1
|
Li J, Chen Q, Fan Y, Wang F, Meng J. Improved methane production of two-phase anaerobic digestion by cobalt: efficiency and mechanism. BIORESOURCE TECHNOLOGY 2023; 381:129123. [PMID: 37146694 DOI: 10.1016/j.biortech.2023.129123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Two-phase anaerobic digestion (AD) is a promising technology, but its performance is sensitive to methanogen. In this study, the effect of cobalt (Co) on two-phase AD was investigated and the enhanced mechanism was revealed. Though no obvious effect of Co2+ was observed in acidogenic phase, the activity of methanogens was significantly affected by Co2+ with an optimal Co2+ concentration of 2.0 mg/L. Ethylenediamine-N'-disuccinic acid (EDDS) was the most effective for improving Co bioavailability and increasing methane production. The role of Co-EDDS in improving methanogenic phase was also verified by operating three reactors for two months. The Co-EDDS supplement increased the level of Vitamin B12 (VB12) and coenzyme F420, and enriched Methanofollis and Methanosarcina, thereby successfully improving methane production and accelerating reactor recovery from ammonium and acid wastewater treatment. This study provides a promising approach to improve the efficiency and stability of anaerobic digester.
Collapse
Affiliation(s)
- Jianzheng Li
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiyi Chen
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiyang Fan
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Furao Wang
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Meng
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Qian J, Li YH, Su F, Wu JG, Sun JR, Huang TC. Citric acid-based deep eutectic solvent (CA-DES) as a new soil detergent for the removal of cadmium from coking sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2118-2127. [PMID: 35930153 DOI: 10.1007/s11356-022-22287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In order to solve the problem of soil pollution caused by excess heavy metals, cadmium (Cd), a novel soil-washing agent organic chelating acid-based deep eutectic solvent (OCA-DES), was investigated for the removal of Cd from the contaminated soil of coking plant. Four kinds of OCA-DES were prepared by mixing choline chloride (Ch-Cl) with four organic chelating acids (citric acid, oxalic acid, tartaric acid, and malic acid), respectively, to compare their washing efficiency of Cd from soil. The effects of washing operation conditions on the Cd removal efficiency were investigated. Side effects of citric acid-based deep eutectic solvent (CA-DES) on soil were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). The results showed that CA-DES had the best Cd removal efficiency and could reach as high as 93.75%, under ideal conditions. CA-DES mainly washed extractable and reducible Cd. The CA-DES washing process has less side effects on soil and hardly eroded the soil or changed the mineral structure of the soil. The main roles of CA-DES washing Cd include (1) hydrogen bonds capturing Cd; (2) the carboxyl group(-COOH) forming soluble chelate with Cd; and (3) releasing H+ ions in exchange for Cd. This study demonstrates that CA-DES, a novel soil-washing agent, has excellent removal of cadmium from soil and is environment-friendly.
Collapse
Affiliation(s)
- Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110004, China
| | - Ying-Hua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110004, China.
| | - Fei Su
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110004, China
| | - Ji-Guo Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110004, China
| | - Jia-Ru Sun
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110004, China
| | - Tian-Ci Huang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110004, China
| |
Collapse
|
3
|
Advancements in the field of electronic waste Recycling: Critical assessment of chemical route for generation of energy and valuable products coupled with metal recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Liu Y, Song Q, Zhang L, Xu Z. Targeted recovery of Ag-Pd alloy from polymetallic electronic waste leaching solution via green electrodeposition technology and its mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.118944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Mechachti F, Lakehal S, Lakehal A, Morell C, Merzoud L, Chermette H. Predicted structure and selectivity of 3d transition metal complexes with glutamic N, N-bis(carboxymethyl) acid. NEW J CHEM 2021. [DOI: 10.1039/d1nj03298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure and selectivity of 3d transition metal complexes with glutamic N,N-bis(carboxymethyl) acid are analyzed and predicted from DFT calculations.
Collapse
Affiliation(s)
- Fatima Mechachti
- Laboratoire de Chimie des Matériaux et des Vivants, Activité & Réactivité, Université Batna1, Batna, Algerie
| | - Salima Lakehal
- Laboratoire de Chimie des Matériaux et des Vivants, Activité & Réactivité, Université Batna1, Batna, Algerie
- Institut des Sciences de La Terre et de L'univers, Université de Batna2, Batna, Algerie
| | - Aicha Lakehal
- Faculté des Sciences Techniques, Université de Batna2, Batna, Algerie
| | - Christophe Morell
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR CNRS 5280, 69622 Villeurbanne Cedex, France
| | - Lynda Merzoud
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR CNRS 5280, 69622 Villeurbanne Cedex, France
| | - Henry Chermette
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR CNRS 5280, 69622 Villeurbanne Cedex, France
| |
Collapse
|
6
|
Wang CW, Wang J, Liu YS, Li J, Peng XL, Jia CS, Zhang LH, Yi LZ, Liu JY, Li CJ, Jia X. Prediction of the ideal-gas thermodynamic properties for water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114912] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Bajda T, Manecki M, Matyjasik M. The Early Stages of Mimetite Dissolution in EDTA Studied with Atomic Force Microscopy and Scanning Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:810-816. [PMID: 30862322 DOI: 10.1017/s1431927619000217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A mineral, mimetite Pb5(AsO4)3Cl, is one of the most insoluble minerals and continues to be considered a viable remedial strategy for immobilization of Pb and As from contaminated soils. It has been recognized that many well-known, naturally-occurring, and synthetic chelators strongly influence dissolution processes in near-surface geological environments. In this study, crystals of mimetite were observed in scanning electron microscopy (SEM) and atomic force microscopy (AFM) before and after dissolution in EDTA (ethylene diamine tetra-acetic acid) solution. Direct in situ observations at room temperature made in an AFM fluid cell revealed that the grain surface roughness has increased due to development of etch pits. Both hexagonal and prismatic walls developed dissolution features between 0.6 and 1.2 µm, respectively, during duration of the experiment. AFM observations suggest surface-controlled dissolution dominated step retrieval on both prismatic and hexagonal surfaces. SEM observations showed the development of rounded edges on hexagonal walls and elongated, oval etch pits on the prismatic wall. These results, representing early dissolution patterns on mimetite surfaces, might suggest that low pH conditions in soils containing organic acids similar to EDTA might contribute to remobilization of Pb and As from mimetite when applied to stabilization of these toxic metals in contaminated soils.
Collapse
Affiliation(s)
- Tomasz Bajda
- AGH University of Science and Technology,Faculty of Geology, Geophysics and Environment Protection,al. Mickiewicza 30,30-059 Krakow,Poland
| | - Maciej Manecki
- AGH University of Science and Technology,Faculty of Geology, Geophysics and Environment Protection,al. Mickiewicza 30,30-059 Krakow,Poland
| | - Marek Matyjasik
- Department of Geosciences,Weber State University,2507 University Circle,Ogden, UT 84408,USA
| |
Collapse
|
8
|
Bai L, Sun W, Huang M, Li L, Geng C, Liu K, Yan D. Study on the Methods of Separation and Detection of Chelates. Crit Rev Anal Chem 2019; 50:78-89. [PMID: 30777442 DOI: 10.1080/10408347.2019.1573657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The separation and purification techniques of chelates can improve the accuracy of detecting results of the chelation rate. As a quantitative indicator of metal ion chelates, the chelation rate can not only reflect the completion of chelation but also determine the amount of metal ions in different forms. The determination of chelation rate can help to determine the suitable chelating reaction conditions, make theoretical basis for the fertilizer efficiency, analyze the stability of chelating fertilizers and study the action mechanism of trace elements. In our study, the methods of separation free metal ions from mixture were reviewed first, including gel filtration chromatography, organic solvent precipitation, ion exchange chromatography, membrane separation and high performance liquid chromatography. Then, the qualitative analysis methods of chelates were introduced briefly, including chemical identification, infrared spectroscopy, ultraviolet spectroscopy. A detailed overview of the quantitative determination methods of chelates were also shown, such as ethylenediaminetetraacetic acid titration, chemical titration, atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry, spectrophotometric, chemical modified electrode. In addition, the merits and demerits of chelated rate determination methods of various determination methods were analyzed, and summarized the applicability of various methods, which provided a theoretical basis for optimizing chelating process, characterizing the structure of chelates and analyzing the mechanism of chelating fertilizer. The current methods of measuring chelation rate were also summarized and prospected.
Collapse
Affiliation(s)
- Liyong Bai
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Wenxuan Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Mingli Huang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Lingyu Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Cunzhen Geng
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Kezhong Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Dongyun Yan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Cushing AML, Kelebek S, Yue S, Ramsay JA. Biodegradation of CuTETA, an effluent by-product in mineral processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17393-17401. [PMID: 29654464 DOI: 10.1007/s11356-018-1877-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.
Collapse
Affiliation(s)
- Alexander M L Cushing
- The Robert M. Buchan Department of Mining, Queen's University, Goodwin Hall, Kingston, ON, K7L 3N6, Canada.
| | - Sadan Kelebek
- The Robert M. Buchan Department of Mining, Queen's University, Goodwin Hall, Kingston, ON, K7L 3N6, Canada
| | - Siqing Yue
- Department of Chemical Engineering, Queen's University, Dupuis Hall, Kingston, ON, Canada
| | - Juliana A Ramsay
- Department of Chemical Engineering, Queen's University, Dupuis Hall, Kingston, ON, Canada
| |
Collapse
|
10
|
Sharma N, Chauhan G, Kumar A, Sharma SK. Statistical Optimization of Heavy Metal (Cu2+ and Co2+) Extraction from Printed Circuit Boards and Mobile Batteries Using Chelation Technology. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nitin Sharma
- University School of Chemical
Technology, Guru Gobind Singh Indraprastha University, New Delhi-110078, India
| | - Garima Chauhan
- University School of Chemical
Technology, Guru Gobind Singh Indraprastha University, New Delhi-110078, India
| | - Arinjay Kumar
- University School of Chemical
Technology, Guru Gobind Singh Indraprastha University, New Delhi-110078, India
| | - S. K. Sharma
- University School of Chemical
Technology, Guru Gobind Singh Indraprastha University, New Delhi-110078, India
| |
Collapse
|
11
|
Jadhao P, Chauhan G, Pant KK, Nigam KDP. Greener approach for the extraction of copper metal from electronic waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 57:102-112. [PMID: 26597372 DOI: 10.1016/j.wasman.2015.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Technology innovations resulted into a major move from agricultural to industrial economy in last few decades. Consequently, generation of waste electronic and electrical equipments (WEEE) has been increased at a significant rate. WEEE contain large amount of precious and heavy metals and therefore, can be considered a potential secondary resource to overcome the scarcity of metals. Also, presence of these metals may affect the ecosystem due to lack of adequate management of WEEE. Building upon our previous experimental investigations for metal extraction from spent catalyst, present study explores the concept of green technology for WEEE management. Efforts have been made to recover base metal from a printed circuit board using eco-friendly chelation technology and results were compared with the conventional acid leaching method. 83.8% recovery of copper metal was achieved using chelation technology whereas only 27% could be recovered using acid leaching method in absence of any oxidant at optimum reaction conditions. Various characterization studies (energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction, inductive coupled plasma spectrophotometry) of Printed Circuit Board (PCB) and residues were performed for qualitative and quantitative analysis of samples. Significant metal extraction, more than 96% recovery of chelating agent, recycling of reactant in next chelation cycle and nearly zero discharge to the environment are the major advantages of the proposed green process which articulate the transcendency of chelation technology over other conventional approaches. Kinetic investigation suggests diffusion controlled process as the rate determining step for the chelate assisted recovery of copper from WEEE with activation energy of 22kJ/mol.
Collapse
Affiliation(s)
- Prashant Jadhao
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Garima Chauhan
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - K K Pant
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - K D P Nigam
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|