1
|
Yi L, Wang Z, Chen X, Xing J, Huang H, Wei C, Zhao Q, Zhou A, Li J. An electron-insulating Li 2O protection layer endowing a Li-Cu-Zn ternary alloy composite anode with high performance. Chem Commun (Camb) 2024; 60:5832-5835. [PMID: 38747248 DOI: 10.1039/d4cc00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We report an electron-insulating layer of Li2O nanoparticles passivating a Li-rich Li-Cu-Zn ternary alloy as an advanced Li anode. The insulating layer ensures Li deposition below the top protective layer and inhibits side reactions effectively. Additionally, the ternary alloy framework offers superior lithiophilicity and robust mechanical stability. Galvanostatic measurements demonstrate a prolonged lifespan of symmetric cells for over 1200 h at 1 mA cm-2 and 1 mA h cm-2.
Collapse
Affiliation(s)
- Linyun Yi
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Zihao Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Xiaoxiao Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Jianxiong Xing
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Hao Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Chaohui Wei
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Qiang Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Aijun Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Jingze Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| |
Collapse
|
2
|
Gautam J, Liu Y, Gu J, Ma Z, Dahal B, Nabi Chishti A, Ni L, Diao G, Wei Y. Three-dimensional nano assembly of nickel cobalt sulphide/polyaniline@polyoxometalate/reduced graphene oxide hybrid with superior lithium storage and electrocatalytic properties for hydrogen evolution reaction. J Colloid Interface Sci 2022; 614:642-654. [PMID: 35123216 DOI: 10.1016/j.jcis.2022.01.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Engineering hierarchical nanostructures with enhanced charge storage capacity and electrochemical activity are vital for the advancement of energy devices. Herein, a highly ordered mesoporous three-dimensional (3D) nano-assembly of Nickel Cobalt Sulphide/Polyaniline @Polyoxometalate/Reduced Graphene Oxide (NiCo2S4/PANI@POM/rGO) is prepared first time via a simple route of oxidative polymerization followed by a hydrothermal method. Morphological analysis of the resulting hybrid reveals the sheet-like structures containing a homogeneous assembly of PANI@POM and NiCo2S4 on the graphene exterior maintaining huge structural integrity, large surface area and electrochemically active centres. The electrochemical analysis of the nanohybrid as the anode of the lithium-ion battery (LIB) has delivered ultra-huge reversible capacity of 735.5 mA h g-1 (0.1 A g-1 after 200 cycles), superb capacity retention (0.161% decay/per cycle at 0.5 A g-1 for 1000 cycles), and significant rate capability (355.6 mA h g-1 at 2 A g-1). The hydrogen evolution reaction (HER) measurement also proves remarkable activity, extremely low overpotential and high durability. The extraordinary performance of the nanohybrid is due to the presence of abundant electroactive centres, high surface area and a large number of ion exchange channels. These outstanding results prove the advantages of a combination of NiCo2S4, graphene sheets, and PANI@POM in energy devices.
Collapse
Affiliation(s)
- Jagadis Gautam
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China; School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongbuk, 39177, Republic of Korea
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Jie Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Zhiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Bipeen Dahal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Aadil Nabi Chishti
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China.
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China.
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Liu Y, Li Q, Yao Q, Zhou X, Wang W, Chen K, Zhu Q, He G. A lithiophilic/lithiophobic ternary alloy anode with Ag concentration gradients guides uniform Li deposition. Chem Commun (Camb) 2022; 58:3158-3161. [PMID: 35167644 DOI: 10.1039/d2cc00123c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Li92.5Cu5Ag2.5 ternary alloy anode was designed with controlled lithiophilic/lithiophobic gradients to induce bottom-up Li deposition. The inert metal Cu served as a rigid framework that maintains structural stability, while the lithiophilic metal Ag provided abundant Li deposition sites. Such an ultrathin Li-rich composite anode (Li content as low as 10 mA h cm-2) affords stable cycling over 1200 h.
Collapse
Affiliation(s)
- Yulu Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Qingwen Li
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Qiushi Yao
- Central Research Institute, Tianneng Co. Ltd, Huzhou 313100, China
| | - Xianji Zhou
- Central Research Institute, Tianneng Co. Ltd, Huzhou 313100, China
| | - Wenwen Wang
- Central Research Institute, Tianneng Co. Ltd, Huzhou 313100, China
| | - Keju Chen
- Central Research Institute, Tianneng Co. Ltd, Huzhou 313100, China
| | - Qingquan Zhu
- Central Research Institute, Tianneng Co. Ltd, Huzhou 313100, China
| | - Guang He
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China. .,Central Research Institute, Tianneng Co. Ltd, Huzhou 313100, China
| |
Collapse
|
4
|
Tian R, Li D, Zhou T, Chu XQ, Ge D, Chen X. A facile construction of Ag/MoSe2 composite based non-enzymatic amperometric sensor for hydrogen peroxide. Dalton Trans 2022; 51:5271-5277. [DOI: 10.1039/d2dt00118g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an electrochemical non-enzymatic method for hydrogen peroxide (H2O2) detection based on Ag nanoparticle-decorated MoSe2 (Ag/MoSe2-500) hybrid nanostructures. These hybrid nanocomposites are easily prepared by in-situ reduction of Ag+...
Collapse
|
5
|
Chen L, Ma K, Zhou L, Jiang H, Hu Y, Li C. Confining ultrafine SnS2 nanoparticles into MXene interlayer toward fast and stable lithium storage. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Ni nanoparticles oriented on MoO2@BC nanosheets with an outstanding long-term stability for hydrogen evolution reaction. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Xie Y, Hu J, Zhang L, Wang A, Zheng J, Li H, Lai Y, Zhang Z. Stabilizing Na metal anode with NaF interface on spent cathode carbon from aluminum electrolysis. Chem Commun (Camb) 2021; 57:7561-7564. [PMID: 34250537 DOI: 10.1039/d1cc02654b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of spent cathode carbon (SCC) with a NaF interface from aluminum electrolysis, and its application as a Na metal anode host. The SCC anode exhibits superior ion conductivity and a high shear modulus. The natural NaF interface on the SCC anode can regulate Na+ transmission and inhibit dendrite growth. Furthermore, the anode can be used to turn waste into treasure through directly using spent cathodic carbon without any chemical processing. The green SCC electrode exhibits a higher flat voltage and better reversibility compared with purified cathode carbon without NaF.
Collapse
Affiliation(s)
- Yangyang Xie
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China.
| | - Junxian Hu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China.
| | - Liuyun Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China.
| | - Aonan Wang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China.
| | - Jingqiang Zheng
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China.
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Yanqing Lai
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China.
| | - Zhian Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China.
| |
Collapse
|