1
|
Xu W, Zhang Z, Wu Y, Chen K, Luo R. Cobalt porphyrin-based hypercrosslinked ionic polymers as biomimetic nanoreactors for CO 2 conversion to cyclic carbonates. Chem Commun (Camb) 2024; 60:1599-1602. [PMID: 38227197 DOI: 10.1039/d3cc05593k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A simple and low-cost approach to construct one type of cobalt porphyrin-based hypercrosslinked ionic polymer with high specific surface areas, densely located ionic groups and highly dispersed cobalt sites has been demonstrated, which act as bifunctional catalysts for the solvent-additive-free conversion of CO2 into cyclic carbonates with outstanding biomimetic catalytic performance and good recyclability.
Collapse
Affiliation(s)
- Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zixuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuanxiang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chen K, Wu Y, Zhang Z, Yang Y, Luo R. Two in one: aluminum porphyrin-based porous organic polymers containing symmetrical quaternary phosphonium salts for catalytic conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:2073-2081. [PMID: 38180046 DOI: 10.1039/d3dt03627h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Based on the double activation models of epoxides, the design and synthesis of ionic porous organic polymers (iPOPs) is considered to be very attractive and promising but has remained a great challenge in recent decades owing to electrostatic interactions between charged groups. In this contribution, we developed a two-in-one strategy to fabricate metalloporphyrin-based iPOPs with unique nanostructures (named AlPor-QP@POP), which are composed of aluminum porphyrin units and three-dimensional quaternary phosphonium salts that work synergistically in the cycloaddition of CO2 with epoxides under mild conditions. The high symmetry of two monomers allows them to possess similar reactivity ratios and thus endows AlPor-QP@POP with densely located active sites, a large surface area and good CO2 capture capacity. More importantly, bifunctional AlPor-QP@POP has enormous potential to produce cyclic carbonates with simulated flue gas under ambient conditions. Moreover, AlPor-QP@POP can be readily recycled and efficiently reused more than ten times without an obvious decrease in catalytic activity. Finally, kinetic investigations and a comparative study have been conducted to understand the possible mechanism of CO2 catalytic cycloaddition.
Collapse
Affiliation(s)
- Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuanxiang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zixuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Moura NMM, Moreira X, Da Silva ES, Faria JL, Neves MGPMS, Almeida A, Faustino MAF, Gomes ATPC. Efficient Strategies to Use β-Cationic Porphyrin-Imidazolium Derivatives in the Photoinactivation of Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:15970. [PMID: 37958951 PMCID: PMC10647407 DOI: 10.3390/ijms242115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Bacterial resistance to antibiotics is a critical global health issue and the development of alternatives to conventional antibiotics is of the upmost relevance. Antimicrobial photodynamic therapy (aPDT) is considered a promising and innovative approach for the photoinactivation of microorganisms, particularly in cases where traditional antibiotics may be less effective due to resistance or other limitations. In this study, two β-modified monocharged porphyrin-imidazolium derivatives were efficiently incorporated into polyvinylpyrrolidone (PVP) formulations and supported into graphitic carbon nitride materials. Both porphyrin-imidazolium derivatives displayed remarkable photostability and the ability to generate cytotoxic singlet oxygen. These properties, which have an important impact on achieving an efficient photodynamic effect, were not compromised after incorporation/immobilization. The prepared PVP-porphyrin formulations and the graphitic carbon nitride-based materials displayed excellent performance as photosensitizers to photoinactivate methicillin-resistant Staphylococcus aureus (MRSA) (99.9999% of bacteria) throughout the antimicrobial photodynamic therapy. In each matrix, the most rapid action against S. aureus was observed when using PS 2. The PVP-2 formulation needed 10 min of exposure to white light at 5.0 µm, while the graphitic carbon nitride hybrid GCNM-2 required 20 min at 25.0 µm to achieve a similar level of response. These findings suggest the potential of graphitic carbon nitride-porphyrinic hybrids to be used in the environmental or clinical fields, avoiding the use of organic solvents, and might allow for their recovery after treatment, improving their applicability for bacteria photoinactivation.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Xavier Moreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Eliana Sousa Da Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joaquim Luís Faria
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Ana T. P. C. Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
4
|
Talebi M, Dashtian K, Zare-Dorabei R, Amourizi F, Ghafuri H, Mahdavi M. Ruthenium-Encapsulated Porphyrinic Organic Polymer as a Photoresponsive Oxidoreductase Mimetic Nanozyme for Colorimetric Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7444-7455. [PMID: 37189015 DOI: 10.1021/acs.langmuir.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The advantages of porosity and stable unpaired electrons of porphyrinic organic polymers (POPs) with free radicals are exclusive and potentially practical functionalities and combining the semiconductor-like characteristics of these materials and metal ions has been an effective way to assemble an efficient photocatalytic system. Herein, a new ruthenium (Ru) ion-encapsulated porphyrinic organic polymer (POP/Ru) is facilely synthesized as a proper photoresponsive nanozyme with unique photo-oxidase properties. Surprisingly, the proposed POP/Ru revealed outstanding photoresponsive oxidase-mimicking activity due to the synergetic effect of the integration of Ru and π-electrons of POP, which boosts charge separation and transport. POP/Ru was applied to the oxidation of o-phenylenediamine (o-PDA) as a chromogenic probe for producing a colorimetric signal. The kinetic study reveals that these photo-oxidase mimics have a significant affinity for the o-PDA chromogenic agent owing to a lower Km and superior Vmax. Further findings demonstrate that the presence of the l-arginine (l-Arg) target causes an inhibition effect on the photo-nanozymatic colorimetry of POP/Ru. This research develops the applications of the comprehensive colorimetric strategy for ultrasensitive l-Arg monitoring with a limit of detection (LOD) of 15.2 nM in the dynamic range of 4.0 nM-340 μM and illuminates that the proposed photo-oxidase nanozyme as a visual strategy is feasible in l-Arg environmentally friendly colorimetric detection in juice samples.
Collapse
Affiliation(s)
- Maryam Talebi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fereshteh Amourizi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| |
Collapse
|
5
|
Wei F, Qiu J, Zeng Y, Liu Z, Wang X, Xie G. A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO 2 into Cyclic Carbonates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2132. [PMID: 36984012 PMCID: PMC10057775 DOI: 10.3390/ma16062132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The immobilization of homogeneous catalysts has always been a hot issue in the field of catalysis. In this paper, in an attempt to immobilize the homogeneous [Ni(Me6Tren)X]X (X = I, Br, Cl)-type catalyst with porous organic polymer (POP), the heterogeneous catalyst PBTP-Me6Tren(Ni) (POP-Ni) was designed and constructed by quaternization of the porous bromomethyl benzene polymer (PBTP) with tri[2-(dimethylamino)ethyl]amine (Me6Tren) followed by coordination of the Ni(II) Lewis acidic center. Evaluation of the performance of the POP-Ni catalyst found it was able to catalyze the CO2 cycloaddition with epichlorohydrin in N,N-dimethylformamide (DMF), affording 97.5% yield with 99% selectivity of chloropropylene carbonate under ambient conditions (80 °C, CO2 balloon). The excellent catalytic performance of POP-Ni could be attributed to its porous properties, the intramolecular synergy between Lewis acid Ni(II) and nucleophilic Br anion, and the efficient adsorption of CO2 by the multiamines Me6Tren. In addition, POP-Ni can be conveniently recovered through simple centrifugation, and up to 91.8% yield can be obtained on the sixth run. This research provided a facile approach to multifunctional POP-supported Ni(II) catalysts and may find promising application for sustainable and green synthesis of cyclic carbonates.
Collapse
Affiliation(s)
- Fen Wei
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhimeng Liu
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxia Wang
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
6
|
Chen M, Liu X, Yang Y, Xu W, Chen K, Luo R. Aluminum Porphyrin-Based Ionic Porous Aromatic Frameworks Having High Surface Areas and Highly Dispersed Dual-Function Sites for Boosting the Catalytic Conversion of CO 2 into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8263-8274. [PMID: 36733212 DOI: 10.1021/acsami.2c22824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multifunctionalization of porous organic polymers toward synergistic CO2 catalysis has drawn much attention in recent decades, but it still faces many challenges. Herein, we develop a facile, simple, and efficient strategy to obtain a series of aluminum porphyrin-based ionic porous aromatic frameworks (iPAFs), which are considered excellent bifunctional catalysts for converting CO2 into cyclic carbonates without any cocatalyst under mild and solvent-free conditions. By increasing the amounts of tetraphenylmethane fragments in the porphyrin backbones, the cooperative effect between Lewis acidic metal centers and nucleophilic ionic sites has been enhanced and then the significant improvement of catalytic activity can be achieved owing to the high surface areas (up to 719 m2·g-1), abundant hierarchical micro-mesopores, and prominent CO2 adsorption capacities (up to 1.8 mmol·g-1 at 273 K) as well as highly dispersed dual-function sites. More fascinatingly, high-active AlPor-iPAF-3 enables CO2 cycloaddition to perform with diluted CO2 (15% CO2 in 85% N2, v/v) or under ambient conditions. Therefore, this postsynthetic modification procedure in combination with the framework dilution strategy provides a new approach to fabricating high-surface-area metalloporphyrin-based porous ionic polymers (PIPs) with hierarchical structures, which is conducive to improving the accessibility of multiple active sites around substrates.
Collapse
Affiliation(s)
- Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
7
|
Construction of multifunctional histidine-based hypercrosslinked hierarchical porous ionic polymers for efficient CO2 capture and conversion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Liu X, Yang Y, Chen M, Xu W, Chen K, Luo R. High-Surface-Area Metalloporphyrin-Based Porous Ionic Polymers by the Direct Condensation Strategy for Enhanced CO 2 Capture and Catalytic Conversion into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1085-1096. [PMID: 36538671 DOI: 10.1021/acsami.2c18283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metalloporphyrin-based porous organic polymers (POPs) that behave as advanced biomimetic nanoreactors have drawn continuous attention for heterogeneous CO2 catalysis in the past decades. Inspired by the double activation model of epoxides, the design and synthesis of metalloporphyrin-based porous ionic polymers (PIPs) are considered as one of the most promising approaches for converting CO2 to cyclic carbonates under cocatalyst- and solvent-free conditions. To overcome the obstacle of poor reaction activity of ionic monomers or highly irregular stacking architecture, in this paper, we have proposed and demonstrated a modular bottom-up approach for constructing a series of high-surface-area metalloporphyrin-based PIPs in high yields by the direct condensation strategy, thus boosting the close contact of multiple active sites and achieving the enhanced CO2 capture and catalytic conversion into cyclic carbonates with high turnover frequencies under mild conditions. These recyclable aluminum-porphyrin-based PIPs are featured with high surface areas, prominent CO2 adsorptive capacities, rigid porphyrin skeletons, and flexible ionic pendants, as well as the matched amounts and spatial positions of metal centers and ionic sites, in which is demonstrated to be one of the quite competitive catalysts. Therefore, this strategy of introducing ionic components into the porphyrin frameworks as flexible side chains rather than main chains and adjusting the reactivity ratios of comonomers by structure-oriented methods, provides feasible guidance for the multifunctionalization of metalloporphyrin-based POPs, thereby increasing the accessibility of multiple active sites and improving their synergistic catalytic behavior.
Collapse
Affiliation(s)
- Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
9
|
|
10
|
Chen Y, Lei L, Ren Q, Li J, Gao J, Lin J, Qiu Y, Ji H. Ag nanoparticles anchored on nanotubular porous porphyrin networks for carboxylative cyclization of propargyl alcohols with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaju Chen
- Guangdong University of Petrochemical Technology School of Chemistry CHINA
| | - Lin Lei
- Guangdong University of Petrochemical Technology School of Chemistry CHINA
| | - Qinggang Ren
- Guangdong University of Petrochemical Technology School of Chemistry CHINA
| | - Jiashan Li
- Guangdong University of Petrochemical Technology School of Chemistry CHINA
| | - Jingkang Gao
- Guangdong University of Petrochemical Technology School of Chemistry CHINA
| | - Jie Lin
- Guangdong University of Petrochemical Technology School of Chemistry CHINA
| | - Yongjian Qiu
- Guangdong University of Petrochemical Technology School of Chemistry CHINA
| | - Hongbing Ji
- Sun Yat-Sen University School of Chemistry Xingang West Road 135 510275 Guangzhou CHINA
| |
Collapse
|
11
|
A novel conjugated microporous polymer microspheres comprising cobalt porphyrins for efficient catalytic CO2 cycloaddition under ambient conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Campisciano V, Valentino L, Morena A, Santiago-Portillo A, Saladino N, Gruttadauria M, Aprile C, Giacalone F. Carbon nanotube supported aluminum porphyrin-imidazolium bromide crosslinked copolymer: A synergistic bifunctional catalyst for CO2 conversion. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Qiu Y, Chen Y, Lei L, Wang X, Zeng X, Feng Z, Deng C, Lin D, Ji H. Bottom-up oriented synthesis of metalloporphyrin-based porous ionic polymers for the cycloaddition of CO2 to epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
He W, Wen M, Shi L, Wang R, Li F. Porous polymeric metalloporphyrin obtained through Sonogashira coupling: Catalytic performance at CO2 cycloaddition to epoxides. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
|