, Nagy ZK, Reklaitis GV. Evaluation of a Combined MHE-NMPC Approach to Handle Plant-Model Mismatch in a Rotary Tablet Press. Processes (Basel) 2021; 9:10.3390/pr9091612. [PMID: 36776491 PMCID: PMC9912115 DOI: 10.3390/pr9091612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The transition from batch to continuous processes in the pharmaceutical industry has been driven by the potential improvement in process controllability, product quality homogeneity, and reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a variety of pharmaceutical product manufacturing modalities to increase product quality through a three-level hierarchical control structure. In the implementation of the QbC approach it is common practice to simplify control algorithms by utilizing linearized models with constant model parameters. Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control degradation caused by plant-model mismatch, careful monitoring and continuous improvement strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical data in the past time window together with real-time data from the sensor network enable state estimation and accurate tracking of the highly sensitive model parameters. The adaptive model used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the essential but complex powder properties and provide physical interpretation of abnormal events. The adaptive NMPC implementation and its real-time control performance analysis and practical applicability are demonstrated through a series of illustrative examples that highlight the effectiveness of the proposed approach for different scenarios of plant-model mismatch, while also incorporating glidant effects.
Collapse
Affiliation(s)
- Yan-Shu Huang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - M Ziyan Sheriff
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sunidhi Bachawala
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Szabó E, Záhonyi P, Gyürkés M, Nagy B, Galata DL, Madarász L, Hirsch E, Farkas A, Andersen SK, Vígh T, Verreck G, Csontos I, Marosi G, Nagy ZK. Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. Eur J Pharm Sci 2021; 164:105907. [PMID: 34118411 DOI: 10.1016/j.ejps.2021.105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.
Collapse
Affiliation(s)
- Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Dorián L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Tamás Vígh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
18
|
Biagi D, Nencioni P, Valleri M, Calamassi N, Mura P. Development of a Near Infrared Spectroscopy method for the in-line quantitative bilastine drug determination during pharmaceutical powders blending. J Pharm Biomed Anal 2021; 204:114277. [PMID: 34332309 DOI: 10.1016/j.jpba.2021.114277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
The Food and Drug Administration (FDA)'s guidelines and the Process Analytical Technology (PAT) approach conceptualize the idea of real time monitoring of a process, with the primary objective of improvement of quality and also of time and resources saving. New instruments are needed to perform an efficient PAT process control and Near Infrared Spectroscopy (NIRS), thanks to its rapid and drastic development of last years, could be a very good choice, in virtue of its high versatility, speed of analysis, non-destructiveness and absence of sample chemical treatment. This work was aimed to develop a NIR analytical method for bilastine assay in powder mixtures for direct compression. In particular, the use of NIR instrumentation should allow to control the bilastine concentration and the whole blending process, assuring the achievement of a homogeneous blend. The commercial tablet formulation of bilastine was particularly suitable for this purpose, due to its simple composition (four excipients) and direct compression manufacturing process. Calibration and validation set were prepared according to a Placket-Burman experimental design and acquired with a miniaturized NIR in-line instrument (MicroNIR by Viavi Solution Inc.). Chemometric was applied to optimize information extraction from spectra, by subjecting them to a Standard Normal Variate (SNV) and a Savitzky-Golay second derivative pre-treatment. This spectra pre-treatment, combined with the most suitable wavelength interval (resulted between 1087 and 1217 nm), enabled to obtain a Partial Least Square (PLS) model with a good predictive ability. The selected model, tried on laboratory and production batches, provided in both cases good assay predictions. Results were confirmed by traditional HPLC (High Performance Liquid Chromatography) API (Active Pharmaceutical Ingredient) content uniformity test on the final product.
Collapse
Affiliation(s)
- Diletta Biagi
- Menarini Manufacturing Logistic and Services s.r.l. (AMMLS), Via dei Sette Santi 1/3, 50131, Florence, Italy; Department of Chemistry, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Paolo Nencioni
- Menarini Manufacturing Logistic and Services s.r.l. (AMMLS), Via dei Sette Santi 1/3, 50131, Florence, Italy
| | - Maurizio Valleri
- Menarini Manufacturing Logistic and Services s.r.l. (AMMLS), Via dei Sette Santi 1/3, 50131, Florence, Italy
| | - Niccolò Calamassi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Paola Mura
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
19
|
Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021; 13:919. [PMID: 34205797 PMCID: PMC8234957 DOI: 10.3390/pharmaceutics13060919] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Various frameworks and methods, such as quality by design (QbD), real time release test (RTRT), and continuous process verification (CPV), have been introduced to improve drug product quality in the pharmaceutical industry. The methods recognize that an appropriate combination of process controls and predefined material attributes and intermediate quality attributes (IQAs) during processing may provide greater assurance of product quality than end-product testing. The efficient analysis method to monitor the relationship between process and quality should be used. Process analytical technology (PAT) was introduced to analyze IQAs during the process of establishing regulatory specifications and facilitating continuous manufacturing improvement. Although PAT was introduced in the pharmaceutical industry in the early 21st century, new PAT tools have been introduced during the last 20 years. In this review, we present the recent pharmaceutical PAT tools and their application in pharmaceutical unit operations. Based on unit operations, the significant IQAs monitored by PAT are presented to establish a control strategy for CPV and real time release testing (RTRT). In addition, the equipment type used in unit operation, PAT tools, multivariate statistical tools, and mathematical preprocessing are introduced, along with relevant literature. This review suggests that various PAT tools are rapidly advancing, and various IQAs are efficiently and precisely monitored in the pharmaceutical industry. Therefore, PAT could be a fundamental tool for the present QbD and CPV to improve drug product quality.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Ji Hyeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 heon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| |
Collapse
|
20
|
Kiani Oshtorjani M, Meng L, Müller CR. Accurate buoyancy and drag force models to predict particle segregation in vibrofluidized beds. Phys Rev E 2021; 103:062903. [PMID: 34271698 DOI: 10.1103/physreve.103.062903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/20/2021] [Indexed: 11/07/2022]
Abstract
The segregation of large intruders in an agitated granular system is of high practical relevance, yet the accurate modeling of the segregation (lift) force is challenging as a general formulation of a granular equivalent of a buoyancy force remains elusive. Here, we critically assess the validity of a granular buoyancy model using a generalization of the Archimedean formulation that has been proposed very recently for chute flows. The first model system studied is a convection-free vibrated system, allowing us to calculate the buoyancy force through three different approaches, i.e., a generalization of the Archimedean formulation, the spring force of a virtual spring, and through the granular pressure field. The buoyancy forces obtained through these three approaches agree very well, providing strong evidence for the validity of the generalization of the Archimedean formulation of the buoyancy force which only requires an expression for the solid fraction of the intruder, hence allowing for a computationally less demanding calculation of the buoyancy force as coarse graining is avoided. In a second step, convection is introduced as a further complication to the granular system. In such a system, the lift force is composed of granular buoyancy and a drag force. Using a drag model for the slow-velocity regime, the lift force, directly measured through a virtual spring, can be predicted accurately by adding a granular drag force to the generalization of the Archimedean formulation of the granular buoyancy. The developed lift force model allows us to rationalize the dependence of the lift force on the density of the bed particles and the intruder diameter, the independence of the lift force on the intruder diameter, and the independence of the lift force on the intruder density and the vibration strength (once a critical value is exceeded).
Collapse
Affiliation(s)
- Mehrdad Kiani Oshtorjani
- Laboratory of Environmental Hydraulics, Department of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Écublens, 1015 Lausanne, Switzerland
| | - Liu Meng
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Christoph R Müller
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Nandi U, Trivedi V, Ross SA, Douroumis D. Advances in Twin-Screw Granulation Processing. Pharmaceutics 2021; 13:pharmaceutics13050624. [PMID: 33925577 PMCID: PMC8146340 DOI: 10.3390/pharmaceutics13050624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
Twin-screw granulation (TSG) is a pharmaceutical process that has gained increased interest from the pharmaceutical industry for its potential for the development of oral dosage forms. The technology has evolved rapidly due to the flexibility of the equipment design, the selection of the process variables and the wide range of processed materials. Most importantly, TSG offers the benefits of both batch and continuous manufacturing for pharmaceutical products, accompanied by excellent process control, high product quality which can be achieved through the implementation of Quality by Design (QbD) approaches and the integration of Process Analytical Tools (PAT). Here, we present basic concepts of the various twin-screw granulation techniques and present in detail their advantages and disadvantages. In addition, we discuss the detail of the instrumentation used for TSG and how the critical processing paraments (CPP) affect the critical quality attributes (CQA) of the produced granules. Finally, we present recent advances in TSG continuous manufacturing including the paradigms of modelling of continuous granulation process, QbD approaches coupled with PAT monitoring for granule optimization and process understanding.
Collapse
Affiliation(s)
- Uttom Nandi
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
| | - Vivek Trivedi
- Medway School of Pharmacy, Medway Campus, University of Kent, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
| | - Steven A. Ross
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Cubi-Tech Extrusion: 3, Sextant Park, Neptune Cl, Rochester ME2 4LU, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Correspondence: ; Tel.: +44-2083318440
| |
Collapse
|
22
|
Svane R, Pedersen T, Hirschberg C, Rantanen J. Rapid Prototyping of Miniaturized Powder Mixing Geometries. J Pharm Sci 2021; 110:2625-2628. [PMID: 33775671 DOI: 10.1016/j.xphs.2021.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022]
Abstract
Continuous manufacturing is an important element of future manufacturing solutions enabling for both high product quality and streamlined development process. The increasing possibilities with computer simulations allow for innovating novel mixing principles applicable for continuous manufacturing. However, these innovative ideas based on simulations need experimental validation. The use of rapid prototyping based on additive manufacturing opens a possibility to evaluate these ideas at a low cost. In this study, a novel powder mixing geometry was prototyped using additive manufacturing and further, interfaced with an in-line near-IR spectrometer allowing for investigating the residence time distribution (RTD) in this geometry.
Collapse
Affiliation(s)
- Rasmus Svane
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Troels Pedersen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Cosima Hirschberg
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Galata DL, Mészáros LA, Ficzere M, Vass P, Nagy B, Szabó E, Domokos A, Farkas A, Csontos I, Marosi G, Nagy ZK. Continuous blending monitored and feedback controlled by machine vision-based PAT tool. J Pharm Biomed Anal 2021; 196:113902. [PMID: 33486449 DOI: 10.1016/j.jpba.2021.113902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
In a continuous powder blending process machine vision is utilized as a Process Analytical Technology (PAT) tool. While near-infrared (NIR) and Raman spectroscopy are reliable methods in this field, measurements become challenging when concentrations below 2 w/w% are quantified. However, an active pharmaceutical ingredient (API) with an intense color might be quantified in even lower quantities by images recorded with a digital camera. Riboflavin (RI) was used as a model API with orange color, its Limit of Detection was found to be 0.015 w/w% and the Limit of Quantification was 0.046 w/w% using a calibration based on the pixel value of images. A calibration for in-line measurement of RI concentration was prepared in the range of 0.2-0.45 w/w%, validation with UV/VIS spectrometry showed great accuracy with a relative error of 2.53 %. The developed method was then utilized for a residence time distribution (RTD) measurement in order to characterize the dynamics of the blending process. Lastly, the technique was applied in real-time feedback control of a continuous powder blending process. Machine vision based direct or indirect API concentration determination is a promising and fast method with a great potential for monitoring and control of continuous pharmaceutical processes.
Collapse
Affiliation(s)
- Dorián László Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Lilla Alexandra Mészáros
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Máté Ficzere
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Panna Vass
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
24
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
25
|
Achouri IE, Rhoden A, Hudon S, Gosselin R, Simard JS, Abatzoglou N. Non-invasive detection technologies of solid foreign matter and their applications to lyophilized pharmaceutical products: A review. Talanta 2021; 224:121885. [PMID: 33379094 DOI: 10.1016/j.talanta.2020.121885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/28/2023]
Abstract
Good Manufacturing Practice Regulations, under the Food and Drug Administration (FDA), stipulate that all pharmaceutical products must be free of any contaminants, including, namely, any foreign solid objects. Lyophilization is a common manufacturing method that consists of several steps where foreign materials may enter the product. The presence of unintended particles in freeze drying, which will herein be referred to under the term 'Lyophilization', is of great concern to the authorities responsible for drug safety and effectiveness. In the pharmaceutical industry, presently, the inspection of lyophilized products for foreign matter particulates relies on visual inspection where only the outer surface of the lyophilized cake is visible. This review is motivated by the need for new control strategies for foreign matter (FM) detection in lyophilized products; more specifically, it assesses the reliability of non-destructive technologies for FM detection in dried samples. Emerging technologies applied in other industries, such as various types of spectroscopies and imaging (e.g. chemical, X-ray, ultrasound, thermal and terahertz), are evaluated based on compatibility with the intended application, with identification of the possible technical challenges.
Collapse
Affiliation(s)
- Inès E Achouri
- Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Alan Rhoden
- Pfizer USA, 100 route 206 North, Peapack, NJ, 07977, USA
| | - Sophie Hudon
- Pfizer Canada, 17300 route transcanadienne, Kirkland, QC, H9J 2M5, Canada
| | - Ryan Gosselin
- Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Nicolas Abatzoglou
- Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
Hetrick EM, Shi Z, Harms ZD, Myers DP. Sample Mass Estimate for the Use of Near-Infrared and Raman Spectroscopy to Monitor Content Uniformity in a Tablet Press Feed Frame of a Drug Product Continuous Manufacturing Process. APPLIED SPECTROSCOPY 2021; 75:216-224. [PMID: 32721168 DOI: 10.1177/0003702820950318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, feed frame-based process analytical technology measurements used to assure product quality during continuous manufacturing processes have received significant attention. These measurements are able to accurately determine uniformity of the powder blend before compression, and in these applications, it is necessary to understand the interrogated sample volume per measurement. This understanding ensures that the blend measurement can be indicative of the uniformity of the final dosage form. A scientifically sound approach is proposed here to estimate sample mass for a continuous manufacturing process that utilizes either near infrared or Raman spectroscopy. A wide range of commercially available probes with varying spot diameters are considered. By comparing near infrared and Raman spectroscopy, an optimal range of probe spot diameters was identified in order to reach an estimated sample mass between 50 and 500 mg for pharmaceutical blends per measurement, which is equivalent to common tablet weight ranges for solid oral dosage forms currently on the market.
Collapse
Affiliation(s)
- Evan M Hetrick
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| | - Zhenqi Shi
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| | - Zachary D Harms
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| | - David P Myers
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| |
Collapse
|
27
|
Review of sensing technologies for measuring powder density variations during pharmaceutical solid dosage form manufacturing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Martínez-Cartagena PA, Sierra-Vega NO, Alvarado-Hernández BB, Méndez R, Romañach RJ. An innovative sampling interface for monitoring flowing pharmaceutical powder mixtures. J Pharm Biomed Anal 2020; 194:113785. [PMID: 33280992 DOI: 10.1016/j.jpba.2020.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
A chute was designed following the principles of the Theory of Sampling to minimize the variations in powder flow and provide all particles in the flowing blends with the same opportunity of being selected as a sample. The design also reduces the thickness of the chute to allow the analysis of a higher portion of the flowing blends by a near infrared spectrometer. The blends that flowed through the chute had Carr's index values that fluctuated between 23 and 25 percent, indicating passable flowability. A powder fowling evaluation demonstrated that there was no powder accumulation at the inspection window of the chute. The mass flow rate profiles indicated that the system achieves mass steady-state in approximately 30 s and a throughput of 30 kg/h which makes it suitable for continuous manufacturing operations. An in-line NIR calibration model was developed to quantify caffeine concentrations between 1.51 and 4.52 % w/w. The spectra obtained from each experiment had minimal baseline variation. The developed NIR method was robust to throughput changes up to approximately ±7 %. The test blends in the caffeine concentration range between 2.02 % w/w and 4.02 % w/w met the dose uniformity requirements of the Ph.Eur. 9.0, chapter 2.9.47. Variographic analysis was done to estimate the analytical and sampling errors which yielded values below 0.01 (%w/w)2. The obtained results showed that this chute could also be used in a continuous manufacturing line or other applications with flowing powders.
Collapse
Affiliation(s)
- Pedro A Martínez-Cartagena
- Department of Chemistry, University of Puerto Rico at Mayaguez Call Box 9000, Mayaguez, 00680, Puerto Rico
| | - Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico
| | | | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez Call Box 9000, Mayaguez, 00680, Puerto Rico.
| |
Collapse
|
29
|
Pedersen T, Karttunen AP, Korhonen O, Wu JX, Naelapää K, Skibsted E, Rantanen J. Determination of Residence Time Distribution in a Continuous Powder Mixing Process With Supervised and Unsupervised Modeling of In-line Near Infrared (NIR) Spectroscopic Data. J Pharm Sci 2020; 110:1259-1269. [PMID: 33217424 DOI: 10.1016/j.xphs.2020.10.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
Successful implementation of continuous manufacturing processes requires robust methods to assess and control product quality in a real-time mode. In this study, the residence time distribution of a continuous powder mixing process was investigated via pulse tracer experiments using near infrared spectroscopy for tracer detection in an in-line mode. The residence time distribution was modeled by applying the continuous stirred tank reactor in series model for achieving the tracer (paracetamol) concentration profiles. Partial least squares discriminant analysis and principal component analysis of the near infrared spectroscopy data were applied to investigate both supervised and unsupervised chemometric modeling approaches. Additionally, the mean residence time for three powder systems was measured with different process settings. It was found that a significant change in the mean residence time occurred when comparing powder systems with different flowability and mixing process settings. This study also confirmed that the partial least squares discriminant analysis applied as a supervised chemometric model enabled an efficient and fast estimate of the mean residence time based on pulse tracer experiments.
Collapse
Affiliation(s)
- Troels Pedersen
- University of Copenhagen, Copenhagen, Denmark; Novo Nordisk A/S, Måløv, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
Desai PM, Acharya S, Armstrong C, Wu EL, Zaidi SAM. Underpinning mechanistic understanding of the segregation phenomena of pharmaceutical blends using a near-infrared (NIR) spectrometer embedded segregation tester. Eur J Pharm Sci 2020; 154:105516. [PMID: 32814162 DOI: 10.1016/j.ejps.2020.105516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
The segregation of an active pharmaceutical ingredient (API) within a powder blend is one of the major manufacturing obstacles in achieving content uniformity. Segregation can be due to differences in physicochemical properties of formulation components and/or perturbations experienced during secondary processing steps, such as granulation, fluidization, die-filling and compression. A near-infrared (NIR) spectrometer embedded segregation tester, which could mimic the external stimulations (vibration and fluidization) experienced by a blend in a manufacturing facility, was used to evaluate and predict blend segregation. Two different GlaxoSmithKline (GSK) product blends with variations in the API particle size and concentration were tested. Drug content was further measured at different locations along the powder bed by NIR to sketch the segregation profile and calculate the overall segregation intensity of each blend. The study indicated that the segregation potential was dependent on the particle sizes of API and excipients, as well as the type of stimulus applied (vibration vs fluidization). Drug concentration profiles obtained from this mode of analysis decoded the underlying segregation mechanisms (sieving, trajectory and air elutriation) easily. The employed NIR-based segregation tester proved to be a useful small-scale predictive tool to evaluate and rank the segregation risk of the studied pharmaceutical blends.
Collapse
Affiliation(s)
- Parind M Desai
- Process Engineering & Analytics, Pharmaceutical Development, GlaxoSmithKline (GSK) R&D, Collegeville, PA, USA.
| | - Shreyas Acharya
- Process Engineering & Analytics, Pharmaceutical Development, GlaxoSmithKline (GSK) R&D, Collegeville, PA, USA
| | - Cameron Armstrong
- Process Engineering & Analytics, Pharmaceutical Development, GlaxoSmithKline (GSK) R&D, Collegeville, PA, USA
| | - Eva L Wu
- Analytical Platforms and Platform Modernization, CMC Analytical, GlaxoSmithKline (GSK) R&D, Collegeville, PA, USA
| | - Syed A M Zaidi
- Analytical Platforms and Platform Modernization, CMC Analytical, GlaxoSmithKline (GSK) R&D, Collegeville, PA, USA
| |
Collapse
|
31
|
A Review of the Real-Time Monitoring of Fluid-Properties in Tubular Architectures for Industrial Applications. SENSORS 2020; 20:s20143907. [PMID: 32674278 PMCID: PMC7412341 DOI: 10.3390/s20143907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/30/2023]
Abstract
The real-time monitoring of fluid properties in tubular systems, such as viscosity and flow rate, is essential for industries utilizing liquid mediums. Nowadays, most studies of the fluid characteristics are performed off-line using laboratory facilities that can provide accurate results, yet they do not match the demanded industrial pace. Off-line measurements are ineffective and time-consuming. The available real-time monitoring sensors for fluid properties are generally destructive methods that produce significant and persistent damage to the tubular systems during the installation process. Others use huge and bulky invasive instrument methods that generate considerable pressure reduction and energy loss in tubular systems. For these drawbacks, industries centered their attention on non-invasive and non-destructive testing (NDT) methodologies, which are installed on the outer tubular surface to avoid flow disturbance and desist shutting down systems for installations. Although these sensors showed excellent achievement for monitoring and inspecting pipe health conditions, the performance was not convincing for monitoring the properties of fluids. This review paper presents an overview of the real-time monitoring of fluid properties in tubular systems for industrial applications, particularly for pipe monitoring sensors, viscosity, and flow measurements. Additionally, the different available sensing mechanisms and their advantages, drawbacks, and potentials are discussed.
Collapse
|
32
|
In-line monitoring of low drug concentration of flowing powders in a new sampler device. Int J Pharm 2020; 583:119358. [DOI: 10.1016/j.ijpharm.2020.119358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 01/18/2023]
|
33
|
Domokos A, Nagy B, Gyürkés M, Farkas A, Tacsi K, Pataki H, Liu YC, Balogh A, Firth P, Szilágyi B, Marosi G, Nagy ZK, Nagy ZK. End-to-end continuous manufacturing of conventional compressed tablets: From flow synthesis to tableting through integrated crystallization and filtration. Int J Pharm 2020; 581:119297. [PMID: 32243964 DOI: 10.1016/j.ijpharm.2020.119297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
An end-to-end continuous pharmaceutical manufacturing process was developed for the production of conventional direct compressed tablets on a proof-of-concept level for the first time. The output reaction mixture of the flow synthesis of acetylsalicylic acid was crystallized continuously in a mixed suspension mixed product removal crystallizer. The crystallizer was directly connected to a continuous filtration carousel device, thus the crystallization, filtration and drying of acetylsalicylic acid (ASA) was carried out in an integrated 2-step process. Steady state was reached during longer operations and the interaction of process parameters was evaluated in a series of experiments. The filtered crystals were ready for further processing in a following continuous blending and tableting experiment due to the good flowability of the material. The ASA collected during the crystallization-filtration experiments was fed into a continuous twin-screw blender along with microcrystalline cellulose as tableting excipient. After continuous blending Near-Infrared spectroscopy was applied to in-line analyze the drug content of the powder mixture. A belt conveyor carried the mixture towards an eccentric lab-scale tablet press, which continuously produced 500 mg ASA-loaded compressed tablets of 100 mg dose strength. Thus, starting from raw materials, the final drug product was obtained by continuous manufacturing steps with appropriate quality.
Collapse
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary; Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary; Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Martin Gyürkés
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Attila Farkas
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Kornélia Tacsi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Hajnalka Pataki
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Yiqing Claire Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Attila Balogh
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Paul Firth
- Alconbury Weston Ltd. (AWL), Stoke-on-Trent, Staffordshire ST4 3PE, United Kingdom
| | - Botond Szilágyi
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zoltán K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States; Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom.
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary.
| |
Collapse
|
34
|
Escotet-Espinoza MS, Scicolone JV, Moghtadernejad S, Sanchez E, Cappuyns P, Van Assche I, Di Pretoro G, Ierapetritou M, Muzzio FJ. Improving Feedability of Highly Adhesive Active Pharmaceutical Ingredients by Silication. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Pino-Torres C, Maspoch S, Castillo-Felices R, Pérez-Rivera M, Aranda-Bustos M, Peña-Farfal C. Evaluation of NIR and Raman spectroscopies for the quality analytical control of a solid pharmaceutical formulation with three active ingredients. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Vanhoorne V, Vervaet C. Recent progress in continuous manufacturing of oral solid dosage forms. Int J Pharm 2020; 579:119194. [PMID: 32135231 DOI: 10.1016/j.ijpharm.2020.119194] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/28/2022]
Abstract
Continuous drug product manufacturing is slowly being implemented in the pharmaceutical industry. Although the benefits related to the quality and cost of continuous manufacturing are widely recognized, several challenges hampered the widespread introduction of continuous manufacturing of drug products. Current review presents an overview of state-of-the art research, equipment, process analytical technology implementations and advanced control strategies. Additionally, guidelines and regulatory viewpoints on implementation of continuous manufacturing in the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University.
| |
Collapse
|
37
|
Palmer J, Reynolds GK, Tahir F, Yadav IK, Meehan E, Holman J, Bajwa G. Mapping key process parameters to the performance of a continuous dry powder blender in a continuous direct compression system. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Characterization of NIR interfaces for the feeding and in-line monitoring of a continuous granulation process. Int J Pharm 2019; 574:118848. [PMID: 31812798 DOI: 10.1016/j.ijpharm.2019.118848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022]
Abstract
This work describes the characterization of three NIR interfaces intended to monitor a continuous granulation process. Two interfaces (i.e. a barrel interface and a rotating paddle interface) were evaluated to monitor the API concentration at the entrance of the granulator, and a third interface (i.e. an outlet interface), was evaluated to examine the quality of the resulting outlet granules. The barrel interface provided an assessment of the API concentration during the feeding process by scanning the material conveyed by the screws of the loss-in-weight feeder. The rotating paddle interface analyzed discrete amounts of powder upon exiting the feeder via the accumulation of material on the paddles. Partial Least Squares (PLS) calibration models were developed using the same powder blends for the two inlet interfaces and using the outlet granules for the outlet interface. Five independent batches were used to evaluate the prediction performance of each inlet calibration model. The outlet interface produced the lowest error of prediction due to the homogeneity of the granules. The barrel interface produced lower errors of prediction than the rotating paddle interface. However, powder density affected only the barrel interface, producing deviations in the predicted values. Therefore, powder density is a factor that should be considered in the calibration sample design for spectroscopic measurements when using this type of interface. A variographic analysis demonstrated that the continuous 1-dimensional motion in the barrel and outlet interfaces produced representative measurements of each batch during calibration and test experiments, generating a low minimum practical error (MPE).
Collapse
|
39
|
Moreno M, Liu J, Su Q, Leach C, Giridhar A, Yazdanpanah N, O’Connor T, Nagy ZK, Reklaitis GV. Steady-State Data Reconciliation Framework for a Direct Continuous Tableting Line. J Pharm Innov 2019; 14:221-238. [PMID: 36824482 PMCID: PMC9945915 DOI: 10.1007/s12247-018-9354-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose Reliable process monitoring in real-time remains a challenge for the pharmaceutical industry. Dealing with random and gross errors in the process measurements in a systematic way is a potential solution. In this paper, we present a process model-based framework, which for given sensor network and measurement uncertainties will predict the most likely state of the process. Thus, real-time process decisions, whether for process control or exceptional events management, can be based on the most reliable estimate of the process state. Methods Reliable process monitoring is achieved by using data reconciliation (DR) and gross error detection (GED) to mitigate the effects of random measurement errors and non-random sensor malfunctions. Steady-state data reconciliation (SSDR) is the simplest forms of DR but offers the benefits of short computational times. We also compare and contrast the model-based DR approach (SSDR-M) to the purely data-driven approach (SSDR-D) based on the use of principal component constructions. Results We report the results of studies on a pilot plant-scale continuous direct compression-based tableting line at steady-state in two subsystems. If the process is linear or mildly nonlinear, SSDR-M and SSDR-D give comparable results for the variables estimation and GED. SSDR-M also complies with mass balances and estimate unmeasured variables. Conclusions SSDR successfully estimates the true state of the process in presence of gross errors, as long as steady state is maintained and the redundancy requirement is met. Gross errors are also detected while using SSDR-M or SSDR-D. Process monitoring is more reliable while using the SSDR framework.
Collapse
Affiliation(s)
- Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Jianfeng Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Cody Leach
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Arun Giridhar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Nima Yazdanpanah
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Thomas O’Connor
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Gintaras V. Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
40
|
Moreno M, Ganesh S, Shah YD, Su Q, Gonzalez M, Nagy ZK, Reklaitis GV. Sensor Network Robustness Using Model-Based Data Reconciliation for Continuous Tablet Manufacturing. J Pharm Sci 2019; 108:2599-2612. [PMID: 30904476 PMCID: PMC9942238 DOI: 10.1016/j.xphs.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/17/2019] [Accepted: 03/01/2019] [Indexed: 11/20/2022]
Abstract
Advances in continuous manufacturing in the pharmaceutical industry necessitate reliable process monitoring systems that are capable of handling measurement errors inherent in all sensor technologies and detecting measurement outliers to ensure operational reliability. The purpose of this work was to demonstrate data reconciliation (DR) and gross error detection methods as real-time process management tools to accomplish robust process monitoring. DR mitigates the effects of random measurement errors, while gross error detection identifies nonrandom sensor malfunctions. DR is an established methodology in other industries (i.e., oil and gas) and was recently investigated for use in drug product continuous manufacturing. This work demonstrates the development and implementation of model-based steady-state data reconciliation on 2 different end-to-end continuous tableting lines: direct compression and dry granulation. These tableting lines involve different equipment and sensor configurations, with sensor network redundancy achieved using equipment-embedded sensors and in-line process analytical technology tools for the critical process parameters and critical quality attributes. The nonlinearity of the process poses additional challenges to solve the steady-state data reconciliation optimization problem in real time. At-line and off-line measurements were used to validate the framework results.
Collapse
Affiliation(s)
- Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906.
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906
| | - Yash D Shah
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906
| | - Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906; Ray W. Herrick Laboratories, Purdue University, West Lafayette, Indiana 47907
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906.
| |
Collapse
|
41
|
Moghtadernejad S, Escotet-Espinoza MS, Liu Z, Schäfer E, Muzzio F. Mixing Cell: a Device to Mimic Extent of Lubrication and Shear in Continuous Tubular Blenders. AAPS PharmSciTech 2019; 20:262. [PMID: 31338701 DOI: 10.1208/s12249-019-1473-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022] Open
Abstract
Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.
Collapse
|
42
|
Razuc M, Grafia A, Gallo L, Ramírez-Rigo MV, Romañach RJ. Near-infrared spectroscopic applications in pharmaceutical particle technology. Drug Dev Ind Pharm 2019; 45:1565-1589. [DOI: 10.1080/03639045.2019.1641510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M. Razuc
- Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - A. Grafia
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - L. Gallo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - M. V. Ramírez-Rigo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - R. J. Romañach
- Department of Chemistry, Center for Structured Organic Particulate Systems, University of Puerto Rico – Mayagüez, Mayagüez, Puerto Rico
| |
Collapse
|
43
|
Su Q, Ganesh S, Moreno M, Bommireddy Y, Gonzalez M, Reklaitis GV, Nagy ZK. A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing. Comput Chem Eng 2019; 125:216-231. [PMID: 36845965 PMCID: PMC9948678 DOI: 10.1016/j.compchemeng.2019.03.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Quality-by-Design (QbD) guidance issued by the US Food and Drug Administration (FDA) has catalyzed the modernization of pharmaceutical manufacturing practices including the adoption of continuous manufacturing. Active process control was highlighted recently as a means to improve the QbD implementation. This advance has since been evolving into the concept of Quality-by-Control (QbC). In this study, the concept of QbC is discussed, including a definition of QbC, a review of the recent developments towards the QbC, and a perspective on the challenges of QbC implementation in continuous manufacturing. The QbC concept is demonstrated using a rotary tablet press, integrated into a pilot scale continuous direct compaction process. The results conclusively showed that active process control, based on product and process knowledge and advanced model-based techniques, including data reconciliation, model predictive control (MPC), and risk analysis, is indispensable to comprehensive QbC implementation, and ensures robustness and efficiency.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
44
|
Analytical strategies based on near infrared spectroscopy and multivariate calibration for rapid quantification of florfenicol at low-concentrations in medicated-feed pellets. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Su Q, Bommireddy Y, Shah Y, Ganesh S, Moreno M, Liu J, Gonzalez M, Yazdanpanah N, O’Connor T, Reklaitis GV, Nagy ZK. Data reconciliation in the Quality-by-Design (QbD) implementation of pharmaceutical continuous tablet manufacturing. Int J Pharm 2019; 563:259-272. [PMID: 30951859 PMCID: PMC9976296 DOI: 10.1016/j.ijpharm.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 11/25/2022]
Abstract
Data provided by in situ sensors is always affected by some level of impreciseness as well as uncertainty in the measurements due to process operation disturbance or material property variance. In-process data precision and reliability should be considered when implementing active product quality control and real-time process decision making in pharmaceutical continuous manufacturing. Data reconciliation is an important strategy to address such imperfections effectively, and to exploit the data redundancy and data correlation based on process understanding. In this study, a correlation between tablet weight and main compression force in a rotary tablet press was characterized by the classical Kawakita equation. A load cell, situated at the exit of the tablet press chute, was also designed to measure the tablet production rate as well as the tablet weight. A novel data reconciliation strategy was proposed to reconcile the tablet weight measurement subject to the correlation between tablet weight and main compression force, in such, the imperfect tablet weight measurement can be reconciled with the much more precise main compression force measurement. Special features of the Welsch robust estimator to reject the measurement gross errors and the Kawakita model parameter estimation to monitor the material property variance were also discussed. The proposed data reconciliation strategy was first evaluated with process control open-loop and closed-loop experimental data and then integrated into the process control system in a continuous tablet manufacturing line. Specifically, the real-time reconciled tablet weight measurements were independently verified with an at-line Sotax Auto Test 4 tablet weight measurements every five minutes. Promising and reliable performance of the reconciled tablet weight measurement was demonstrated in achieving process automation and quality control of tablet weight in pilot production runs.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Yash Shah
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Jianfeng Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States,Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Nima Yazdanpanah
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Thomas O’Connor
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Gintaras V. Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States,Corresponding authors. (Q. Su), (Z.K. Nagy)
| |
Collapse
|
46
|
Variographic analysis: A new methodology for quality assurance of pharmaceutical blending processes. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Wagner B, Brinz T, Khinast J. Using online content uniformity measurements for rapid automated process development exemplified via an X-ray system. Pharm Dev Technol 2019; 24:775-787. [DOI: 10.1080/10837450.2019.1596132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bernhard Wagner
- Packaging Technology, Robert Bosch GmbH, Waiblingen, Germany
- Institute for Particle and Process Engineering, Graz University of Technology, Graz, Austria
| | - Thomas Brinz
- Packaging Technology, Robert Bosch GmbH, Waiblingen, Germany
| | - Johannes Khinast
- Institute for Particle and Process Engineering, Graz University of Technology, Graz, Austria
- Research Center Pharmaceutical Engineering, Graz, Austria
| |
Collapse
|
48
|
Sierra-Vega NO, Román-Ospino A, Scicolone J, Muzzio FJ, Romañach RJ, Méndez R. Assessment of blend uniformity in a continuous tablet manufacturing process. Int J Pharm 2019; 560:322-333. [PMID: 30763679 DOI: 10.1016/j.ijpharm.2019.01.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Blend uniformity was monitored throughout a continuous manufacturing (CM) process by near infrared (NIR) spectroscopic measurements of flowing blends and compared to the drug concentration in the tablets. The NIR spectra were obtained through the chute after the blender and within the feed frame, while transmission spectra were obtained for the tablets. The CM process was performed with semi-fine acetaminophen blends at 10.0% (w/w). The blender was operated at 250 RPM, for best performance, and 106 and 495 rpm where a lower mixing efficiency was expected. The variation in blender RPM increased the variation in drug concentration at the chute but not at the feed frame. Statistical results show that the drug concentration of tablets can be predicted, with great accuracy, from blends within the feed frame. This study demonstrated a mixing effect within the feed frame, which contribute to a 60% decrease in the relative standard deviation of the drug concentration, when compared to the chute. Variographic analysis showed that the minimum sampling and analytical error was five times less in the feed frame than the chute. This study demonstrates that the feed frame is an ideal location for monitoring the drug concentration of powder blends for CM processes.
Collapse
Affiliation(s)
- Nobel O Sierra-Vega
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States
| | - Andrés Román-Ospino
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers University, New Jersey, Piscataway 08854, United States
| | - James Scicolone
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers University, New Jersey, Piscataway 08854, United States
| | - Fernando J Muzzio
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers University, New Jersey, Piscataway 08854, United States
| | - Rodolfo J Romañach
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemistry, University of Puerto Rico at Mayaguez, PR 00681, United States
| | - Rafael Méndez
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States.
| |
Collapse
|
49
|
Stranzinger S, Faulhammer E, Li J, Dong R, Khinast JG, Zeitler JA, Markl D. Measuring bulk density variations in a moving powder bed via terahertz in-line sensing. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.11.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Crouter A, Briens L. Methods to Assess Mixing of Pharmaceutical Powders. AAPS PharmSciTech 2019; 20:84. [PMID: 30673887 DOI: 10.1208/s12249-018-1286-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical manufacturing process consists of several steps, each of which must be monitored and controlled to ensure quality standards are met. The level of blending has an impact on the final product quality; therefore, it is important to be able to monitor blending progress and identify an end-point. Currently, the pharmaceutical industry assesses blend content and uniformity through the extraction of samples using thief probes followed by analytical methods, such as spectroscopy, to determine the sample composition. The development of process analytical technologies (PAT) can improve product monitoring with the aim of increasing efficiency, product quality and consistency, and creating a better understanding of the manufacturing process. Ideally, these are inline methods to remove issues related to extractive sampling and allow direct monitoring of the system using various sensors. Many technologies have been investigated, including spectroscopic techniques such as near-infrared spectroscopy, velocimetric techniques that may use tracers, tomographic techniques, and acoustic emissions monitoring. While some techniques have demonstrated potential, many have significant disadvantages including the need for equipment modification, specific requirements of the material, expensive equipment, extensive analysis, the location of the probes may be critical and/or invasive, and lastly, the technique may only be applicable to the development phase. Both the advantages and disadvantages of the technologies should be considered in application to a specific system.
Collapse
|