1
|
Bogireddy NKR, Ghafour El Hachimi A, Celaya CA, Muñiz J, Thomas T, Elias AL, Lei Y, Terrones M, Agarwal V. Exploring PtAg onto silanized biogenic silica as an electrocatalyst for H 2 evolution: A combined experimental and theoretical investigation. J Colloid Interface Sci 2025; 677:271-283. [PMID: 39146815 DOI: 10.1016/j.jcis.2024.07.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
The task of creating a remarkably stable and effective electrochemical catalyst for efficient hydrogen evolution is arduous, primarily due to the multitude of factors that need to be taken into account for the industrial utilization of Pt. In this work, hybrid formation through in-situ reduction of Pt onto biogenic porous silica (Pt-SiO2) is tested for its use as an efficient catalyst for hydrogen production. Exceptionally high electrocatalytic activity and excellent reusability of catalysts up to 200 cycles have been demonstrated. Pt-SiO2 with low Pt content of 0.48 to 0.82 at% with active catalytic sites exhibit superior catalytic activity with a Tafel slope of 22 mV dec-1 and an overpotential of 28 mV (vs. RHE at 10 mA cm-2) as compared to the Pt wire and previously reported bare Pt-SiO2 (0.65 at% and 0.48 at% of Pt), and hybrid (Pt/Ag) structures formed onto two different biogenic porous SiO2 substrates. The best catalytic performance of the Pt1Ag3 cluster, representing a low Pt concentration, has been validated by Density Functional Theory (DFT) calculations. Here, the high production from the Pt1Ag3 cluster is assigned to the mutual synergistic effect between Pt/Ag atoms. The Pt atoms transfer the excess charge to the nearest Ag neighbors inside the cluster, facilitating hydrogen diffusion on the activated sites. These important findings authenticate the superior hydrogen production at reduced Pt concentration on amine-functionalized biogenic porous silica.
Collapse
Affiliation(s)
| | - Abdel Ghafour El Hachimi
- Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Complejo Científico-Tecnológico, 26006-Logroño, Spain
| | - Christian A Celaya
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, B.C., C.P. 22800, Mexico
| | - Jesús Muñiz
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos-62580, Mexico
| | - Tijin Thomas
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Ana Laura Elias
- Department of Physics, Binghamton University, Binghamton, NY-13902, USA
| | - Yu Lei
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen-518055, China
| | - Mauricio Terrones
- Department of Physics, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA-16802, USA.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos-62209, Mexico.
| |
Collapse
|
2
|
Dai Y, Zhao X, Zheng D, Zhao Q, Feng J, Feng Y, Ge X, Chen X. Constructing highly efficient bifunctional catalysts for oxygen reduction and oxygen evolution by modifying MXene with transition metal. J Colloid Interface Sci 2024; 660:628-636. [PMID: 38266344 DOI: 10.1016/j.jcis.2024.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Exploring highly active electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has become a growing interest in recent years. Herein, an efficient pathway for designing MXene-based ORR/OER catalysts is proposed. It involves introducing non-noble metals into Vo (vacancy site), H1 and H2 (the hollow sites on top of C and the metal atom, respectively) sites on M2CO2 surfaces, named TM-VO/H1/H2-M2CO2 (TM = Fe, Co, Ni, M = V, Nb, Ta). Among these recombination catalysts, Co-H1-V2CO2 and Ni-H1-V2CO2 exhibit the most promising ORR catalytic activities, with low overpotential values of 0.35 and 0.37 V, respectively. Similarly, Fe-H1-V2CO2, Co-VO-Nb2CO2, and Ni-H2-Nb2CO2 possess low OER overpotential values of 0.29, 0.39, and 0.44 V, respectively, suggesting they have enormous potential as effective catalysts for OER. Notably, Co-H2-Ta2CO2 possesses the lowest potential gap value of 0.53 V, demonstrating it has an extraordinary bifunctional catalytic activity. The excellent catalytic performance of these recombination catalysts can be elucidated through an electronic structure analysis, which primarily relies on the electron-donating capacity and synergistic effects between transition metals and sub-metals. These results provide theoretical guidance for designing new ORR and OER catalysts using 2D MXene materials.
Collapse
Affiliation(s)
- Yu Dai
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xiuyun Zhao
- Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Desheng Zheng
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Qingrui Zhao
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jing Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingbo Ge
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
3
|
Ospina-Acevedo F, Albiter LA, Bailey KO, Godínez-Salomón JF, Rhodes CP, Balbuena PB. Catalytic Activity and Electrochemical Stability of Ru 1-xM xO 2 (M = Zr, Nb, Ta): Computational and Experimental Study of the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16373-16398. [PMID: 38502743 PMCID: PMC10995909 DOI: 10.1021/acsami.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
We use computations and experiments to determine the effect of substituting zirconium, niobium, and tantalum within rutile RuO2 on the structure, oxygen evolution reaction (OER) mechanism and activity, and electrochemical stability. Calculated electronic structures altered by Zr, Nb, and Ta show surface regions of electron density depletion and accumulation, along with anisotropic lattice parameter shifts dependent on the substitution site, substituent, and concentration. Consistent with theory, X-ray photoelectron spectroscopy experiments show shifts in binding energies of O-2s, O-2p, and Ru-4d peaks due to the substituents. Experimentally, the substituted materials showed the presence of two phases with a majority phase that contains the metal substituent within the rutile phase and a second, smaller-percentage RuO2 phase. Our experimental analysis of OER activity shows Zr, Nb, and Ta substituents at 12.5 atom % induce lower activity relative to RuO2, which agrees with computing the average of all sites; however, Zr and Ta substitution at specific sites yields higher theoretical OER activity than RuO2, with Zr substitution suggesting an alternative OER mechanism. Metal dissolution predictions show the involvement of cooperative interactions among multiple surface sites and the electrolyte. Zr substitution at specific sites increases activation barriers for Ru dissolution, however, with Zr surface dissolution rates comparable to those of Ru. Experimental OER stability analysis shows lower Ru dissolution from synthesized RuO2 and Zr-substituted RuO2 compared to commercial RuO2 and comparable amounts of Zr and Ru dissolved from Zr-substituted RuO2, aligned with our calculations.
Collapse
Affiliation(s)
- Francisco Ospina-Acevedo
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Luis A. Albiter
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Kathleen O. Bailey
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | | | - Christopher P. Rhodes
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | - Perla B. Balbuena
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Huang Y, Zhu C, Liao J, Gu XK, Li WX. First-principles study of the effect of the local coordination environment on the electrochemical activity of Pd1-CxNy single atom catalysts. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Zhu Y, Jian C, Xue R, Zhang W, Guo R, Gao Y, Chen DL, Zhang F, Zhu W, Wang FF. Theoretical understanding on all-solid frustrated Lewis pair sites of C 2N anchored by single metal atom. J Chem Phys 2022; 157:054704. [DOI: 10.1063/5.0100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designing all-solid heterogeneous catalysts with frustrated Lewis pairs (FLPs) has aroused great attentions recently because of its appealing low dissociation energy for H2 molecule and thus a promotion of hydrogenation reaction is expected. The sterically encumbered Lewis acid (metal site) and base (nitrogen site) in the cavity of single transition metal atom doped M/C2N sheet makes it potential candidate with FLP, while a comprehensive understanding of its intrinsic property and reactivity is still required. Calculations show that the complete dissociation of H2 molecule into two H* at the N sites requires two steps, i.e., heterolytic cleavage of H2 molecule and the transfer of H* from metal site to N site, which are highly related to the acidity of the metal site. The Ni/C2N and Pd/C2N, which outperform over the other 8 transition metal atom (M) anchored M/C2N candidates, possess low energy barriers for the complete dissociation of H2 molecule, with values of only 0.30 and 0.20 eV, respectively. Furthermore, both Ni/C2N and Pd/C2N catalysts can achieve semi-hydrogenation of C2H2 into C2H4, with overall barriers of 0.81 and 0.75 eV, respectively, lower than many reported catalysts. It is speculated that M/C2N catalysts with intrinsic FLPs may also find applications in other important hydrogenation reaction.
Collapse
Affiliation(s)
| | | | | | | | - Rou Guo
- Zhejiang Normal University, China
| | | | | | | | | | | |
Collapse
|
6
|
Chen X, Li Y, Leng M. Dual-metal-organic frameworks as ultrahigh-performance bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Zhang J, Fang C, Li Y, An W. Tetrahedral W 4cluster confined in graphene-like C 2N enables electrocatalytic nitrogen reduction from theoretical perspective. NANOTECHNOLOGY 2022; 33:245706. [PMID: 35259738 DOI: 10.1088/1361-6528/ac5bb9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Exploring the format of active site is essential to further the understanding of an electrocatalyst working under ambient conditions. Herein, we present a DFT study of electrocatalytic nitrogen reduction (eNRR) on W4tetrahedron embedded in graphene-like C2N (denoted as W4@C2N). Our results demonstrate that N-affinity of active sites on W4dominate over single-atom site, rendering *NH2 + (H+ + e-) →*NH3invariably the potential-determining step (PDS) of eNRR via consecutive or distal route (UL = -0.68 V) to ammonia formation. However, *NHNH2 + (H+ + e-) →*NH2NH2has become the PDS (UL = -0.54 V) via enzymatic route towards NH2NH2formation and thereafter desorption, making W4@C2N a potentially promising catalyst for hydrazine production from eNRR. Furthermore, eNRR is competitive with hydrogen evolution reaction (UL = -0.78 V) on W4@C2N, which demonstrated sufficient thermal stability and electric property for electrode application.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, People's Republic of China
| | - Cong Fang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, People's Republic of China
| | - Yang Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, People's Republic of China
| | - Wei An
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, People's Republic of China
| |
Collapse
|
8
|
Liu H, Chen M, Sun F, Zaman S, Wang M, Wang H. Elucidating the Correlation between ORR Polarization Curves and Kinetics at Metal-Electrolyte Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13891-13903. [PMID: 35274947 DOI: 10.1021/acsami.1c24153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The metal-vacuum models used to analyze the thermodynamics of the oxygen reduction reaction (ORR) completely overlook the role of electrolytes in the electrochemical process and thus cannot reflect the actual kinetic process occurring at the metal-electrolyte interface. Therefore, based on the real experimental process, the current work elucidates the chemical interactions between the electrolyte and the chemical species for the ORR via a novel metal-electrolyte model for the first time by effectively elucidating the correlation between ORR kinetics and polarization curves. Our simulation model analysis comprises the study of all possible ORR mechanisms on different Pt surfaces (Pt(111), Pt(110), and Pt(100)) and PtNi alloys with different compositions (Pt3Ni(111), Pt2Ni2(111), and PtNi3(111)). The obtained results demonstrate that the hydrogenation of adsorbed oxygen to form adsorbed hydroxyl (R8), whose immense control weight is reflected by a coverage of adsorbed oxygen (θO*) of about 1, is the rate-determining step (RDS) in the four-electron-dominated ORR process. A direct correlation has been established by the great fitting of polarization curves from theoretical ORR kinetics obtained via both the metal-electrolyte model and experimental measurement. This study reveals that among the different Pt surfaces and PtNi alloys, Pt3Ni(111) exhibits the highest ORR activity with the lowest free energy barrier of Ea (0.74 eV), the smallest value of |ΔGO* - 2.46| (0.80 eV), the highest reaction rate r (9.98 × 105 s-1 per site), and a more positive half-wave potential U1/2 (0.93 V). In contrast to previous model studies, this work provides a more accurate theoretical system for catalyst screening, which will help researchers to better understand the experimental phenomena and will be a guiding piece of work for catalyst design and development.
Collapse
Affiliation(s)
- Haijun Liu
- Harbin Institute of Technology, Harbin, 150001, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengman Sun
- Harbin Institute of Technology, Harbin, 150001, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shahid Zaman
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Min Wang
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Education Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Zhang Y, Chen X, Zhang H, Ge X. Screening of catalytic oxygen reduction reaction activity of 2, 9-dihalo-1, 10-phenanthroline metal complexes: The role of transition metals and halogen substitution. J Colloid Interface Sci 2021; 609:130-138. [PMID: 34894547 DOI: 10.1016/j.jcis.2021.11.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The sluggish kinetics of oxygen reduction reaction (ORR) restricts the employment of fuel cells, it is urgent to design ORR catalysts with excellent performance. The ORR performances of 2, 9-dihalo-1, 10-phenanthroline metal complexes (named as TM-X, X = Cl, Br, I) are comprehensively studied by the density functional theory methods. From the stability point of view, chlorine is more suitable for substitution. The adsorption free energy reveals that the liner relationship between adsorption free energy of *OOH and *OH is changed positively by the steric hindrance caused by the orthogonal TM-X structures. The Ni-Br stands out with the lowest overpotential of 0.34 V, and many other TM-X also show the promising ORR activity. Combining with the analysis of the Gibbs free energy diagrams and d-band center results, the substitution of halogen can improve the electronic structures of TM-X, thus enhancing their ORR activities and changing the ORR mechanism possibly.
Collapse
Affiliation(s)
- Yizhen Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China; State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR. China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China.
| | - Hui Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China
| | - Xingbo Ge
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China
| |
Collapse
|
10
|
Xie L, Zhou W, Qu Z, Ding Y, Gao J, Sun F, Qin Y. Understanding the activity origin of oxygen-doped carbon materials in catalyzing the two-electron oxygen reduction reaction towards hydrogen peroxide generation. J Colloid Interface Sci 2021; 610:934-943. [PMID: 34863547 DOI: 10.1016/j.jcis.2021.11.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022]
Abstract
Oxygen-doped carbon materials (OCM) have received a lot of attention for catalyzing the two-electron oxygen reduction reaction (2eORR) towards hydrogen peroxide generation, but the origin of their activity is not well understood. Based on density functional theory calculations, we introduce the Fukui function (f0), a more comprehensive and accurate method for identifying active sites and systematically investigating the activity of carbon materials doped with typical oxygen functional groups (OGs). According to the results, only ether or carbonyl has the potential to become the activity origin. The 2eORR activities of carbon materials co-doped by different OGs were then investigated, and a significant synergistic effect was discovered between different OGs (particularly between epoxy and other OGs), which might be the real active centers in OCM. To further understand the cause of the activity, the Fundamental Gap (Eg) was introduced to investigate the ability of various OCM to gain and lose electrons. The results show that the decrease in overpotential after oxygen co-doping can be attributed to the decrease in Eg. This work introduces descriptors (f0 and Eg) that can aid in the efficient design of catalysts and adds to our understanding of the 2eORR activity origin of OCM.
Collapse
Affiliation(s)
- Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Yani Ding
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Fei Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| |
Collapse
|
11
|
Huang H, Jian C, Zhu Y, Guo R, Chen X, Wang FF, Chen DL, Zhang F, Zhu W. Single non-noble metal atom doped C 2N catalysts for chemoselective hydrogenation of 3-nitrostyrene. Phys Chem Chem Phys 2021; 23:25761-25768. [PMID: 34755735 DOI: 10.1039/d1cp03858c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the reaction selectivity and activity for challenging substrates such as nitroaromatics bearing two reducible functional groups is important in industry, yet remains a great challenge using traditional metal nanoparticle based catalysts. In this study, single metal atom doped M-C2N catalysts were theoretically screened for selective hydrogenation of 3-nitrostyrene to 3-vinylaniline with H2 as the H-source. Among 20 M-C2N catalysts, the non-noble Mn-C2N catalyst was found to have excellent reaction selectivity. Importantly, due to the solid frustrated Lewis pair sites in the pores of Mn-C2N, a low H2 activation energy is achieved on high-spin Mn-C2N and the rate-determining step for the hydrogenation reactions is the H diffusion from the metal site to the N site. The unraveled mechanism of the hydrogenation of 3-nitrostyrene using Mn-C2N enriches the applications of Mn based catalysts and demonstrates its excellent properties for catalyzing the challenging hydrogenation reaction of substrates with two reducible functional groups.
Collapse
Affiliation(s)
- Huaquan Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Changping Jian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Yijia Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Rou Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Xujian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Fang-Fang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| |
Collapse
|
12
|
Li X, Su Z, Zhao Z, Cai Q, Li Y, Zhao J. Single Ir atom anchored in pyrrolic-N 4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study. J Colloid Interface Sci 2021; 607:1005-1013. [PMID: 34583028 DOI: 10.1016/j.jcis.2021.09.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.
Collapse
Affiliation(s)
- Xinyi Li
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|