1
|
Ewuzie RN, Genza JR, Abdullah AZ. Review of the application of bimetallic catalysts coupled with internal hydrogen donor for catalytic hydrogenolysis of lignin to produce phenolic fine chemicals. Int J Biol Macromol 2024; 265:131084. [PMID: 38521312 DOI: 10.1016/j.ijbiomac.2024.131084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.
Collapse
Affiliation(s)
| | - Jackson Robinson Genza
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
2
|
Yan B, Ding W, Shi G, Lin X, Zhang S. Study on the catalytic hydrodeoxygenation of lignin dimers: Adsorption properties and linkages cleavage. BIORESOURCE TECHNOLOGY 2024; 394:130264. [PMID: 38159816 DOI: 10.1016/j.biortech.2023.130264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Production of mono-phenols through hydrodeoxygenation is one of the most promising routes for value-added lignin valorization. However, the adsorption characteristic of key intermediates and hydrodeoxygenation mechanism of key linkages in lignin have received inadequate attentions. In this paper, experiments combined with density functional theory calculations were done to explore the adsorption and catalytic HDO mechanism of lignin dimers. It was found that NiFe(111)-Mo2C(001) had a better ability on linkages activation, and showed stronger adsorption on CO containing intermediates, which was favor for further hydrodeoxygenation. Moreover, the calculation results certificated the cleavage of β-O-4 was prior to the hydrodeoxygenation of CO, and the hydrodeoxygenation of β-O-4 included a H· addition to O atom before the C-O cleavage. Finally, the elementary reactions energy barriers were efficiently reduced by NiFe(111)-Mo2C(001) catalyst during the hydrodeoxygenation reactions, which elucidated the superior performance of NiFe catalyst. This work provides a theoretical basis on efficient lignin utilization.
Collapse
Affiliation(s)
- Bochao Yan
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Wenbin Ding
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Gaojie Shi
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xiaoyu Lin
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Suping Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Research Center for Biomass Energy, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Zhao M, Zhao L, Zhao XY, Cao JP, Maruyama KI. Pd-Based Nano-Catalysts Promote Biomass Lignin Conversion into Value-Added Chemicals. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5198. [PMID: 37512471 PMCID: PMC10384994 DOI: 10.3390/ma16145198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Lignin, as a structurally complex biomaterial, offers a valuable resource for the production of aromatic chemicals; however, its selective conversion into desired products remains a challenging task. In this study, we prepared three types of Pd-based nano-catalysts and explored their application in the depolymerization of alkali lignin, under both H2-free (hydrogen transfer) conditions and H2 atmosphere conditions. The materials were well characterized with TEM, XRD, and XPS and others, and the electronic interactions among Pd, Ni, and P were analyzed. The results of lignin depolymerization experiments revealed that the ternary Pd-Ni-P catalyst exhibited remarkable performance and guaiacols could be produced under H2 atmosphere conditions in 14.2 wt.% yield with a selectivity of 89%. In contrast, Pd-Ni and Pd-P catalysts resulted in a dispersed product distribution. Considering the incorporation of P and the Pd-Ni synergistic effect in the Pd-Ni-P catalyst, a possible water-involved transformation route of lignin depolymerization was proposed. This work indicates that metal phosphides could be promising catalysts for the conversion of lignin and lignin-derived feedstocks into value-added chemicals.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Materials and Biology, National Institute of Technology, Akita College, Akita 011-8511, Japan
| | - Liang Zhao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou 221116, China
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Xiao-Yan Zhao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou 221116, China
| | - Jing-Pei Cao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou 221116, China
| | - Koh-Ichi Maruyama
- Department of Materials and Biology, National Institute of Technology, Akita College, Akita 011-8511, Japan
| |
Collapse
|
4
|
Fan C, Zhu H, Zhang J, Jiang H, Chen R. Hollow Co@HCN Derived from ZIF-67 as a Highly Efficient Catalyst for Hydrogenation of o-Cresol to o-Methyl Cyclohexanol. Catal Letters 2023. [DOI: 10.1007/s10562-023-04304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Wei Y, Lu J, Zhang S, Wu C, Nong X, Li J, Liu CL, Dong WS. A nitrogen-doped carbon nanotube confined CuCo nanoalloy catalyzing one-pot conversion of levulinic acid to 1,4-pentanediol. Chem Commun (Camb) 2023; 59:2477-2480. [PMID: 36752165 DOI: 10.1039/d2cc06252f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitrogen-doped carbon nanotube confined CuCo nanoalloy catalysts are fabricated by using ZIF-67 as a sacrificial template for the one-pot selective hydrogenation of levulinic acid (LA) to 1,4-pentanediol (1,4-PDO). The optimal catalyst achieves a high 1,4-PDO yield of 87.8% at full LA conversion. It also exhibits good recycling stability and can be reused at least 5 times.
Collapse
Affiliation(s)
- Yan Wei
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Jingjing Lu
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Shuxian Zhang
- Synfuels China Co., Ltd, Beijing, 101407, P. R. China
| | - Chengming Wu
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Xiaoyao Nong
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Jifan Li
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Chun-Ling Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Wen-Sheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
6
|
Jiang W, Cao JP, Zhu C, Xie JX, Zhao L, Zhang C, Zhao XY, Zhao YP, Bai HC. Selective hydrogenolysis of C-O bonds in lignin and its model compounds over a high-performance Ru/AC catalyst under mild conditions. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Geng Y, Li H. Hydrogen Spillover-Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading. CHEMSUSCHEM 2022; 15:e202102495. [PMID: 35230748 DOI: 10.1002/cssc.202102495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Hydrodeoxygenation (HDO) is regarded as a promising technology for biomass upgrading to obtain sustainable and competitive chemicals and fuels. In fact, biomass HDO over heterogeneous solid catalysts is often accompanied by the phenomenon of hydrogen spillover, which further affects the catalytic performance. Thus, it is necessary to gain in-depth understand the promoting effect of hydrogen spillover in the biomass HDO process to obtain desired conversion and selectivity. This Review summarized the extensive research on hydrogen spillover in biomass refining and discussed in detail the regulation mechanism of hydrogen spillover in biomass HDO process, mainly by regulating different active center sites on catalyst supports, such as metal sites, acid sites, surface functional groups, and defective sites, which exhibit independent and synergistic characteristics promoting catalyst activity, selectivity, and stability. Finally, the prospective of hydrogen spillover in biomass HDO applications was critically evaluated, and the key technical challenges in developing "hydrogen-free" HDO and upgrading biofuels were highlighted. The presentation of hydrogen spillover-enhanced catalytic biomass HDO in this Review will hopefully provide insight and guidance for further development of efficient catalysts and preparation of high-value chemicals in the future.
Collapse
Affiliation(s)
- Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
8
|
Li S, Jin L, Wang H, Wei X, Li W, Liu Q, Zhang X, Chen L, Ma L, Zhang Q. Tungsten oxide decorated silica-supported iridium catalysts combined with HZSM-5 toward the selective conversion of cellulose to C 6 alkanes. BIORESOURCE TECHNOLOGY 2022; 347:126403. [PMID: 34826560 DOI: 10.1016/j.biortech.2021.126403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Herein, WOx-decorated Ir/SiO2 (W/Ir = 0.06) and HZSM-5 were coupled to selectively convert microcrystalline cellulose (MCC) into C6 alkanes. A 92.8% yield of liquid alkanes including an 85.3% yield of C6 alkanes was produced at 210 °C. Cellulose hydrolysis, glucose hydrogenation and sorbitol hydrodeoxygenation were integrated to produce alkanes via a sorbitol route. Ir-WOx/SiO2 showed high performance for hydrogenation and hydrodeoxygenation reactions after hydrolysis catalyzed by HZSM-5. The intimate contact between WOx and Ir enhanced the synergistic interaction through the electron transfer from Ir to WOx. The interaction strengthened the reduction capability of Ir for hydrogenations, as well as improved the adsorption and activation of C-O bonds on reduced WOx for deoxygenations. The monotungstate WOx species provided moderate Lewis acids to cooperate with Ir to accelerate hydrodeoxygenations with alleviated retro-aldol condensation to yield more C6 alkanes.
Collapse
Affiliation(s)
- Song Li
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lele Jin
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 233022, PR China
| | - Haiyong Wang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiangqian Wei
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 233022, PR China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 233022, PR China
| | - Qiying Liu
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
9
|
Selective hydrogenation of levulinic acid to γ-valerolactone on Ni-based catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.112000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Hongkailers S, Jing Y, Wang Y, Hinchiranan N, Yan N. Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO 2 Catalyst. CHEMSUSCHEM 2021; 14:4330-4339. [PMID: 34390526 DOI: 10.1002/cssc.202100956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Upcycling of spent plastics has become a more emergent topic than ever before due to the rapid generation of plastic waste associated with the change of lifestyles of the human society. Polyethylene terephthalate (PET) is a major aromatic plastic and herein, the conversion of PET back into arenes was demonstrated in a one-pot reaction combining depolymerization and hydrodeoxygenation (HDO) over a Co/TiO2 catalyst. The effectiveness of the Co/TiO2 catalyst in HDO and the underlining reaction pathway were established using the PET monomer terephthalic acid (TPA) as the substrate. Quantitative TPA conversion together with 75.2 mol% xylene and toluene selectivity under 30 bar initial H2 pressure at 340 °C was achieved after 4 h reaction. More encouragingly, the catalyst induced both depolymerization and HDO reaction via C-O bond cleavage when PET was used as a substrate. 78.9 mol% arenes (toluene and xylene) was obtained under optimized conditions.
Collapse
Affiliation(s)
- Surachet Hongkailers
- Department of Chemical Technology, Chulalongkorn University, 254 Phyathai Road, Bangkok, 10330, Thailand
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yaxuan Jing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Napida Hinchiranan
- Department of Chemical Technology, Chulalongkorn University, 254 Phyathai Road, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, 254 Phyathai Road, Bangkok, 10330, Thailand
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Chulalongkorn University, 254 Phyathai Road, Bangkok, 10330, Thailand
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Shao S, Yang Y, Sun K, Yang S, Li A, Yang F, Luo X, Hao S, Ke Y. Electron-Rich Ruthenium Single-Atom Alloy for Aqueous Levulinic Acid Hydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Ying Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Keju Sun
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Songtao Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Feng Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xinruo Luo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Shijie Hao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yangchuan Ke
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
12
|
Structure-tunable pompon-like RuCo catalysts: Insight into the roles of atomically dispersed Ru-Co sites and crystallographic structures for guaiacol hydrodeoxygenation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Zhang M, Hu Y, Wang H, Li H, Han X, Zeng Y, Xu CC. A review of bio-oil upgrading by catalytic hydrotreatment: Advances, challenges, and prospects. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|