1
|
Uppinakudru AP, Casado C, Reynolds K, Stanley S, Pablos C, Marugán J. Comparison of radiant intensity in aqueous media using experimental and numerical simulation techniques. OPEN RESEARCH EUROPE 2024; 4:18. [PMID: 38779341 PMCID: PMC11109699 DOI: 10.12688/openreseurope.16812.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 05/25/2024]
Abstract
Accurately modelling the propagation of radiant intensity in aqueous environments poses significant challenges for both academia and industry, due to complex interactions like absorption, scattering, and reflection. This study aims to improve the accuracy of optical modeling in water-based systems by comparing experimental data with numerical simulation techniques, addressing the need for more reliable simulation methods in multiple applications like treatment of water and environmental monitoring.Implementation has been done by analyzing how the method compares with the discrete ordinate method, radiometry, and actinometry. The study further quantifies the effect of the photoreactor quartz tube on measured intensity for multiple wavelengths. Losses in light intensity are estimated to be 10 ± 0.5% for FX-1 265 source. In contrast, the simulation in a water medium showed an increase of up to 64% in the light intensity delivered to the central part of the tube due to internal reflections and scattering. Model predictions from ray tracing successfully compared with the Discrete Ordinate Method (DOM) and experimental data (within ± 6%), ensuring the accurate design of complex systems for water disinfection. The data from simulations is seen to tackle challenges faced in complex radiation modeling and demonstrates that the method can be utilized as a useful tool for optimization and prediction.
Collapse
Affiliation(s)
| | - Cintia Casado
- Universidad Rey Juan Carlos, Móstoles, Community of Madrid, Spain
| | | | | | - Cristina Pablos
- Universidad Rey Juan Carlos, Móstoles, Community of Madrid, Spain
| | - Javier Marugán
- Universidad Rey Juan Carlos, Móstoles, Community of Madrid, Spain
| |
Collapse
|
2
|
Kuspanov Z, Baglan B, Baimenov A, Issadykov A, Yeleuov M, Daulbayev C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163914. [PMID: 37149164 DOI: 10.1016/j.scitotenv.2023.163914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The growing environmental and energy crises have prompted researchers to seek new solutions, including large-scale photocatalytic environmental remediation and the production of solar hydrogen using photocatalytic materials. To achieve this goal, scientists have developed numerous photocatalysts with high efficiency and stability. However, the large-scale application of photocatalytic systems under real-world conditions is still limited. These limitations arise at every step, including the large-scale synthesis and deposition of photocatalyst particles on a solid support, and the development of an optimal design with high mass transfer and efficient photon absorption. The purpose of this article is to provide a detailed description of the primary challenges and potential solutions encountered in scaling up photocatalytic systems for use in large-scale water and air purification and solar hydrogen production. Additionally, based on a review of current pilot developments, we draw conclusions and make comparisons regarding the main operating parameters that affect performance, as well as propose strategies for future research.
Collapse
Affiliation(s)
- Zhengisbek Kuspanov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
| | - Bakbolat Baglan
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Alzhan Baimenov
- Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Aidos Issadykov
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Mukhtar Yeleuov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
| | - Chingis Daulbayev
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| |
Collapse
|
3
|
Martín-Sómer M, Pablos C, Adán C, van Grieken R, Marugán J. A review on led technology in water photodisinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163963. [PMID: 37149196 DOI: 10.1016/j.scitotenv.2023.163963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.
Collapse
Affiliation(s)
- Miguel Martín-Sómer
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Cristina Pablos
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Cristina Adán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Rafael van Grieken
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
4
|
Manassero A, Alfano OM, Satuf ML. Radiation modeling and performance evaluation of a UV-LED photocatalytic reactor for water treatment. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Thatcher CH, Adams BR. Modeling specular and diffuse reflection of UV LEDs for microbial inactivation in air ducts. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
de Oliveira GX, Lira JODB, Riella HG, Soares C, Padoin N. Modeling and Simulation of Reaction Environment in Photoredox Catalysis: A Critical Review. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.788653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
From the pharmaceutical industry’s point of view, photoredox catalysis has emerged as a powerful tool in the field of the synthesis of added-value compounds. With this method, it is possible to excite the catalyst by the action of light, allowing electron transfer processes to occur and, consequently, oxidation and reduction reactions. Thus, in association with photoredox catalysis, microreactor technology and continuous flow chemistry also play an important role in the development of organic synthesis processes, as this technology offers high yields, high selectivity and reduced side reactions. However, there is a lack of a more detailed understanding of the photoredox catalysis process, and computational tools based on computational fluid dynamics (CFD) can be used to deal with this and boost to reach higher levels of accuracy to continue innovating in this area. In this review, a comprehensive overview of the fundamentals of photoredox catalysis is provided, including the application of this technology for the synthesis of added-value chemicals in microreactors. Moreover, the advantages of the continuous flow system in comparison with batch systems are pointed out. It was also demonstrated how modeling and simulation using computational fluid dynamics (CFD) can be critical for the design and optimization of microreactors applied to photoredox catalysis, so as to better understand the reagent interactions and the influence of light in the reaction medium. Finally, a discussion about the future prospects of photoredox reactions considering the complexity of the process is presented.
Collapse
|
7
|
Wang D, Mueses MA, Márquez JAC, Machuca-Martínez F, Grčić I, Peralta Muniz Moreira R, Li Puma G. Engineering and modeling perspectives on photocatalytic reactors for water treatment. WATER RESEARCH 2021; 202:117421. [PMID: 34390948 DOI: 10.1016/j.watres.2021.117421] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The debate on whether photocatalysis can reach full maturity at commercial level as an effective and economical process for treatment and purification of water and wastewater has recently intensified. Despite a bloom of scientific investigations in the last 30 years, particularly with regards to innovative photocatalytic materials, photocatalysis has so far seen a few industrial applications. Regardless of the points of view, it has been realized that research on reactor design and modeling are now equally urgent to match the extensive research carried out on innovative photocatalytic materials. In reality, the development of photocatalytic reactors has advanced steadily in terms of modeling and reactor design over the last two decades, though this topic has captured a smaller specialized audience. In this critical review, we introduce the latest developments on photocatalytic reactors for water treatment from an engineering perspective. The focus is on the modeling and design of photocatalytic reactors for water treatment at pilot- or at greater scale. Photocatalytic reactors utilizing both natural sunlight and UV irradiation sources are comprehensively discussed. The most promising photoreactor designs and models are examined giving key design guidelines. Other engineering considerations, such as operation, cost analysis, patents, and several industrial applications of photocatalytic reactors for water treatment are also presented. The dissemination of key photocatalytic reactor design principles among the scientific community and the water industry is currently one of the greatest obstacles in translating PWT research into widespread real-world application.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Miguel Angel Mueses
- Photocatalysis & Solar Photoreactors Engineering, Modeling & Application of AOPs, Chemical Engineering Program, Universidad de Cartagena, Zip code 1382-Postal 195, Cartagena, Colombia
| | - José Angel Colina Márquez
- Photocatalysis & Solar Photoreactors Engineering, Modeling & Application of AOPs, Chemical Engineering Program, Universidad de Cartagena, Zip code 1382-Postal 195, Cartagena, Colombia
| | | | - Ivana Grčić
- Faculty of Geotechnical Engineering, Department for Environmental Engineering, University of Zagreb, Hallerova aleja 7, Varaždin HR-42000, Croatia
| | - Rodrigo Peralta Muniz Moreira
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
8
|
García-Gil Á, García-Muñoz RA, McGuigan KG, Marugán J. Solar Water Disinfection to Produce Safe Drinking Water: A Review of Parameters, Enhancements, and Modelling Approaches to Make SODIS Faster and Safer. Molecules 2021; 26:molecules26113431. [PMID: 34198857 PMCID: PMC8201346 DOI: 10.3390/molecules26113431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
Solar water disinfection (SODIS) is one the cheapest and most suitable treatments to produce safe drinking water at the household level in resource-poor settings. This review introduces the main parameters that influence the SODIS process and how new enhancements and modelling approaches can overcome some of the current drawbacks that limit its widespread adoption. Increasing the container volume can decrease the recontamination risk caused by handling several 2 L bottles. Using container materials other than polyethylene terephthalate (PET) significantly increases the efficiency of inactivation of viruses and protozoa. In addition, an overestimation of the solar exposure time is usually recommended since the process success is often influenced by many factors beyond the control of the SODIS-user. The development of accurate kinetic models is crucial for ensuring the production of safe drinking water. This work attempts to review the relevant knowledge about the impact of the SODIS variables and the techniques used to develop kinetic models described in the literature. In addition to the type and concentration of pathogens in the untreated water, an ideal kinetic model should consider all critical factors affecting the efficiency of the process, such as intensity, spectral distribution of the solar radiation, container-wall transmission spectra, ageing of the SODIS reactor material, and chemical composition of the water, since the substances in the water can play a critical role as radiation attenuators and/or sensitisers triggering the inactivation process.
Collapse
Affiliation(s)
- Ángela García-Gil
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (Á.G.-G.); (R.A.G.-M.)
| | - Rafael A. García-Muñoz
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (Á.G.-G.); (R.A.G.-M.)
| | - Kevin G. McGuigan
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, DO2 YN77 Dublin, Ireland;
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (Á.G.-G.); (R.A.G.-M.)
- Correspondence:
| |
Collapse
|
9
|
Moreno-SanSegundo J, Casado C, Concha D, Montemayor AS, Marugán J. Optimization and parallelization of the discrete ordinate method for radiation transport simulation in OpenFOAM: Hierarchical combination of shared and distributed memory approaches. OPEN RESEARCH EUROPE 2021; 1:2. [PMID: 37645199 PMCID: PMC10445830 DOI: 10.12688/openreseurope.13017.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 08/31/2023]
Abstract
This paper describes the reduction in memory and computational time for the simulation of complex radiation transport problems with the discrete ordinate method (DOM) model in the open-source computational fluid dynamics platform OpenFOAM. Finite volume models require storage of vector variables in each spatial cell; DOM introduces two additional discretizations, in direction and wavelength, making memory a limiting factor. Using specific classes for radiation sources data, changing the store of fluxes and other minor changes allowed a reduction of 75% in memory requirements. Besides, a hierarchical parallelization was developed, where each node of the standard parallelization uses several computing threads, allowing higher speed and scalability of the problem. This architecture, combined with optimization of some parts of the code, allowed a global speedup of x15. This relevant reduction in time and memory of radiation transport opens a new horizon of applications previously unaffordable.
Collapse
Affiliation(s)
- Jose Moreno-SanSegundo
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Cintia Casado
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - David Concha
- Department of Computer Science and Statistics, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Antonio S. Montemayor
- Department of Computer Science and Statistics, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| |
Collapse
|
10
|
Sender M, Ziegenbalg D. Radiometric measurement techniques for in-depth characterization of photoreactors – part 2: 3 dimensional and integral radiometry. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00457j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development and potentials of a three-dimensionally resolving radiometric scanning method, complemented by integrating sphere measurements are presented for the evaluation of the radiation field of photoreactors.
Collapse
Affiliation(s)
- Maximilian Sender
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Dirk Ziegenbalg
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Comprehensive Kinetics of the Photocatalytic Degradation of Emerging Pollutants in a LED-Assisted Photoreactor. S-Metolachlor as Case Study. Catalysts 2020. [DOI: 10.3390/catal11010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the potential and beneficial characteristics of photocatalysis in the degradation of a good number of emerging pollutants have been widely studied and demonstrated, process design and scale-up are restrained by the lack of comprehensive models that correctly describe the performance of photocatalytic reactors. Together with the kinetics of degradation reactions, the distribution of the radiation field in heterogeneous photocatalytic systems is essential to the optimum design of the technology. Both the Local Volumetric Rate of Photon Absorption (LVRPA) and the Overall Volumetric Rate of Photon Absorption (OVRPA) help to understand this purpose. This work develops a Six-Flux radiation absorption–scattering model coupled to the Henyey–Greenstein scattering phase function to evaluate the LVRPA profile in a LED-assisted photocatalytic reactor. Moreover, the OVRPA has been calculated and integrated into the kinetic equation, accounting for the influence of the radiation distribution on the reaction rate. The model has been validated with experimental data for the degradation of S-Metolachlor (MTLC), and the set of operating variables that maximize the reactor performance, 0.5 g/L of TiO2 P25 and pH 3, has been determined.
Collapse
|