1
|
Boerrigter MM, te Morsche RHM, Venselaar H, Pastoors N, Geerts AM, Hoorens A, Drenth JPH. Novel α-1,3-Glucosyltransferase Variants and Their Broad Clinical Polycystic Liver Disease Spectrum. Genes (Basel) 2023; 14:1652. [PMID: 37628703 PMCID: PMC10454741 DOI: 10.3390/genes14081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Protein-truncating variants in α-1,3-glucosyltransferase (ALG8) are a risk factor for a mild cystic kidney disease phenotype. The association between these variants and liver cysts is limited. We aim to identify pathogenic ALG8 variants in our cohort of autosomal dominant polycystic liver disease (ADPLD) individuals. In order to fine-map the phenotypical spectrum of pathogenic ALG8 variant carriers, we performed targeted ALG8 screening in 478 ADPLD singletons, and exome sequencing in 48 singletons and 4 patients from two large ADPLD families. Eight novel and one previously reported pathogenic variant in ALG8 were discovered in sixteen patients. The ALG8 clinical phenotype ranges from mild to severe polycystic liver disease, and from innumerable small to multiple large hepatic cysts. The presence of <5 renal cysts that do not affect renal function is common in this population. Three-dimensional homology modeling demonstrated that six variants cause a truncated ALG8 protein with abnormal functioning, and one variant is predicted to destabilize ALG8. For the seventh variant, immunostaining of the liver tissue showed a complete loss of ALG8 in the cystic cells. ALG8-associated ADPLD has a broad clinical spectrum, including the possibility of developing a small number of renal cysts. This broadens the ADPLD genotype-phenotype spectrum and narrows the gap between liver-specific ADPLD and kidney-specific ADPKD.
Collapse
Affiliation(s)
- Melissa M. Boerrigter
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - René H. M. te Morsche
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Research Institute for Medical Innovation, 6500 HB Nijmegen, The Netherlands
| | - Nikki Pastoors
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Anja M. Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
2
|
Ellis JL, Evason KJ, Zhang C, Fourman MN, Liu J, Ninov N, Delous M, Vanhollebeke B, Fiddes I, Otis JP, Houvras Y, Farber SA, Xu X, Lin X, Stainier DYR, Yin C. A missense mutation in the proprotein convertase gene furinb causes hepatic cystogenesis during liver development in zebrafish. Hepatol Commun 2022; 6:3083-3097. [PMID: 36017776 PMCID: PMC9592797 DOI: 10.1002/hep4.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.
Collapse
Affiliation(s)
- Jillian L. Ellis
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kimberley J. Evason
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Huntsman Cancer Institute and Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Makenzie N. Fourman
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jiandong Liu
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- McAllister Heart InstituteDepartment of Pathology and Laboratory MedicineSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nikolay Ninov
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Regenerative Therapies TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU DresdenGerman Center for Diabetes ResearchDresdenGermany
| | - Marion Delous
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Equipe GENDEVCentre de Recherche en Neurosciences de LyonInserm U1028CNRS UMR5292Universite Lyon 1Universite St EtienneLyonFrance
| | - Benoit Vanhollebeke
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Laboratory of Neurovascular SignalingDepartment of Molecular BiologyULB Neuroscience InstituteUniversite Libre de BruxellesGosseliesBelgium
| | - Ian Fiddes
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jessica P. Otis
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Molecular and Cellular Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Steven A. Farber
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Xueying Lin
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Didier Y. R. Stainier
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
3
|
Masyuk AI, Masyuk TV, Trussoni CE, Pirius NE, LaRusso NF. Autophagy promotes hepatic cystogenesis in polycystic liver disease by depletion of cholangiocyte ciliogenic proteins. Hepatology 2022; 75:1110-1122. [PMID: 34942041 PMCID: PMC9035076 DOI: 10.1002/hep.32298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUNDS AND AIMS Polycystic liver disease (PLD) is characterized by defective cholangiocyte cilia that regulate progressive growth of hepatic cysts. Because formation of primary cilia is influenced by autophagy through degradation of proteins involved in ciliogenesis, we hypothesized that ciliary defects in PLD cholangiocytes (PLDCs) originate from autophagy-mediated depletion of ciliogenic proteins ADP-ribosylation factor-like protein 3 (ARL3) and ADP-ribosylation factor-like protein 13B (ARL13B) and ARL-dependent mislocation of a ciliary-localized bile acid receptor, Takeda G-protein-coupled receptor 5 (TGR5), the activation of which enhances hepatic cystogenesis (HCG). The aims here were to determine whether: (1) ciliogenesis is impaired in PLDC, is associated with increased autophagy, and involves autophagy-mediated depletion of ARL3 and ARL13B; (2) depletion of ARL3 and ARL13B in PLDC cilia impacts ciliary localization of TGR5; and (3) pharmacological inhibition of autophagy re-establishes cholangiocyte cilia and ciliary localization of ARL3, ARL3B, and TGR5 and reduces HCG. APPROACH AND RESULTS By using liver tissue from healthy persons and patients with PLD, in vitro and in vivo models of PLD, and in vitro models of ciliogenesis, we demonstrated that, in PLDCs: ciliogenesis is impaired; autophagy is enhanced; ARL3 and ARL13B are ubiquitinated by HDAC6, depleted in cilia, and present in autophagosomes; depletion of ARL3 and ARL13B impacts ciliary localization of TGR5; and pharmacological inhibition of autophagy with mefloquine and verteporfin re-establishes cholangiocyte cilia and ciliary localization of ARL3, ARL13B, and TGR5 and reduces HCG. CONCLUSIONS The intersection between autophagy, defective cholangiocyte cilia, and enhanced HCG contributes to PLD progression and can be considered a target for therapeutic interventions.
Collapse
Affiliation(s)
- Anatoliy I. Masyuk
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Tatyana V. Masyuk
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Christy E. Trussoni
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Nicholas E. Pirius
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Nicholas F. LaRusso
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| |
Collapse
|
4
|
Bae KT, Tao C, Feldman R, Yu AS, Torres VE, Perrone RD, Chapman AB, Brosnahan G, Steinman TI, Braun WE, Mrug M, Bennett WM, Harris PC, Srivastava A, Landsittel DP, Abebe KZ. Volume Progression and Imaging Classification of Polycystic Liver in Early Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2022; 17:374-384. [PMID: 35217526 PMCID: PMC8975034 DOI: 10.2215/cjn.08660621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The progression of polycystic liver disease is not well understood. The purpose of the study is to evaluate the associations of polycystic liver progression with other disease progression variables and classify liver progression on the basis of patient's age, height-adjusted liver cystic volume, and height-adjusted liver volume. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Prospective longitudinal magnetic resonance images from 670 patients with early autosomal dominant polycystic kidney disease for up to 14 years of follow-up were evaluated to measure height-adjusted liver cystic volume and height-adjusted liver volume. Among them, 245 patients with liver cyst volume >50 ml at baseline were included in the longitudinal analysis. Linear mixed models on log-transformed height-adjusted liver cystic volume and height-adjusted liver volume were fitted to approximate mean annual rate of change for each outcome. The association of sex, body mass index, genotype, baseline height-adjusted total kidney volume, and Mayo imaging class was assessed. We calculated height-adjusted liver cystic volume ranges for each specific age and divided them into five classes on the basis of annual percentage increase in height-adjusted liver cystic volume. RESULTS The mean annual growth rate of height-adjusted liver cystic volume was 12% (95% confidence interval, 11.1% to 13.1%; P<0.001), whereas that for height-adjusted liver volume was 2% (95% confidence interval, 1.9% to 2.6%; P<0.001). Women had higher baseline height-adjusted liver cystic volume than men, but men had higher height-adjusted liver cystic volume growth rate than women by 2% (95% confidence interval, 0.4% to 4.5%; P=0.02). Whereas the height-adjusted liver cystic volume growth rate decreased in women after menopause, no decrease was observed in men at any age. Body mass index, genotype, and baseline height-adjusted total kidney volume were not associated with the growth rate of height-adjusted liver cystic volume or height-adjusted liver volume. According to the height-adjusted liver cystic volume growth rate, patients were classified into five classes (number of women, men in each class): A (24, six); B (44, 13); C (43, 48); D (28, 17); and E (13, nine). CONCLUSIONS Compared with height-adjusted liver volume, the use of height-adjusted liver cystic volume showed greater separations in volumetric progression of polycystic liver disease. Similar to the Mayo imaging classification for the kidney, the progression of polycystic liver disease may be categorized on the basis of patient's age and height-adjusted liver cystic volume.
Collapse
Affiliation(s)
- Kyongtae T. Bae
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cheng Tao
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert Feldman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan S.L. Yu
- Division of Nephrology and Hypertension, Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas,Jared Grantham Kidney Institute, Kansas University Medical Center, Kansas City, Kansas
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Arlene B. Chapman
- Section of Nephrology, University of Chicago School of Medicine, Chicago, Illinois
| | - Godela Brosnahan
- Division of Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | | | - William E. Braun
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | - Michal Mrug
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | | | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Avantika Srivastava
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Douglas P. Landsittel
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kaleab Z. Abebe
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
5
|
Masyuk T, Masyuk A, Trussoni C, Howard B, Ding J, Huang B, LaRusso N. Autophagy-mediated reduction of miR-345 contributes to hepatic cystogenesis in polycystic liver disease. JHEP Rep 2021; 3:100345. [PMID: 34568801 PMCID: PMC8449272 DOI: 10.1016/j.jhepr.2021.100345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background & Aims Polycystic liver disease (PLD) is characterised by increased autophagy and reduced miRNA levels in cholangiocytes. Given that autophagy has been implicated in miRNA regulation, we tested the hypothesis that increased autophagy accounts for miRNA reduction in PLD cholangiocytes (PLDCs) and accelerated hepatic cystogenesis. Methods We assessed miRNA levels in cultured normal human cholangiocytes (NHCs), PLDCs, and isolated PLDC autophagosomes by miRNA-sequencing (miRNA-seq), and miRNA targets by mRNA-seq. Levels of miR-345 and miR-345-targeted proteins in livers of animals and humans with PLD, in NHCs and PLDCs, and in PLDCs transfected with pre-miR-345 were assessed by in situ hybridisation (ISH), quantitative PCR, western blotting, and fluorescence confocal microscopy. We also assessed cell proliferation and cyst growth in vitro, and hepatic cystogenesis in vivo. Results In total, 81% of miRNAs were decreased in PLDCs, with levels of 10 miRNAs reduced by more than 10 times; miR-345 was the most-reduced miRNA. In silico analysis and luciferase reporter assays showed that miR-345 targets included cell-cycle and cell-proliferation-related genes [i.e. cell division cycle 25A (CDC25A), cyclin-dependent kinase 6 (CDK6), E2F2, and proliferating cell nuclear antigen (PCNA)]; levels of 4 studied miR-345 targets were increased in PLDCs at both the mRNA and protein levels. Transfection of PLDCs with pre-miR-345 increased miR-345 and decreased the expression of miR-345-targeted proteins, cell proliferation, and cyst growth in vitro. MiR-345 accumulated in autophagosomes in PLDCs but not NHCs. Inhibition of autophagy increased miR-345 levels, decreased the expression of miR-345-targeted proteins, and reduced hepatic cystogenesis in vitro and in vivo. Conclusion Autophagy-mediated reduction of miR-345 in PLDCs (i.e. miRNAutophagy) accelerates hepatic cystogenesis. Inhibition of autophagy restores miR-345 levels, decreases cyst growth, and is beneficial for PLD. Lay summary Polycystic liver disease (PLD) is an incurable genetic disorder characterised by the progressive growth of hepatic cysts. We found that hepatic cystogenesis is increased when the levels of miR-345 in PLD cholangiocytes (PLDCs) are reduced by autophagy. Restoration of miR-345 in PLDCs via inhibition of autophagy decreases hepatic cystogenesis and thus, is beneficial for PLD. The miRNA profile is altered in PLD. MiR-345 is the most-reduced miRNA in PLDCs. The reduction of miR-345 increases PLDC proliferation and hepatic cystogenesis. MiR-345 in PLDCs is regulated by autophagy, termed ‘miRNAutophagy’. Restoration of miR-345 in PLDC is beneficial for PLD.
Collapse
Key Words
- ADPKD, autosomal dominant polycystic kidney disease
- ADPLD, autosomal dominant polycystic liver disease
- AGO2, Argonaute 2
- ALG8, alpha-1,3-glucosyltransferase
- ALG9, alpha-1,2-mannosyltransferase
- ARPKD, autosomal recessive polycystic kidney disease
- CDC25A, cell division cycle 25A
- CDK6, cyclin-dependent kinase 6
- Cell cycle-related proteins
- Cholangiocyte proliferation
- Cholangiocytes
- DNAJB11, DnaJ heat shock protein family (Hsp40) member B11
- DZIP1L, DAZ interacting zinc finger protein 1 like
- FDR, false discovery rate
- GANAB, glucosidase II alpha subunit
- GO, Gene Ontology
- Genetic liver diseases
- HCQ, hydroxychloroquine
- ISH, in situ hybridisation
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LRP5, low-density lipoprotein receptor-related protein 5
- NHC, normal human cholangiocyte
- NRC, normal rat cholangiocyte
- PCK, polycystic kidney
- PCKC, polycystic kidney rat cholangiocyte
- PCNA, proliferating cell nuclear antigen
- PKD1/2, polycystic kidney disease 1/2
- PKHD1, polycystic kidney and hepatic disease 1
- PLD treatment
- PLD, polycystic liver disease
- PLDC, polycystic liver disease cholangiocyte
- PRKCSH, protein kinase C substrate 80K-H
- RPM, reads per million
- SEC61B, SEC61 translocon subunit beta
- SEC63, SEC63 homolog, protein translocation regulator
- WT, wild type
- mTOR, mammalian target of rapamycin
- miRISC, RNA-induced silencing complex
- miRNA-seq, miRNA-sequencing
- snRNA, small nuclear RNA
Collapse
Affiliation(s)
- Tatyana Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Anatoliy Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Christy Trussoni
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Brynn Howard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jingyi Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Bing Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Corresponding author. Address: Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW Rochester, MN 55905, USA. Tel: +1 507 284 1006; Fax: +1 507 284 0762.
| |
Collapse
|
6
|
Boerrigter MM, Bongers EMHF, Lugtenberg D, Nevens F, Drenth JPH. Polycystic liver disease genes: Practical considerations for genetic testing. Eur J Med Genet 2021; 64:104160. [PMID: 33556586 DOI: 10.1016/j.ejmg.2021.104160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
The development of a polycystic liver is a characteristic of the monogenic disorders: autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and autosomal dominant polycystic liver disease (ADPLD). Respectively two and one genes mainly cause ADPKD and ARPKD. In contrast, ADPLD is caused by at least six different genes which combined do not even explain the disease development in over half of the ADPLD population. Genetic testing is mainly performed to confirm the likelihood of developing PKD and if renal therapy is essential. However, pure ADPLD patients are frequently not genetically screened as knowledge about the genotype-phenotype correlation is currently limited. This paper will clarify the essence of genetic testing in ADPLD patients.
Collapse
Affiliation(s)
- Melissa M Boerrigter
- Department of Gastroenterology and Hepatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Hogan MC, Chamberlin JA, Vaughan LE, Waits AL, Banks C, Leistikow K, Oftsie T, Madsen C, Edwards M, Glockner J, Kremers WK, Harris PC, LaRusso NF, Torres VE, Masyuk TV. Pansomatostatin Agonist Pasireotide Long-Acting Release for Patients with Autosomal Dominant Polycystic Kidney or Liver Disease with Severe Liver Involvement: A Randomized Clinical Trial. Clin J Am Soc Nephrol 2020; 15:1267-1278. [PMID: 32843370 PMCID: PMC7480539 DOI: 10.2215/cjn.13661119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES We assessed safety and efficacy of another somatostatin receptor analog, pasireotide long-acting release, in severe polycystic liver disease and autosomal dominant polycystic kidney disease. Pasireotide long-acting release, with its broader binding profile and higher affinity to known somatostatin receptors, has potential for greater efficacy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Individuals with severe polycystic liver disease were assigned in a 2:1 ratio in a 1-year, double-blind, randomized trial to receive pasireotide long-acting release or placebo. Primary outcome was change in total liver volume; secondary outcomes were change in total kidney volume, eGFR, and quality of life. RESULTS Of 48 subjects randomized, 41 completed total liver volume measurements (n=29 pasireotide long-acting release and n=12 placebo). From baseline, there were -99±189 ml/m absolute and -3%±7% change in annualized change in height-adjusted total liver volume (from 2582±1381 to 2479±1317 ml/m) in the pasireotide long-acting release group compared with 136±117 ml/m absolute and 6%±7% increase (from 2387±759 to 2533±770 ml/m) in placebo (P<0.001 for both). Total kidney volumes decreased by -12±34 ml/m and -1%±4% in pasireotide long-acting release compared with 21±21 ml/m and 4%±5% increase in the placebo group (P=0.05 for both). Changes in eGFR were similar between groups. Among the n=48 randomized, adverse events included hyperglycemia (26 of 33 [79%] in pasireotide long-acting release versus four of 15 [27%] in the placebo group; P<0.001), and among the 47 without diabetes at baseline, 19 of 32 (59%) in the pasireotide long-acting release group versus one of 15 (7%) in the placebo group developed diabetes (P=0.001). CONCLUSIONS Another somatostatin analog, pasireotide long-acting release, slowed progressive increase in both total liver volume/total kidney volume growth rates without affecting GFR decline. Participants experienced higher frequency of adverse events (hyperglycemia and diabetes). CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Pasireotide LAR in Severe Polycystic Liver Disease, NCT01670110 PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_08_28_CJN13661119.mp3.
Collapse
Affiliation(s)
- Marie C. Hogan
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Julie A. Chamberlin
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lisa E. Vaughan
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Angela L. Waits
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Carly Banks
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kathleen Leistikow
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Troy Oftsie
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Chuck Madsen
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Marie Edwards
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
- Biomedical Imaging Research Core Facility, PKD Translational Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - James Glockner
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Walter K. Kremers
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tatyana V. Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
8
|
Lorenzo Pisarello M, Masyuk TV, Gradilone SA, Masyuk AI, Ding JF, Lee PY, LaRusso NF. Combination of a Histone Deacetylase 6 Inhibitor and a Somatostatin Receptor Agonist Synergistically Reduces Hepatorenal Cystogenesis in an Animal Model of Polycystic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:981-994. [PMID: 29366679 DOI: 10.1016/j.ajpath.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/12/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
Hepatic cystogenesis in polycystic liver disease (PLD) is associated with abnormalities in multiple cellular processes, including elevated cAMP and overexpression of histone deacetylase 6 (HDAC6). Disease progression in polycystic kidney (PCK) rats (an animal model of PLD) is attenuated by inhibition of either cAMP production or HDAC6. Therefore, we hypothesized that concurrent targeting of HDAC6 and cAMP would synergistically reduce cyst growth. Changes in hepatorenal cystogenesis were examined in PCK rats treated with a pan-HDAC inhibitor, panobinostat; three specific HDAC6 inhibitors, ACY-1215, ACY-738, and ACY-241; and a combination of ACY-1215 and the somatostatin receptor analogue, pasireotide. We also assessed effects of ACY-1215 and pasireotide alone and in combination on cell proliferation, cAMP production, and expression of acetylated α-tubulin in vitro in cultured cholangiocytes and the length of primary cilia and the frequency of ciliated cholangiocytes in vivo in PCK rats. Panobinostat and all three HDAC6 inhibitors decreased hepatorenal cystogenesis in PCK rats. ACY-1215 was more effective than other HDAC inhibitors and was chosen for combinational treatment. ACY-1215 + pasireotide combination synergistically reduced cyst growth and increased length of primary cilia in PCK rats. In cultured cystic cholangiocytes, ACY-1215 + pasireotide combination concurrently decreased cell proliferation and inhibited cAMP levels. These data suggest that the combination of drugs that inhibit HDAC6 and cAMP may be an effective therapy for PLD.
Collapse
Affiliation(s)
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Jingyi F Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester
| | - Pui-Yuen Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester
| | | |
Collapse
|
9
|
Wijnands TFM, Gevers TJG, Lantinga MA, Te Morsche RH, Schultze Kool LJ, Drenth JPH. Pasireotide does not improve efficacy of aspiration sclerotherapy in patients with large hepatic cysts, a randomized controlled trial. Eur Radiol 2018; 28:2682-2689. [PMID: 29318424 PMCID: PMC5938297 DOI: 10.1007/s00330-017-5205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/28/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES We tested whether complementary use of the somatostatin analogue pasireotide would augment efficacy of aspiration sclerotherapy of hepatic cysts. METHODS We conducted a double-blind, placebo-controlled trial in patients who underwent aspiration sclerotherapy of a large (>5 cm) symptomatic hepatic cyst. Patients were randomized to either intramuscular injections of pasireotide 60 mg long-acting release (n = 17) or placebo (sodium chloride 0.9 %, n = 17). Injections were administered 2 weeks before and 2 weeks after aspiration sclerotherapy. The primary endpoint was proportional cyst diameter reduction (%) from baseline to 6 weeks. Secondary outcomes included long-term cyst reduction at 26 weeks, patient-reported outcomes including the polycystic liver disease-questionnaire (PLD-Q) and safety. RESULTS Thirty-four patients (32 females; 53.6 ± 7.8 years) were randomized between pasireotide or placebo. Pasireotide did not improve efficacy of aspiration sclerotherapy at 6 weeks compared to controls (23.6 % [IQR 12.6-30.0] vs. 21.8 % [9.6-31.8]; p = 0.96). Long-term cyst diameter reduction was similar in both groups (49.1 % [27.0-73.6] and 45.6 % [29.6-59.6]; p = 0.90). Mean PLD-Q scores improved significantly in both groups (p < 0.01) without differences between arms (p = 0.92). CONCLUSIONS In patients with large symptomatic hepatic cysts, complementary pasireotide to aspiration sclerotherapy did not improve cyst reduction or clinical response. KEY POINTS • Complementary pasireotide treatment does not improve efficacy of aspiration sclerotherapy. • Cyst fluid reaccumulation after aspiration sclerotherapy is a transient phenomenon. • Aspiration sclerotherapy strongly reduces symptoms and normalizes quality of life.
Collapse
Affiliation(s)
- Titus F M Wijnands
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands.
| | - Tom J G Gevers
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| | - Marten A Lantinga
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| | - René H Te Morsche
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| | - Leo J Schultze Kool
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Masyuk TV, Masyuk AI, Pisarello ML, Howard BN, Huang BQ, Lee PY, Fung X, Sergienko E, Ardesky RJ, Chung TDY, Pinkerton AB, LaRusso NF. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling. Hepatology 2017; 66:1197-1218. [PMID: 28543567 PMCID: PMC5605412 DOI: 10.1002/hep.29284] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022]
Abstract
UNLABELLED Hepatic cystogenesis in polycystic liver disease is associated with increased levels of cyclic adenosine monophosphate (cAMP) in cholangiocytes lining liver cysts. Takeda G protein receptor 5 (TGR5), a G protein-coupled bile acid receptor, is linked to cAMP and expressed in cholangiocytes. Therefore, we hypothesized that TGR5 might contribute to disease progression. We examined expression of TGR5 and Gα proteins in cultured cholangiocytes and in livers of animal models and humans with polycystic liver disease. In vitro, we assessed cholangiocyte proliferation, cAMP levels, and cyst growth in response to (1) TGR5 agonists (taurolithocholic acid, oleanolic acid [OA], and two synthetic compounds), (2) a novel TGR5 antagonist (m-tolyl 5-chloro-2-[ethylsulfonyl] pyrimidine-4-carboxylate [SBI-115]), and (3) a combination of SBI-115 and pasireotide, a somatostatin receptor analogue. In vivo, we examined hepatic cystogenesis in OA-treated polycystic kidney rats and after genetic elimination of TGR5 in double mutant TGR5-/- ;Pkhd1del2/del2 mice. Compared to control, expression of TGR5 and Gαs (but not Gαi and Gαq ) proteins was increased 2-fold to 3-fold in cystic cholangiocytes in vitro and in vivo. In vitro, TGR5 stimulation enhanced cAMP production, cell proliferation, and cyst growth by ∼40%; these effects were abolished after TGR5 reduction by short hairpin RNA. OA increased cystogenesis in polycystic kidney rats by 35%; in contrast, hepatic cystic areas were decreased by 45% in TGR5-deficient TGR5-/- ;Pkhd1del2/del2 mice. TGR5 expression and its colocalization with Gαs were increased ∼2-fold upon OA treatment. Levels of cAMP, cell proliferation, and cyst growth in vitro were decreased by ∼30% in cystic cholangiocytes after treatment with SBI-115 alone and by ∼50% when SBI-115 was combined with pasireotide. CONCLUSION TGR5 contributes to hepatic cystogenesis by increasing cAMP and enhancing cholangiocyte proliferation; our data suggest that a TGR5 antagonist alone or concurrently with somatostatin receptor agonists represents a potential therapeutic approach in polycystic liver disease. (Hepatology 2017;66:1197-1218).
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | | | - Brynn N Howard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Bing Q Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Pui-Yuen Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Xavier Fung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Robert J Ardesky
- Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Thomas DY Chung
- Office of Translation to Practice, Mayo Clinic, Rochester, MN USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
11
|
Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1319-1325. [PMID: 28844960 DOI: 10.1016/j.bbadis.2017.08.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Bile salts represent signalling molecules with a variety of endocrine functions. Bile salt effects are mediated by different receptor molecules, comprising ligand-activated nuclear transcription factors as well as G protein-coupled membrane-bound receptors. The farnesoid X receptor (FXR) and the plasma membrane-bound G protein-coupled receptor TGR5 (Gpbar-1) are prototypic bile salt receptors of both classes and are highly expressed in the liver including the biliary tree as well as in the intestine. In liver, TGR5 is localized in different non-parenchymal cells such as sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells and small and large cholangiocytes. Through TGR5 bile salts can mediate choleretic, cell-protective as well as proliferative effects in cholangiocytes. A disturbance of these signalling mechanisms can contribute to the development of biliary diseases. In line with the important role of TGR5 for bile salt signalling, TGR5 knockout mice are more susceptible to cholestatic liver damage. Furthermore, in absence of TGR5 cholangiocyte proliferation in response to cholestasis is attenuated and intrahepatic and extrahepatic bile ducts show increased cell damage, underscoring the role of the receptor for biliary physiology. Decreased TGR5 expression may also contribute to the development or progression of cholangiopathies like primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) since reduced TGR5-dependent cell-protective mechanisms such as bicarbonate secretion renders cholangiocytes more vulnerable towards bile salt toxicity. Nevertheless, TGR5 overexpression or constant stimulation of the receptor can promote cholangiocyte proliferation leading to cyst growth in polycystic liver disease or even progression of cholangiocarcinoma. Not only the stimulation of TGR5-mediated pathways by suitable TGR5 agonists but also the inhibition of TGR5 signalling by the use of antagonists represent potential therapeutic approaches for different types of biliary diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Kathleen Deutschmann
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Caroline Klindt
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Carola Dröge
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Wong MY, McCaughan GW, Strasser SI. An update on the pathophysiology and management of polycystic liver disease. Expert Rev Gastroenterol Hepatol 2017; 11:569-581. [PMID: 28317394 DOI: 10.1080/17474124.2017.1309280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycystic liver disease (PLD) is characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. They are classified as an inherited ciliopathy /cholangiopathy as pathology exists at the level of the primary cilia of cholangiocytes. Aberrant expression of the proteins in primary cilia can impair their structures and functions, thereby promoting cystogenesis. Areas covered: This review begins by looking at the epidemiology of PLD and its natural history. It then describes the pathophysiology and corresponding potential treatment strategies for PLD. Expert commentary: Traditionally, therapies for symptomatic PLD have been limited to symptomatic management and surgical interventions. Such techniques are not completely effective, do not alter the natural history of the disease, and are linked with high rate of re-accumulation of cysts. As a result, there has been a push for drugs targeted at abnormal cellular signaling cascades to address deregulated proliferation, cell dedifferentiation, apoptosis and fluid secretion. Currently, the only available drug treatments that halt disease progression and improve quality of life in PLD patients are somatostatin analogues. Numerous preclinical studies suggest that targeting components of the signaling pathways that influence cyst development can ameliorate growth of hepatic cysts.
Collapse
Affiliation(s)
- May Yw Wong
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| | - Geoffrey W McCaughan
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| | - Simone I Strasser
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| |
Collapse
|