1
|
Ren J, Li J, Chen S, Liu Y, Ta D. Unveiling the potential of ultrasound in brain imaging: Innovations, challenges, and prospects. ULTRASONICS 2025; 145:107465. [PMID: 39305556 DOI: 10.1016/j.ultras.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 09/08/2024] [Indexed: 11/12/2024]
Abstract
Within medical imaging, ultrasound serves as a crucial tool, particularly in the realms of brain imaging and disease diagnosis. It offers superior safety, speed, and wider applicability compared to Magnetic Resonance Imaging (MRI) and X-ray Computed Tomography (CT). Nonetheless, conventional transcranial ultrasound applications in adult brain imaging face challenges stemming from the significant acoustic impedance contrast between the skull bone and soft tissues. Recent strides in ultrasound technology encompass a spectrum of advancements spanning tissue structural imaging, blood flow imaging, functional imaging, and image enhancement techniques. Structural imaging methods include traditional transcranial ultrasound techniques and ultrasound elastography. Transcranial ultrasound assesses the structure and function of the skull and brain, while ultrasound elastography evaluates the elasticity of brain tissue. Blood flow imaging includes traditional transcranial Doppler (TCD), ultrafast Doppler (UfD), contrast-enhanced ultrasound (CEUS), and ultrasound localization microscopy (ULM), which can be used to evaluate the velocity, direction, and perfusion of cerebral blood flow. Functional ultrasound imaging (fUS) detects changes in cerebral blood flow to create images of brain activity. Image enhancement techniques include full waveform inversion (FWI) and phase aberration correction techniques, focusing on more accurate localization and analysis of brain structures, achieving more precise and reliable brain imaging results. These methods have been extensively studied in clinical animal models, neonates, and adults, showing significant potential in brain tissue structural imaging, cerebral hemodynamics monitoring, and brain disease diagnosis. They represent current hotspots and focal points of ultrasound medical research. This review provides a comprehensive summary of recent developments in brain imaging technologies and methods, discussing their advantages, limitations, and future trends, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiahao Ren
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jian Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shili Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yang Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China; International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University in Zhejiang, Shaoxing 312000, China.
| | - Dean Ta
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Yi X, Liu S, Zhao T, Guo X, Zhou K, Ding W, Wang W. Temperature-Programmed Desorption of Single Zeolite Nanoparticles. J Am Chem Soc 2024. [PMID: 39566071 DOI: 10.1021/jacs.4c09274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Zeolites are essential solid acid catalysts in various chemical processes. Temperature-programmed desorption (TPD) is one of the most established techniques used to characterize the acidity of zeolites by measuring the desorption kinetics of probes from bulk samples. However, conventional TPD can hardly deliver the intrinsic acid properties of zeolites because the apparent desorption kinetics are inevitably mixed with mass transfer and thermal conduction due to the large sample amount (∼0.1 g). Herein, we developed an optical microscopy approach to measure the TPD spectra of single zeolite nanoparticles, termed oTPD, by in situ monitoring of the reduced scattering intensity of individuals as a result of the desorption of probe molecules during heating. A significantly reduced sample amount contributed to the oTPD spectrum, revealing an intrinsic desorption temperature of ∼300 °C lower than the apparent value and also a greatly narrowed peak width from ∼150 to ∼15 °C. Correlating oTPD and micro-Raman spectra of the very same individuals further uncovered a linear dependence between the acidity and the content of silicon islands. This study provided unprecedented capabilities for measuring the intrinsic acid properties and the desorption kinetics of single zeolite nanoparticles, with implications for better understanding the structure-acidity relationship and for designing better zeolite catalysts.
Collapse
Affiliation(s)
- Xuannuo Yi
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Taotao Zhao
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangke Guo
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Han X, Liu W, Zu L, Wu W, Xie J, You D, Du M, Guo T. In situ surface turbidity sensor based on localized light scattering from tilted fiber Bragg gratings. OPTICS LETTERS 2024; 49:650-653. [PMID: 38300081 DOI: 10.1364/ol.512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
We propose a compact fiber-optic sensor for in situ and continuous turbidity monitoring, based on surface optical scattering of polarized evanescent waves from targeted particles. The sensor is composed of a tilted fiber Bragg grating (TFBG) packaged inside a microfluidic capillary. The transmission spectrum of the TFBG provides a fine comb of narrow cladding resonances that are highly sensitive to the turbidity due to the localized light scattering of polarized evanescent waves from the microparticles near the fiber surface (as opposed to traditional bulk/volumetric turbidity measurement). We also propose a transmission spectral area interrogation method and quantify the repeatable correlation between the surface turbidity and the optical spectral area response. We show that the maximum sensitive turbidity response is achieved when the wavelength of the sensing cladding resonance matches the size of surrounding solid particles.
Collapse
|
4
|
Báez-Chorro MA, Vidal B. Particle Size Inversion from Spectrally Resolved Full-Field Forward Scattering. Anal Chem 2023; 95:15994-16003. [PMID: 37847094 PMCID: PMC10620756 DOI: 10.1021/acs.analchem.3c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Ensemble particle sizing has traditionally relied on inversion of extinction measurements for the characterization of the particle size distribution (PSD) in particulate media. However, particulate media induce complex phase changes that contain valuable information about their structure. Here, we propose the use of coherent detection to derive particle size distributions in inhomogeneous samples from light scattering. This is achieved by exploiting THz waves, which allow for both extinction and refractive index information to be directly retrieved. A modified version of the iterative Twomey method is presented in order to take into account this information. Additionally, by using a forward model based on the Waterman-Truell formula for the complex refractive index, samples with absorption in both the matrix medium and the particulate phase can be measured. The inversion needs neither a priori assumptions nor constraints regarding the PSD shape. Numerical simulations show that this full-field approach reduces the error of the inversion process potentially up to 65% compared with inversion using only extinction data. Experimental validation of the technique is provided by measuring calibrated spherical glass particles inside a PTFE matrix and retrieving the PSD in the case of monodisperse and polydisperse samples showing an enhancement of up to 32% in comparison to inversion from extinction data.
Collapse
Affiliation(s)
- Miguel A. Báez-Chorro
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia 46022, Spain
| | - Borja Vidal
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia 46022, Spain
| |
Collapse
|
5
|
Luo W, Li M. Recent Advances in Fabrication of Durable, Transparent, and Superhydrophobic Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2359. [PMID: 37630944 PMCID: PMC10459824 DOI: 10.3390/nano13162359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Transparent superhydrophobic coatings have been extensively investigated due to their ability to provide self-cleaning properties for outdoor applications. However, the widespread implementation of these coatings on a large scale is impeded by the challenges of poor durability and complex fabrication procedures. In this review, the fundamentals and theories governing the mutually exclusive properties of superhydrophobicity, optical transparency, and susceptibility to wear are introduced, followed by a discussion of representative examples of advanced surface design and processing optimizations. Also, robust evaluation protocols for assessing mechanical and chemical stabilities are briefed and potential research directions are presented. This review can offer the research community a better understanding of durable and transparent superhydrophobic surfaces, thereby facilitating their development for real-world applications.
Collapse
Affiliation(s)
| | - Mingjie Li
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Genc S, Icoz K, Erdem T. Numerical analysis and experimental verification of optical scattering from microplastics. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230586. [PMID: 37564069 PMCID: PMC10410208 DOI: 10.1098/rsos.230586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Accurate and fast characterization of the micron-sized plastic particles in aqueous media requires an in-depth understanding of light interaction with these particles. Due to the complexity of Mie scattering theory, the features of the scattered light have rarely been related to the physical properties of these tiny objects. To address this problem, we reveal the relation of the wavelength-dependent optical scattering patterns with the size and refractive index of the particles by numerically studying the angular scattering features. We subsequently present a low-cost setup to measure the optical scattering of the particles. Theoretical investigation shows that the angular distribution of the scattered light by microplastics carries distinct signatures of the particle size and the refractive index. The results can be used to develop a portable, low-cost setup to detect microplastics in water.
Collapse
Affiliation(s)
- Sinan Genc
- Department of Electrical-Electronics Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri 38080, Turkey
| | - Kutay Icoz
- Department of Electrical-Electronics Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri 38080, Turkey
| | - Talha Erdem
- Department of Electrical-Electronics Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri 38080, Turkey
| |
Collapse
|
7
|
Marques SS, Ramos II, Silva C, Barreiros L, Domingues MR, Segundo MA. Lab-on-Valve Automated and Miniaturized Assessment of Nanoparticle Concentration Based on Light-Scattering. Anal Chem 2023; 95:4619-4626. [PMID: 36802495 PMCID: PMC10018450 DOI: 10.1021/acs.analchem.2c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Nanoparticles (NPs) concentration directly impacts the dose delivered to target tissues by nanocarriers. The evaluation of this parameter is required during NPs developmental and quality control stages, for setting dose-response correlations and for evaluating the reproducibility of the manufacturing process. Still, faster and simpler procedures, dismissing skilled operators and post-analysis conversions are needed to quantify NPs for research and quality control operations, and to support result validation. Herein, a miniaturized automated ensemble method to measure NPs concentration was established under the lab-on-valve (LOV) mesofluidic platform. Automatic NPs sampling and delivery to the LOV detection unit were set by flow programming. NPs concentration measurements were based on the decrease in the light transmitted to the detector due to the light scattered by NPs when passing through the optical path. Each analysis was accomplished in 2 min, rendering a determination throughput of 30 h-1 (6 samples h-1 for n = 5) and only requiring 30 μL (≈0.03 g) of NPs suspension. Measurements were performed on polymeric NPs, as these represent one of the major classes of NPs under development for drug-delivery aims. Determinations for polystyrene NPs (of 100, 200, and 500 nm) and for NPs made of PEGylated poly-d,l-lactide-co-glycolide (PEG-PLGA, a biocompatible FDA-approved polymer) were accomplished within 108-1012 particles mL-1 range, depending on the NPs size and composition. NPs size and concentration were maintained during analysis, as verified for NPs eluted from the LOV by particle tracking analysis (PTA). Moreover, concentration measurements for PEG-PLGA NPs loaded with an anti-inflammatory drug, methotrexate (MTX), after their incubation in simulated gastric and intestinal fluids were successfully achieved (recovery values of 102-115%, as confirmed by PTA), showing the suitability of the proposed method to support the development of polymeric NPs targeting intestinal delivery.
Collapse
Affiliation(s)
- Sara S Marques
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Inês I Ramos
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Silva
- Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal.,LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,School of Health, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria R Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal.,Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
The influence of anthocyanins in pectin-whey protein complexation using a natural pigmented blackcurrant pectin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Ang CL, Matia-Merino L, Sims IM, Sargison L, Edwards PJ, Lim K, Goh KKT. Characterisation of de-structured starch and its shear-thickening mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Zhang H, Li X, Kang H, Peng X. Chitosan nanoparticles effectively improved quality stability of pork patties subjected to multiple freeze–thaw cycles. Meat Sci 2022; 196:109029. [DOI: 10.1016/j.meatsci.2022.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
11
|
A Simple Model to Estimate the Number of Metal Engineered Nanoparticles in Samples Using Inductively Coupled Plasma Optical Emission Spectrometry. Molecules 2022; 27:molecules27185810. [PMID: 36144546 PMCID: PMC9506279 DOI: 10.3390/molecules27185810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate determination of the size and the number of nanoparticles plays an important role in many different environmental studies of nanomaterials, such as fate, toxicity, and occurrence in general. This work presents an accurate model that estimates the number of nanoparticles from the mass and molar concentration of gold nanoparticles (AuNPs) in water. Citrate-capped AuNPs were synthesized and characterized using transmission electron microscopy (TEM) and ultraviolet–visible spectroscopy (UV-vis). A mimic of environmental matrices was achieved by spiking sediments with AuNPs, extracted with leachate, and separated from the bulk matrix using centrifuge and phase transfer separation techniques. The quantification of AuNPs’ molar concentration on the extracted residues was achieved by inductively coupled plasma optical emission spectroscopy (ICP-OES). The molar concentrations, an average diameter of 27 nm, and the colloidal suspension volumes of AuNPs enable the calculation of the number of nanoparticles in separated residues. The plot of the number of AuNPs against the mass of AuNPs yielded a simple linear model that was used to estimate the number of nanoparticles in the sample using ICP-OES. According to the authors’ knowledge, this is the first adaptation of the gravimetric method to ICP-OES for estimating the number of nanoparticles after separation with phase transfer.
Collapse
|
12
|
Nanoparticle sizing in the field of nanomedicine: Power of an analytical ultracentrifuge. Anal Chim Acta 2022; 1205:339741. [DOI: 10.1016/j.aca.2022.339741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
|
13
|
Optical Properties of Cellulose Nanofibre Films at High Temperatures. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractNanocelluloses and their different designs, such as films and nanopapers, have gained considerable interest in many application areas due to their unique properties. For many purposes, such as packaging and electronics, the thermal stability and optical properties of nanocellulose materials are crucial characteristics. In this study, the effects of heat treatment (100 ºC, 150 ºC and 200 ºC) on the optical and mechanical properties of 2,2,6,6-tetramethylpiperidinyl-1-oxy radical-oxidised cellulose nanofibre (TO-CNF) films were investigated, especially the alteration of the colour, complex refractive index and birefringence. Exposing TO-CNF films to high temperatures (> 150 ºC) induced permanent transformations in the CNF structure, leading to an increase in the refractive index, decreases in the birefringence and crystallinity index, colour darkening and significant deterioration of the mechanical properties.
Graphical abstract
Collapse
|
14
|
Zhou A, Xu C, Kanitthamniyom P, Ng CSX, Lim GJ, Lew WS, Vasoo S, Zhang X, Lum GZ, Zhang Y. Magnetic Soft Millirobots 3D Printed by Circulating Vat Photopolymerization to Manipulate Droplets Containing Hazardous Agents for In Vitro Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200061. [PMID: 35147257 DOI: 10.1002/adma.202200061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
3D printing via vat photopolymerization (VP) is a highly promising approach for fabricating magnetic soft millirobots (MSMRs) with accurate miniature 3D structures; however, magnetic filler materials added to resin either strongly interfere with the photon energy source or sediment too fast, resulting in the nonuniformity of the filler distribution or failed prints, which limits the application of VP. To this end, a circulating vat photopolymerization (CVP) platform that can print MSMRs with high uniformity, high particle loading, and strong magnetic response is presented. After extensive characterization of materials and 3D printed parts, it is found that SrFe12 O19 is an ideal magnetic filler for CVP and can be printed with 30% particle loading and high uniformity. By using CVP, various tethered and untethered MSMRs are 3D printed monolithically and demonstrate the capability of reversible 3D-to-3D transformation and liquid droplet manipulation in 3D, an important task for in vitro diagnostics that are not shown with conventional MSMRs. A fully automated liquid droplet handling platform that manipulates droplets with MSMR is presented for detecting carbapenem antibiotic resistance in hazardous biosamples as a proof of concept, and the results agree with the benchmark.
Collapse
Affiliation(s)
- Aiwu Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changyu Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pojchanun Kanitthamniyom
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chelsea Shan Xian Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Gerard Joseph Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shawn Vasoo
- National Center for Infectious Disease, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore, 308433, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, Sichuan, 611731, China
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, Sichuan, 611731, China
| |
Collapse
|
15
|
Preparation of Transparent Sandwich-like Superhydrophobic Coating on Glass with High Stability and Self-Cleaning Properties. COATINGS 2022. [DOI: 10.3390/coatings12020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High stability and transparent superhydrophobic coating on a glass substrate that can effectively repel the wetting dust as a self-cleaning property are beneficial traits for solving the decrease in optical lens clarity in an unmanned underground mining environment. However, the transparent superhydrophobic coating has still not been applied due to the contradiction between visibility, hydrophobicity and durability. Herein, a sandwich-like superhydrophobic coating was designed and prepared on borosilicate glass, which consisted of a micro/nanostructure body of neutral silicone sealant (primer) and hydrophobic silica nanoparticles (interlayer), as well as a protective layer of ultraviolet (UV) gel. The coated glass exhibited excellent superhydrophobicity towards many aqueous solutions, and had highly visible light transparency of 80% at 4 wt.% primer mass content. Furthermore, significant tests including the droplet impact, hot water boiling, stirring in acetic acid aqueous solution and sandpaper abrasion were performed on our superhydrophobic coating, which indicated that the obtained transparent coating had good stability and excellent mechanical durability. The coated glass also showed a more wonderful self-cleaning property compared with that of the original glass. This superhydrophobic coating on glass substrate, fabricated by a facile and cost-effective layer-by-layer construction approach, has great potential for general and practical application in the unmanned mining environment under multiple dust and atomized water conditions.
Collapse
|
16
|
Zhang Y, Zhou A, Chen S, Lum GZ, Zhang X. A perspective on magnetic microfluidics: Towards an intelligent future. BIOMICROFLUIDICS 2022; 16:011301. [PMID: 35069962 PMCID: PMC8769766 DOI: 10.1063/5.0079464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/02/2022] [Indexed: 05/09/2023]
Abstract
Magnetic microfluidics has been gradually recognized as an area of its own. Both conventional microfluidic platforms have incorporated magnetic actuation for microfluidic operation and microscale object manipulation. Nonetheless, there is still much room for improvement after decades of development. In this Perspective, we first provide a quick review of existing magnetic microfluidic platforms with a focus on the magnetic tools and actuation mechanisms. Next, we discuss several emerging technologies, including magnetic microrobots, additive manufacture, and artificial intelligence, and their potential application in the future development of magnetic microfluidics. We believe that these technologies can eventually inspire highly functional magnetic tools for microfluidic manipulation and coordinated microfluidic control at the system level, which eventually drives magnetic microfluidics into an intelligent system for automated experimentation.
Collapse
Affiliation(s)
- Yi Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, China
- Authors to whom correspondence should be addressed:; ;
and
| | - Aiwu Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Songlin Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
- Authors to whom correspondence should be addressed:; ;
and
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, China
- Authors to whom correspondence should be addressed:; ;
and
| |
Collapse
|
17
|
Liyanage T, Lai M, Slaughter G. Label-free tapered optical fiber plasmonic biosensor. Anal Chim Acta 2021; 1169:338629. [PMID: 34088366 DOI: 10.1016/j.aca.2021.338629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022]
Abstract
We designed and fabricated a novel label-free ultrasensitive tapered optical fiber (TOF) plasmonic biosensor that successfully detected a five panel of microRNAs with good selectivity. The biosensing platform integrates three different metallic nanoparticles: gold spherical nanoparticles (AuNPs), gold nanorods (AuNRs), and gold triangular nanoprisms (AuTNPs) laminated TOF to enhance the evanescent mode. The dip in the intensity profile of the transmission spectrum corresponded to the specific wavelength of the nanoparticle. The AuTNPs laminated TOF was found to exhibit the highest refractive index sensitivity and was therefore used to assay the panel of microRNAs. Single stranded DNA probes were self-assembled on the AuTNPs TOF plasmonic biosensors to achieve the highest sensitivity from the formation of hydrogen bonds between the ssDNAs and the target microRNAs. Experimentally, we observed that by measuring the spectral shifts, a limit of detection (LOD) between 103 aM and 261 aM for the panel of microRNAs can be achieved. Additionally, the ssDNA layer immobilized on the TOF plasmonic biosensor resulted in an extended dynamic range of 1 fM - 100 nM. In human serum solution, clinically relevant concentration of the panel of microRNAs were successfully detected with a LOD between 1.097 fM to 1.220 fM. This is the first report to demonstrate the applicability of our TOF plasmonic biosensor approach to detect a panel of microRNAs. This simple yet highly sensitive approach can provide a high-throughput and scalable sensor for detecting and quantifying large arrays of microRNAs, thereby expanding the applications of biosensors.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA
| | - Meimei Lai
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA.
| |
Collapse
|
18
|
Hydrogen generation and hydrogenation reactions efficiently mediated by a thin film of reduced graphene oxide-grafted with carboxymethyl chitosan and Ag nanoparticles. J Colloid Interface Sci 2021; 583:626-641. [DOI: 10.1016/j.jcis.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 01/12/2023]
|
19
|
Slepička P, Slepičková Kasálková N, Siegel J, Kolská Z, Švorčík V. Methods of Gold and Silver Nanoparticles Preparation. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E1. [PMID: 31861259 PMCID: PMC6981963 DOI: 10.3390/ma13010001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/30/2023]
Abstract
The versatile family of nanoparticles is considered to have a huge impact on the different fields of materials research, mostly nanoelectronics, catalytic chemistry and in study of cytocompatibility, targeted drug delivery and tissue engineering. Different approaches for nanoparticle preparation have been developed, not only based on "bottom up" and "top down" techniques, but also several procedures of effective nanoparticle modifications have been successfully used. This paper is focused on different techniques of nanoparticles' preparation, with primary focus on metal nanoparticles. Dispergation methods such as laser ablation and vacuum sputtering are introduced. Condensation methods such as reduction with sodium citrate, the Brust-Schiffrin method and approaches based on ultraviolet light or biosynthesis of silver and gold are also discussed. Basic properties of colloidal solutions are described. Also a historical overview of nanoparticles are briefly introduced together with short introduction to specific properties of nanoparticles and their solutions.
Collapse
Affiliation(s)
- Petr Slepička
- Department of Solid State Engineering, The University of Chemistry and Technology, 166 28 Prague, Czech Republic; (N.S.K.); (J.S.); (V.Š.)
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, The University of Chemistry and Technology, 166 28 Prague, Czech Republic; (N.S.K.); (J.S.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, The University of Chemistry and Technology, 166 28 Prague, Czech Republic; (N.S.K.); (J.S.); (V.Š.)
| | - Zdeňka Kolská
- Faculty of Science, J.E. Purkyně University, 400 96 Ústí nad Labem, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, The University of Chemistry and Technology, 166 28 Prague, Czech Republic; (N.S.K.); (J.S.); (V.Š.)
| |
Collapse
|
20
|
Meneses-Márquez JC, Hamdan-Partida A, Monroy-Dosta MD, Castro-Mejía J, Faustino-Vega A, Soria-Castro E, Bustos-Martínez J. Use of silver nanoparticles to control Vibrio fluvialis in cultured angelfish Pterophyllum scalare. DISEASES OF AQUATIC ORGANISMS 2019; 137:65-72. [PMID: 31802743 DOI: 10.3354/dao03423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles have multiple applications, among which is their use as antimicrobial agents in aquaculture. The objective of this work was to determine the antibacterial effect of silver nanoparticles (AgNPs) against Vibrio fluvialis in cultured angelfish Pterophyllum scalare. AgNPs were synthetized through chemical reduction and characterized by UV-visible and infrared spectroscopy. Particle size ranged from 60 to 170.8 nm, and scanning electron microscopy revealed cubic and spherical forms. A minimal inhibitory concentration of 222.5 ppm was determined, as well as inhibition halos between 8.66 and 14.3 mm. Inhibition of V. fluvialis growth was observed upon contact with AgNPs. An 88% survival of infected fish was obtained when treated with AgNPs, in contrast to 100% mortality of fish that were not treated. No damage to internal or external organs was observed in fish exposed to AgNPs. We conclude that AgNPs exert an antimicrobial effect against V. fluvialis, and thus represent a new alternative to control diseases caused by this microorganism in P. scalare culture.
Collapse
Affiliation(s)
- Julio César Meneses-Márquez
- Laboratorio de Microbiología y Biología Molecular, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | | | | | | | | | | | | |
Collapse
|