1
|
Percy AJ, Edwin M. A comprehensive review on the production and enhancement techniques of gaseous biofuels and their applications in IC engines with special reference to the associated performance and emission characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173087. [PMID: 38763185 DOI: 10.1016/j.scitotenv.2024.173087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
The increasing global demand for energy, coupled with environmental concerns associated with fossil fuels, has led to the exploration of alternative fuel sources. Gaseous biofuels, derived from organic matter, have gained attention due to their renewable nature and clean combustion characteristics. The paper extensively explores production pathways for gaseous biofuels, including biogas, syngas, and hydrogen, providing insightful discussions on various sources and processes. The energy content, physical, and chemical properties of gaseous biofuels have been analysed, highlighting their potential as viable alternatives to conventional fuels. Distinctive properties of biogas, producer gas, and hydrogen that impact combustion characteristics and engine efficiency in IC engines are underscored. Furthermore, the review systematically reviews enhancement techniques for gaseous biofuels, encompassing strategies to augment quality, purity, and combustion efficiency. Various methods, ranging from substrate pretreatment for biogas to membrane separation for hydrogen, illustrate effective means of enhancing fuel performance. Rigorous examination of performance parameters such as brake thermal efficiency, specific fuel consumption and emissions characteristics such as NOx, CO, CO2, HC of gaseous biofuels in dual-fuel mode emphasizes efficiency and environmental impact, offering valuable insights into their feasibility as engine fuels. The findings of this review will serve as a valuable resource for researchers, engineers, and policymakers involved in alternative fuels and sustainable transportation, while also highlighting the need for further research and development to fully unlock the potential of gaseous biofuels in IC engines.
Collapse
Affiliation(s)
- A Jemila Percy
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India
| | - M Edwin
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India.
| |
Collapse
|
2
|
Jiang J, Tu Y, Gu Z. Magnesium Ion Gated Ion Rejection through Carboxylated Graphene Oxide Nanopore: A Theoretical Study. Molecules 2024; 29:827. [PMID: 38398579 PMCID: PMC10892045 DOI: 10.3390/molecules29040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
While nanoporous graphene oxide (GO) is recognized as one of the most promising reverse osmosis desalination membranes, limited attention has been paid to controlling desalination performance through the large GO pores, primarily due to significant ion leakage resulting in the suboptimal performance of these pores. In this study, we employed a molecular dynamics simulation approach to demonstrate that Mg2+ ions, adhered to carboxylated GO nanopores, can function as gates, regulating the transport of ions (Na+ and Cl-) through the porous GO membrane. Specifically, the presence of divalent cations near a nanopore reduces the concentration of salt ions in the vicinity of the pore and prolongs their permeation time across the pore. This subsequently leads to a notable enhancement in salt rejection rates. Additionally, the ion rejection rate increases with more adsorbed Mg2+ ions. However, the presence of the adsorbed Mg2+ ions compromises water transport. Here, we also elucidate the impact of graphene oxidation degree on desalination. Furthermore, we design an optimal combination of adsorbed Mg2+ ion quantity and oxidation degree to achieve high water flux and salt rejection rates. This work provides valuable insights for developing new nanoporous graphene oxide membranes for controlled water desalination.
Collapse
Affiliation(s)
- Jianjun Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China;
- Department of Physics, Sanjiang College, Nanjing 210012, China
| | - Yusong Tu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China;
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Abbaspour M. Polyoxometalate ionic liquid between graphene oxide surfaces as a new membrane in the desalination process: a molecular dynamics study. Phys Chem Chem Phys 2023; 25:13654-13664. [PMID: 37145119 DOI: 10.1039/d2cp05486h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this study, the performance of the positioning of polyoxometalate ionic liquid ([Keggin][emim]3 IL) between graphene oxide (GO) plates with different concentrations (nIL-GO (n = 1-4)) were examined in the desalination process at different external pressures using molecular dynamics (MD) simulations. The use of Keggin anions with charged GO layers was also investigated in the desalination process. The potential of the mean force, average number of hydrogen bonds, self-diffusion coefficient, and angle distribution function were calculated and discussed. The results showed that although the presence of polyoxometalate ILs between the GO plates decreases water flux, they efficiently increase salt rejection. The positioning of one IL increases salt rejection to two times at lower pressure and increases it up to four times at higher pressure. Moreover, the positioning of four ILs results in almost complete salt rejection at all pressures. The use of only Keggin anions between the charged GO plates (n[Keggin]-GO+3n) presents more water flux and a smaller salt rejection rate than the nIL-GO systems. However, the n[Keggin]-GO+3n systems show a nearly complete salt rejection at high concentrations of Keggin anions. These systems also have a smaller risk of the contamination of the desalinated water by the probable escape of cations from the nanostructure to the desalinated water at very high pressures.
Collapse
Affiliation(s)
- Mohsen Abbaspour
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran.
| |
Collapse
|
4
|
Günay MG, Kemerli U, Karaman C, Karaman O, Güngör A, Karimi-Maleh H. Review of functionalized nano porous membranes for desalination and water purification: MD simulations perspective. ENVIRONMENTAL RESEARCH 2023; 217:114785. [PMID: 36395866 DOI: 10.1016/j.envres.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Today, it is known that most of the water sources in the world are either drying out or contaminated. With the increasing population, the water demand is increasing drastically almost in every sector each year, which makes processes like water treatment and desalination one of the most critical environmental subjects of the future. Therefore, developing energy-efficient and faster methods are a must for the industry. Using functional groups on the membranes is known to be an effective way to develop shorter routes for water treatment. Accordingly, a review of nano-porous structures having functional groups used or designed for desalination and water treatment is presented in this study. A systematic scan has been conducted in the literature for the studies performed by molecular dynamics simulations. The selected studies have been classified according to membrane geometry, actuation mechanism, functionalized groups, and contaminant materials. Permeability, rejection rate, pressure, and temperature ranges are compiled for all of the studies examined. It has been observed that the pore size of a well-designed membrane should be small enough to reject contaminant molecules, atoms, or ions but wide enough to allow high water permeation. Adding functional groups to membranes is observed to affect the permeability and the rejection rate. In general, hydrophilic functional groups around the pores increase membrane permeability. In contrast, hydrophobic ones decrease the permeability. Besides affecting water permeation, the usage of charged functional groups mainly affects the rejection rate of ions and charged molecules.
Collapse
Affiliation(s)
- M Gökhan Günay
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey
| | - Ubade Kemerli
- Mechanical Engineering Department, Trakya University, Edirne, Turkey
| | - Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Onur Karaman
- Vocational School of Health Services, Department of Medical Services and Techniques, Akdeniz University, Antalya, 07070, Turkey.
| | - Afşin Güngör
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
5
|
Han Y, Zhao J, Guo X, Jiao T. Removal of methanol from water by capacitive deionization system combined with functional nanoporous graphene membrane. CHEMOSPHERE 2023; 311:137011. [PMID: 36330976 DOI: 10.1016/j.chemosphere.2022.137011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/06/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
In this article, molecular dynamics simulations were used to examine the feasibility of capacitive deionization (CDI) system combined with a functionalized nanoporous graphene (NPG) membrane for removing methanol from water. The radial distribution function of electrode-methanol and methanol-water, the self-diffusion coefficient of methanol and water, the water density near the membrane, the interaction energy between methanol and membrane, the hydrogen bond structure between methanol and water, and the 2D density map of methanol molecules near the membrane under different electric field (EF) (to simulate the effect of capacitance) were examined to evaluate the separation performance of NPG membranes with hydrogen-passivated pores for methanol. The findings show that an EF with appropriate strength can decrease the amount of water molecules near methanol, increase the self-diffusion coefficient of methanol and water, increase hydrophobicity of hydrogenated pores, decrease the interaction between the NPG membrane and methanol, and weaken hydrogen bond interaction between water and methanol molecules. All these findings suggest that an appropriate EF can improve the NPG membrane's permeability to methanol, and verify the feasibility of CDI system combined with hydrogenated NPG membrane to remove methanol from water. This study is expected to propose a potential CDI application technology, and also give a novel idea for the removal of small organic molecules in water by functionalized NPG membrane.
Collapse
Affiliation(s)
- Yong Han
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, PR China; School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, PR China.
| | - Jiying Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, PR China
| | - Xiaoqiang Guo
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, PR China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, PR China.
| |
Collapse
|
6
|
Arya V, Chaudhuri A, Bakli C. Coupling solute interactions with functionalized graphene membranes: towards facile membrane-level engineering. NANOSCALE 2022; 14:16661-16672. [PMID: 36330851 DOI: 10.1039/d2nr05552j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Optimizing ion transport through nanoporous graphene membranes with intricate engineering at nanoscale levels finds applications ranging from ion segregation to desalination. Such membrane-level engineering often requires futuristic and state-of-the-art micro- and nanofabrication infrastructure making it less accessible to widespread applications. In this study, the effective membrane pore size is modulated using macroscopic membrane functionalization, which, when combined with the solute concentration, can prove to be facile nanoscale engineering towards achieving selectivity. By performing robust molecular dynamics (MD) simulations of aqueous NaCl solution through a nanoporous graphene membrane, we demonstrate that varying membrane wettability influences the structural organization of ions and water molecules both in the vicinity and inside the nanopore, which is manifested in the form of altered permeation characteristics. Moreover, the disparate solvation characteristics of the ionic species in conjunction with the variable van der Waals interactive forces affect the ion-selective nature (Cl- over Na+) of the membrane. The relative hydrophilization, resulting from the effective functionalization of the nanoporous graphene membrane, not only allows greater control over the permeation characteristics of ions and water molecules mediated by an altered depletion ratio but also gives rise to the ion-selective nature of the membrane, thus providing a sound understanding of the transport properties of ion-water solutions through nanoporous materials.
Collapse
Affiliation(s)
- Vinay Arya
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, India.
| | - Abhirup Chaudhuri
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, India
| | - Chirodeep Bakli
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
7
|
Transport of Water Contaminated with Various Ions Through Nanoporous Graphene: A Molecular Dynamics Simulation. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Azizi B, Vessally E, Ahmadi S, Ebadi AG, Azamat J. Separation of CH4/N2 gas mixture using MFI zeolite nanosheet: Insights from molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Abbaspour M, Akbarzadeh H, Namayandeh Jorabchi M, Salemi S, Ahmadi N. Investigation of doped carbon nanotubes on desalination process using molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Removal of nafcillin sodium monohydrate from aqueous solution by hydrogels containing nanocellulose: An experimental and theoretical study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Karimzadeh N, Azamat J, Erfan-Niya H. Efficient water desalination through mono and bilayer carbon nitride nanosheet membranes: Insights from molecular dynamics simulation. J Mol Graph Model 2022; 110:108059. [PMID: 34736058 DOI: 10.1016/j.jmgm.2021.108059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
Water desalination through membranes is an excellent way to access drinking water. Among two-dimensional nanosheet membranes for water desalination, carbon nitride (C2N) nanosheet has been considered as a promising membrane by researchers because of its inherent structure and mechanical strength. In this work, molecular simulations were used to study the efficiency of the pristine C2N nanosheet in the water desalination process using applied hydrostatic pressure to the system. In our simulation box, the C2N nanosheet was placed in the center of the simulation cell in an aqueous ionic solution. Due to the applied pressure to the system, water molecules overcame the forces that prevented them from passing through the C2N, and therefore, they passed through the C2N membrane. The water flux and water permeability of considered systems were obtained. Also, for more investigation, water density, radial distribution function of ions, the water density map, and hydrogen bonds of the system were conducted. The results demonstrated that the C2N membrane is an effective membrane for desalination even at low pressures with the acceptable water flux and salt rejection.
Collapse
Affiliation(s)
- Negin Karimzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Jafar Azamat
- Department of Basic Sciences, Farhangian University, Tehran, Iran.
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
12
|
Barry E, Burns R, Chen W, De Hoe GX, De Oca JMM, de Pablo JJ, Dombrowski J, Elam JW, Felts AM, Galli G, Hack J, He Q, He X, Hoenig E, Iscen A, Kash B, Kung HH, Lewis NHC, Liu C, Ma X, Mane A, Martinson ABF, Mulfort KL, Murphy J, Mølhave K, Nealey P, Qiao Y, Rozyyev V, Schatz GC, Sibener SJ, Talapin D, Tiede DM, Tirrell MV, Tokmakoff A, Voth GA, Wang Z, Ye Z, Yesibolati M, Zaluzec NJ, Darling SB. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chem Rev 2021; 121:9450-9501. [PMID: 34213328 DOI: 10.1021/acs.chemrev.1c00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.
Collapse
Affiliation(s)
- Edward Barry
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Raelyn Burns
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Wei Chen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Guilhem X De Hoe
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Joan Manuel Montes De Oca
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Juan J de Pablo
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - James Dombrowski
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Jeffrey W Elam
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alanna M Felts
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Giulia Galli
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - John Hack
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Qiming He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xiang He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Eli Hoenig
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Aysenur Iscen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Benjamin Kash
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Harold H Kung
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Nicholas H C Lewis
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Chong Liu
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xinyou Ma
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anil Mane
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alex B F Martinson
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Karen L Mulfort
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Julia Murphy
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Kristian Mølhave
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Paul Nealey
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Yijun Qiao
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Vepa Rozyyev
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - George C Schatz
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Steven J Sibener
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Dmitri Talapin
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - David M Tiede
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Matthew V Tirrell
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Andrei Tokmakoff
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Gregory A Voth
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zhongyang Wang
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zifan Ye
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Murat Yesibolati
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Nestor J Zaluzec
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Photon Sciences Directorate, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Seth B Darling
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| |
Collapse
|
13
|
Michaels W, Zhao Y, Qin J. Atomistic Modeling of PEDOT:PSS Complexes II: Force Field Parameterization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wesley Michaels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yan Zhao
- Department of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Chen WQ, Sedighi M, Jivkov AP. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect. NANOSCALE 2021; 13:1696-1716. [PMID: 33427268 DOI: 10.1039/d0nr06687g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding thermo-osmosis in nanoscale channels and pores is essential for both theoretical advances of thermally induced mass flow and a wide range of emerging industrial applications. We present a new mechanistic understanding and quantification of thermo-osmosis at nanometric/sub-nanometric length scales and link the outcomes with the non-equilibrium thermodynamics of the phenomenon. The work is focused on thermo-osmosis of water in quartz slit nanochannels, which is analysed by molecular dynamics (MD) simulations of mechano-caloric and thermo-osmotic systems. We investigate the applicability of Onsager reciprocal relation, irreversible thermodynamics, and continuum fluid mechanics at the nanoscale. Further, we analyse the effects of channel size on the thermo-osmosis coefficient, and show, for the first time, that these arise from specific liquid structures dictated by the channel size. The mechanical conditions of the interfacial water under different temperatures are quantified using a continuum approach (pressure tensor distribution) and a discrete approach (body force per molecule) to elucidate the underlying mechanism of thermo-osmosis. The results show that the fluid molecules located in the boundary layers adjacent to the solid surfaces experience a driving force which generates the thermo-osmotic flow. While the findings provide a fundamental understanding of thermo-osmosis, the methods developed provide a route for analysis of the entire class of coupled heat and mass transport phenomena in nanoscale structures.
Collapse
Affiliation(s)
- Wei Qiang Chen
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| | | | | |
Collapse
|
15
|
Qin L, Tobiason JE, Huang H. Water and humic acid transport in graphene-derived membrane: Mechanisms and implications to functional membrane design. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Gas separation using graphene nanosheet: insights from theory and simulation. J Mol Model 2020; 26:322. [PMID: 33118096 DOI: 10.1007/s00894-020-04581-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
The investigation of porous graphene, especially experimental research, is a challenging issue in related academic and technology and has become a hot topic in recent years. It is well known that the preparation of porous graphene is a difficult problem in experimental techniques. To prepare nanoporous graphene, much attention must focus on the quality of nanoporous structures and throughput array pores. Therefore, a comprehensive summary as much as possible has been made to provide a better understanding of the progress. A summary of synthesis techniques, the properties of nanoporous graphene membranes from the synthesis point of view, and potential applications of porous graphene and graphene oxide for gas separation on the basis of theoretical studies were given attention in this paper. Gas separation, including carbon dioxide capture, gas storage, natural gas sweetening, and flue gas purification through porous graphene, is of great interest. Porous graphene with narrow pore distribution provides exciting opportunities in gas separation processes.
Collapse
|
17
|
Rassoulinejad-Mousavi SM, Azamat J, Khataee A, Zhang Y. Molecular dynamics simulation of water purification using zeolite MFI nanosheets. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Qiu R, Xiao J, Chen XD, Selomulya C, Zhang X, Woo MW. Relationship between Desalination Performance of Graphene Oxide Membranes and Edge Functional Groups. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4769-4776. [PMID: 31886642 DOI: 10.1021/acsami.9b19976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High desalination efficiency in principle could be achieved by layer-by-layer graphene oxide (GO) membranes, which benefits from their entrance-functionalized channels assembled by edge-functionalized GO nanosheets. The effects of these edge functional groups on desalination, however, are not fully understood yet. To study the isolated influence of three typical edge functional groups, namely, carboxyl (-COOH), hydroxyl (-OH), and hydrogen (-H), molecular dynamics simulation was used in this work. The results revealed that the edge volumetric blockage effect, resulting in ion permeability at G-H > G-OH > G-COOH membranes, was the dominant mechanistic effect inside the GO membranes with 7 Å interlayer channels. The OH edge has the same effect as the H edge in NaCl/water selectivity because of a unique "ion pulling" effect. Moreover, the OH and H edge-functionalized membranes with 7 Å interlayer channels showed preferential Na+ and Cl- rejections, respectively. This kind of preference leads to a cycle of charging and neutralization in the penetrant reservoir throughout the filtration process. The results from this work suggested that it would be strategic to keep the COOH and H edge functional groups, to maintain the size of interlayer channels in order to stimulate the effects of edge functional groups, and to increase the membrane porosity for designing higher desalination efficiency GO membranes.
Collapse
Affiliation(s)
- Ruosang Qiu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Jie Xiao
- China-Australia Joint Research Centre in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu Province 215123 , PR China
| | - Xiao Dong Chen
- China-Australia Joint Research Centre in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu Province 215123 , PR China
| | - Cordelia Selomulya
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- School of Chemical Engineering , UNSW , Sydney , NSW 2052 , Australia
| | - Xiwang Zhang
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Meng Wai Woo
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- Department of Chemical and Materials Engineering , The University of Auckland , Grafton, Auckland 1023 , New Zealand
| |
Collapse
|
19
|
|
20
|
Hou Y, Li Y, Jiang C, Xu Y, Wang M, Niu QJ. Molecular simulation for separation of ethylene and ethane by functionalised graphene membrane. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1632451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Yiyu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Chi Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Yang Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Mumin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Qingshan Jason Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| |
Collapse
|
21
|
Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Top Curr Chem (Cham) 2019; 377:10. [DOI: 10.1007/s41061-019-0235-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
|
22
|
Molecular dynamics simulation of electric field driven water and heavy metals transport through fluorinated carbon nanotubes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Khaledialidusti R, Mahdavi E, Barnoush A. Stabilization of 2D graphene, functionalized graphene, and Ti2CO2 (MXene) in super-critical CO2: a molecular dynamics study. Phys Chem Chem Phys 2019; 21:12968-12976. [DOI: 10.1039/c9cp02244a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stabilization of nanoparticles is a main concern to produce an efficient nanofluid.
Collapse
Affiliation(s)
- Rasoul Khaledialidusti
- Department of Mechanical and Industrial Engineering
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Ehsan Mahdavi
- Department of Mechanical and Industrial Engineering
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
- School of Mechanical Engineering
| | - Afrooz Barnoush
- Department of Mechanical and Industrial Engineering
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| |
Collapse
|
24
|
|
25
|
Air separation with graphene mediated by nanowindow-rim concerted motion. Nat Commun 2018; 9:1812. [PMID: 29728605 PMCID: PMC5935753 DOI: 10.1038/s41467-018-04224-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/14/2018] [Indexed: 11/09/2022] Open
Abstract
Nanoscale windows in graphene (nanowindows) have the ability to switch between open and closed states, allowing them to become selective, fast, and energy-efficient membranes for molecular separations. These special pores, or nanowindows, are not electrically neutral due to passivation of the carbon edges under ambient conditions, becoming flexible atomic frameworks with functional groups along their rims. Through computer simulations of oxygen, nitrogen, and argon permeation, here we reveal the remarkable nanowindow behavior at the atomic scale: flexible nanowindows have a thousand times higher permeability than conventional membranes and at least twice their selectivity for oxygen/nitrogen separation. Also, weakly interacting functional groups open or close the nanowindow with their thermal vibrations to selectively control permeation. This selective fast permeation of oxygen, nitrogen, and argon in very restricted nanowindows suggests alternatives for future air separation membranes.
Collapse
|
26
|
Lee CS, Choi MK, Hwang YY, Kim H, Kim MK, Lee YJ. Facilitated Water Transport through Graphene Oxide Membranes Functionalized with Aquaporin-Mimicking Peptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705944. [PMID: 29484720 DOI: 10.1002/adma.201705944] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/28/2017] [Indexed: 06/08/2023]
Abstract
Water purification by membranes is widely investigated to address concerns related to the scarcity of clean water. Achieving high flux and rejection simultaneously is a difficult challenge using such membranes because these properties are mutually exclusive in common artificial membranes. Nature has developed a method for this task involving water-channel membrane proteins known as aquaporins. Here, the design and fabrication of graphene oxide (GO)-based membranes with a surface-tethered peptide motif designed to mimic the water-selective filter of natural aquaporins is reported. The short RF8 (RFRFRFRF, where R and F represent arginine and phenylalanine, respectively) octapeptide is a concentrated form of the core component of the Ar/R (aromatic/arginine) water-selective filter in aquaporin. The resulting GO-RF8 shows superior flux and high rejection similar to natural aquaporins. Molecular dynamics simulation reveal the unique configuration of RF8 peptides and the transport of water in GO-RF8 membranes, supporting that RF8 effectively emulates the core function of aquaporins.
Collapse
Affiliation(s)
- Chang Seon Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Moon-Ki Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ye Young Hwang
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyunki Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Moon Ki Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jung Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
27
|
Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. NATURE NANOTECHNOLOGY 2017; 12:509-522. [PMID: 28584292 DOI: 10.1038/nnano.2017.72] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/20/2017] [Indexed: 05/22/2023]
Abstract
Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.
Collapse
Affiliation(s)
- Luda Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael S H Boutilier
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Piran R Kidambi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Doojoon Jang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Nicolas G Hadjiconstantinou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
28
|
Activated Carbon, Carbon Nanotubes and Graphene: Materials and Composites for Advanced Water Purification. C — JOURNAL OF CARBON RESEARCH 2017. [DOI: 10.3390/c3020018] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
29
|
Khataee A, Bayat G, Azamat J. Molecular dynamics simulation of salt rejection through silicon carbide nanotubes as a nanostructure membrane. J Mol Graph Model 2017; 71:176-183. [DOI: 10.1016/j.jmgm.2016.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
30
|
Khataee A, Bayat G, Azamat J. Separation of cyanide from an aqueous solution using armchair silicon carbide nanotubes: insights from molecular dynamics simulations. RSC Adv 2017. [DOI: 10.1039/c6ra25991j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Separation of cyanide, as a model contaminant, from aqueous solution was investigated using molecular dynamics simulations.
Collapse
Affiliation(s)
- Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| | - Golchehreh Bayat
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| | - Jafar Azamat
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| |
Collapse
|
31
|
Azamat J, Khataee A. Removal of nitrate ion from water using boron nitride nanotubes: Insights from molecular dynamics simulations. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Li W, Zhang S, Zhao Y, Huang S, Zhao J. Molecular docking and molecular dynamics simulation analyses of urea with ammoniated and ammoxidized lignin. J Mol Graph Model 2016; 71:58-69. [PMID: 27846422 DOI: 10.1016/j.jmgm.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
Ammoniated lignin, prepared through the Mannich reaction of lignin, has more advantages as a slow-release carrier of urea molecules than ammoxidized lignin and lignin. The advantages of the ammoniated lignin include its amine groups added and its high molecular mass kept as similar as that of lignin. Three organic molecules including guaiacyl, 2-hydroxybenzylamine and 5-carbamoylpentanoic acid are monomers respectively in lignin, ammoniated lignin and ammoxidized lignin. We studied the difference between the interactions of lignin, ammoniated lignin and ammoxidized lignin with respect to urea, based on radial distribution functions (RDFs) results from molecular dynamics (MD) simulations. Glass transition temperature (Tg) and solubility parameter (δ) of ammoniated and ammoxidized lignin have been calculated by MD simulations in the constant-temperature and constant-pressure ensemble (NPT). Molecular docking results showed the interaction sites of the urea onto the ammoniated and ammoxidized lignin and three different interaction modes were identified. Root mean square deviation (RMSD) values could indicate the mobilities of the urea molecule affected by the three different interaction modes. A series of MD simulations in the constant-temperature and constant-volume ensemble (NVT) helped us to calculate the diffusivity of urea which was affected by the content of urea in ammoniated and ammoxidized lignin.
Collapse
Affiliation(s)
- Wenzhuo Li
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Song Zhang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yingying Zhao
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shuaiyu Huang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jiangshan Zhao
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
33
|
Ying Y, Yang Y, Ying W, Peng X. Two-dimensional materials for novel liquid separation membranes. NANOTECHNOLOGY 2016; 27:332001. [PMID: 27388995 DOI: 10.1088/0957-4484/27/33/332001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as well as fully explain up-to-date mechanisms and models of water transport and molecular separation behavior, which will arouse great interest among researchers entering or already working in the field of 2D material-based membranes.
Collapse
Affiliation(s)
- Yulong Ying
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310 027, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets. J Mol Model 2016; 22:82. [DOI: 10.1007/s00894-016-2939-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
35
|
Azamat J, Khataee A, Joo SW. Separation of copper and mercury as heavy metals from aqueous solution using functionalized boron nitride nanosheets: A theoretical study. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Azamat J, Khataee A, Sadikoglu F. Separation of carbon dioxide and nitrogen gases through modified boron nitride nanosheets as a membrane: insights from molecular dynamics simulations. RSC Adv 2016. [DOI: 10.1039/c6ra18396d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The progress of gas propagating through the pores of BNNSs was simulated using MD simulations. During a simulation time of 50 ns at 298 K, there is no CO2 propagating through, meaning a high selectivity of pore 4 for CO2/N2 separation.
Collapse
Affiliation(s)
- Jafar Azamat
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| | - Fahreddin Sadikoglu
- Department of Electrical and Electronic Engineering
- Near East University
- 99138 Nicosia
- Turkey
| |
Collapse
|
37
|
Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH 4 /CO 2 , CH 4 /H 2 S and CH 4 /N 2 separation. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.08.049] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Sun C, Wen B, Bai B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0914-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Azamat J, Sattary BS, Khataee A, Joo SW. Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: Insights from simulations. J Mol Graph Model 2015; 61:13-20. [DOI: 10.1016/j.jmgm.2015.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/19/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
|