1
|
Liu RZ, Zhang Z, Li M, Zhang L. A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases. Chem Sci 2025; 16:1696-1706. [PMID: 39568943 PMCID: PMC11575545 DOI: 10.1039/d4sc04174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Bioinformatics-guided metabolomics is a powerful means for the discovery of novel natural products. However, the application of such metabologenomics approaches on microbial polyketides, a prominent class of natural products with diverse bioactivities, remains largely hindered due to our limited understanding on the mass spectrometry behaviors of these metabolites. Here, we present a metabologenomics approach for the targeted discovery of polyketides biosynthesized by modular type I polyketide synthases. We developed the NegMDF workflow, which uses mass defect filtering (MDF) supported by bioinformatic structural prediction, to connect the biosynthetic gene clusters to corresponding metabolite ions obtained under negative ionization mode. The efficiency of the NegMDF workflow is illustrated by rapid characterization of 22 polyketides synthesized by three gene clusters from a well-characterized strain Streptomyces cattleya NRRL 8057, including cattleyatetronates, new members of polyketides containing a rare tetronate moiety. Our results showcase the effectiveness of the MDF-based metabologenomics workflow for analyzing microbial natural products, and will accelerate the genome mining of microbial polyketides.
Collapse
Affiliation(s)
- Run-Zhou Liu
- Department of Chemistry, Fudan University Shanghai 200433 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Zhihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Min Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou 310024 China
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou 310030 China
| |
Collapse
|
2
|
Yin Z, Xu H, Dickschat JS. A clickable coenzyme A derived probe for investigating phosphopantetheinyl transferase activity in natural product biosynthesis. Org Biomol Chem 2024; 22:8714-8719. [PMID: 39381996 DOI: 10.1039/d4ob01485e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Phosphopantetheinyl transferases activate carrier proteins through attachment of a coenzyme A derived phosphopantetheinyl linker. This study describes a method to monitor this process through a modified HSCoA with an alkyne group, allowing for the Cu-catalysed alkyne-azide cycloaddition of a fluorescent tag. Application of the method in an enzyme screening resulted in the identification of new promiscuous PPTases.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
3
|
Zeng J, Iizaka Y, Hamada M, Iwai A, Takeuchi R, Fukumoto A, Tamura T, Anzai Y. Actinoplanes kirromycinicus sp. nov., isolated from soil. J Antibiot (Tokyo) 2024; 77:657-664. [PMID: 38926493 DOI: 10.1038/s41429-024-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
A novel actinomycete, designated as TPMA0078T, was isolated from a soil sample collected in Shinjuku, Tokyo, Japan. 16S rRNA gene sequence analysis indicated that strain TPMA0078T belongs to the genus Actinoplanes and is closely related to Actinoplanes regularis IFO 12514T (99.86% 16S rRNA gene sequence similarity). The spores of strain TPMA0078T were motile, and the sporangia were cylindrical. The diamino acids in the cell wall peptidoglycan of strain TPMA0078T were meso-diaminopimelic acid and 3OH-meso-diaminopimelic acid. Whole-cell sugars were glucose and mannose, with galactose as a minor component. The major cellular fatty acids identified were iso-C15:0, iso-C16:0, and anteiso-C17:0. The predominant menaquinone was MK-9(H4), and the principal polar lipid was phosphatidylethanolamine. These chemotaxonomic properties of strain TPMA0078T were consistent with those of Actinoplanes. Meanwhile, digital DNA-DNA hybridization and average nucleotide identity values showed low relatedness between strain TPMA0078T and A. regularis NBRC 12514T. Furthermore, several phenotypic properties of strain TPMA0078T distinguished it from those of closely related species. Based on its genotypic and phenotypic characteristics, strain TPMA0078T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes kirromycinicus sp. nov. is proposed. The type strain is TPMA0078T (=NBRC 116422T = TBRC 18262T).
Collapse
Affiliation(s)
- Jiahao Zeng
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yohei Iizaka
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Aya Iwai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Riku Takeuchi
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Atsushi Fukumoto
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yojiro Anzai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
4
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|
5
|
Bertrand CDF, Martins R, Quintas-Nunes F, Reynolds-Brandão P, Crespo MTB, Nascimento FX. Saccharopolyspora sp. NFXS83 in Marine Biotechnological Applications: From Microalgae Growth Promotion to the Production of Secondary Metabolites. Microorganisms 2023; 11:microorganisms11040902. [PMID: 37110324 PMCID: PMC10145562 DOI: 10.3390/microorganisms11040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Marine bacteria are a significant source of bioactive compounds for various biotechnological applications. Among these, actinomycetes have been found to produce a wide range of secondary metabolites of interest. Saccharopolyspora is one of the genera of actinomycetes that has been recognized as a potential source of these compounds. This study reports the characterization and genomic analysis of Saccharopolyspora sp. NFXS83, a marine bacterium isolated from seawater from the Sado estuary in Portugal. The NFXS83 strain produced multiple functional and stable extracellular enzymes under high-salt conditions, showed the ability to synthesize auxins such as indole-3-acetic acid, and produced diffusible secondary metabolites capable of inhibiting the growth of Staphylococcus aureus. Furthermore, when Phaeodactylum tricornutum was co-cultivated with strain NFXS83 a significant increase in microalgae cell count, cell size, auto-fluorescence, and fucoxanthin content was observed. Detailed analysis revealed the presence of clusters involved in the production of various secondary metabolites, including extracellular enzymes, antimicrobial compounds, terpenes, and carotenoids in the genome of strain NFXS83. Ultimately, these findings indicate that Saccharopolyspora sp. NFXS83 has a significant potential for a wide range of marine biotechnological applications.
Collapse
|
6
|
Fang C, Zhang Q, Zhang W, Zhang C, Zhu Y. Discovery of Efrotomycin Congeners and Heterologous Expression-Based Insights into the Self-Resistance Mechanism. JOURNAL OF NATURAL PRODUCTS 2022; 85:2865-2872. [PMID: 36445346 DOI: 10.1021/acs.jnatprod.2c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Four new efrotomycins, A1-A4 (1-4), were isolated from the salt mine-derived Amycolatopsis cihanbeyliensis DSM 45679 and structurally determined. Efrotomycins A3 (3) and A4 (4) feature a tetrahydrofuran ring configured distinctly from known elfamycins. Heterologous expression of the efrotomycin gene cluster (efr BGC) in Streptomyces lividans SBT18 led to efrotomycin B1 (5), the yield of which was improved several fold upon introduction of the transporter gene efrT, a putative self-resistance determinant outside of the efr BGC.
Collapse
Affiliation(s)
- Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
7
|
Zhang T, Cai G, Rong X, Xu J, Jiang B, Wang H, Li X, Wang L, Zhang R, He W, Yu L. Mining and characterization of the PKS-NRPS hybrid for epicoccamide A: a mannosylated tetramate derivative from Epicoccum sp. CPCC 400996. Microb Cell Fact 2022; 21:249. [PMID: 36419162 PMCID: PMC9685919 DOI: 10.1186/s12934-022-01975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Genomic analysis indicated that the genomes of ascomycetes might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained enigmatic. The ascomycete genus Epicoccum, belonging to the family Didymellaceae, is ubiquitous that colonizes different types of substrates and is associated with phyllosphere or decaying vegetation. Species of this genus are prolific producers of bioactive substances. The epicoccamides, as biosynthetically distinct mannosylated tetramate, were first isolated in 2003 from Epicoccum sp. In this study, using a combination of genome mining, chemical identification, genetic deletion, and bioinformatic analysis, we identified the required BGC epi responsible for epicoccamide A biosynthesis in Epicoccum sp. CPCC 400996. RESULTS The unconventional biosynthetic gene cluster epi was obtained from an endophyte Epicoccum sp. CPCC 400996 through AntiSMASH-based genome mining. The cluster epi includes six putative open reading frames (epiA-epiF) altogether, in which the epiA encodes a tetramate-forming polyketide synthase and nonribosomal peptide synthetases (PKS-NRPS hybrid). Sequence alignments and bioinformatic analysis to other metabolic pathways of fungal tetramates, we proposed that the gene cluster epi could be involved in generating epicoccamides. Genetic knockout of epiA completely abolished the biosynthesis of epicoccamide A (1), thereby establishing the correlation between the BGC epi and biosynthesis of epicoccamide A. Bioinformatic adenylation domain signature analysis of EpiA and other fungal PKS-NRPSs (NRPs) indicated that the EpiA is L-alanine incorporating tetramates megasynthase. Furthermore, based on the molecular structures of epicoccamide A and deduced gene functions of the cluster epi, a hypothetic metabolic pathway for biosynthesizing compound 1 was proposed. The corresponding tetramates releasing during epicoccamide A biosynthesis was catalyzed through Dieckmann-type cyclization, in which the reductive (R) domain residing in terminal module of EpiA accomplished the conversion. These results unveiled the underlying mechanism of epicoccamides biosynthesis and these findings might provide opportunities for derivatization of epicoccamides or generation of new chemical entities. CONCLUSION Genome mining and genetic inactivation experiments unveiled a previously uncharacterized PKS - NRPS hybrid-based BGC epi responsible for the generation of epicoccamide A (1) in endophyte Epicoccum sp. CPCC 400996. In addition, based on the gene cluster data, a hypothetical biosynthetic pathway of epicoccamide A was proposed.
Collapse
Affiliation(s)
- Tao Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Guowei Cai
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.452240.50000 0004 8342 6962Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xiaoting Rong
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.510447.30000 0000 9970 6820College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003 Jiangsu China
| | - Jingwen Xu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Bingya Jiang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Hao Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Xinxin Li
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Lu Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Ran Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Wenni He
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Liyan Yu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
8
|
McHugh RE, Munnoch JT, Braes RE, McKean IJW, Giard J, Taladriz-Sender A, Peschke F, Burley GA, Roe AJ, Hoskisson PA. Biosynthesis of Aurodox, a Type III Secretion System Inhibitor from Streptomyces goldiniensis. Appl Environ Microbiol 2022; 88:e0069222. [PMID: 35867559 PMCID: PMC9361827 DOI: 10.1128/aem.00692-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022] Open
Abstract
The global increase in antimicrobial-resistant infections means that there is a need to develop new antimicrobial molecules and strategies to combat the issue. Aurodox is a linear polyketide natural product that is produced by Streptomyces goldiniensis, yet little is known about aurodox biosynthesis or the nature of the biosynthetic gene cluster (BGC) that encodes its production. To gain a deeper understanding of aurodox biosynthesis by S. goldiniensis, the whole genome of the organism was sequenced, revealing the presence of an 87 kb hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) BGC. The aurodox BGC shares significant homology with the kirromycin BGC from S. collinus Tϋ 365. However, the genetic organization of the BGC differs significantly. The candidate aurodox gene cluster was cloned and expressed in a heterologous host to demonstrate that it was responsible for aurodox biosynthesis and disruption of the primary PKS gene (aurAI) abolished aurodox production. These data supported a model whereby the initial core biosynthetic reactions involved in aurodox biosynthesis followed that of kirromycin. Cloning aurM* from S. goldiniensis and expressing this in the kirromycin producer S. collinus Tϋ 365 enabled methylation of the pyridone group, suggesting this is the last step in biosynthesis. This methylation step is also sufficient to confer the unique type III secretion system inhibitory properties to aurodox. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is a significant global pathogen for which traditional antibiotic treatment is not recommended. Aurodox inhibits the ability of EHEC to establish infection in the host gut through the specific targeting of the type III secretion system while circumventing the induction of toxin production associated with traditional antibiotics. These properties suggest aurodox could be a promising anti-virulence compound for EHEC, which merits further investigation. Here, we characterized the aurodox biosynthetic gene cluster from Streptomyces goldiniensis and established the key enzymatic steps of aurodox biosynthesis that give rise to the unique anti-virulence activity. These data provide the basis for future chemical and genetic approaches to produce aurodox derivatives with increased efficacy and the potential to engineer novel elfamycins.
Collapse
Affiliation(s)
- Rebecca E. McHugh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John T. Munnoch
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Robyn E. Braes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Iain J. W. McKean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Josephine Giard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Frederik Peschke
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Andrew J. Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
McHugh RE, Munnoch JT, Roe AJ, Hoskisson PA. Genome sequence of the aurodox-producing bacterium Streptomyces goldiniensis ATCC 21386. Access Microbiol 2022; 4:acmi000358. [PMID: 36003359 PMCID: PMC9394534 DOI: 10.1099/acmi.0.000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
We report the genome sequence of Streptomyces goldiniensis ATCC 21386, a strain which produces the anti-bacterial and anti-virulence polyketide, aurodox. The genome of S. goldiniensis ATCC 21386 was sequenced using a multiplatform hybrid approach, revealing a linear genome of ~10 Mbp with a G+C content of 71%. The genome sequence revealed 36 putative biosynthetic gene clusters (BGCs), including a large region of 271 Kbp that was rich in biosynthetic capability. The genome sequence is deposited in DDBJ/EMBL/GenBank with the accession number PRJNA602141.
Collapse
Affiliation(s)
- Rebecca E. McHugh
- *Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John T. Munnoch
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Andrew J. Roe
- *Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
10
|
Fang Z, Zhang Q, Zhang L, She J, Li J, Zhang W, Zhang H, Zhu Y, Zhang C. Antifungal Macrolides Kongjuemycins from Coral-Associated Rare Actinomycete Pseudonocardia kongjuensis SCSIO 11457. Org Lett 2022; 24:3482-3487. [PMID: 35476540 DOI: 10.1021/acs.orglett.2c01089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four new macrolides, kongjuemycins A and B1-B3 (1-4), were isolated from a coral-associated actinomycete Pseudonocardia kongjuensis SCSIO 11457. Their structures were characterized by comprehensive spectroscopic analysis and single-crystal X-ray diffraction. The absolute configurations of 1 and 2 were established by electronic circular dichroism calculation and the modified Mosher's method. Kongjuemycins displayed antifungal activity against three phytopathogenic fungi.
Collapse
Affiliation(s)
- Zhuangjie Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Jianglian She
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
11
|
An JS, Lim HJ, Lee JY, Jang YJ, Nam SJ, Lee SK, Oh DC. Hamuramicin C, a Cytotoxic Bicyclic Macrolide Isolated from a Wasp Gut Bacterium. JOURNAL OF NATURAL PRODUCTS 2022; 85:936-942. [PMID: 35362983 DOI: 10.1021/acs.jnatprod.1c01075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new bicyclic macrolide, hamuramicin C (1), was isolated from Streptomyces sp. MBP16, a gut bacterial strain of the wasp Vespa crabro flavofasciata. Its 22-membered macrocyclic lactone structure was determined by NMR and mass spectrometry. The relative configurations of hamuramicin C (1) were assigned by J-based configuration analysis utilizing 1H rotating frame Overhauser effect spectroscopy and heteronuclear long-range coupling NMR spectroscopy. Genomic and bioinformatic analyses of the bacterial strain enabled identification of the type-I polyketide synthase pathway, which employs a trans-acyltransferase system. The absolute configurations of 1 were proposed based on the analysis of the sequences of ketoreductases in the modular gene cluster. Moreover, hamuramicin C (1) demonstrated significant inhibitory activity against diverse human cancer cell lines (HCT116, A549, SNU-638, SK-HEP-1, and MDA-MB-231).
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Ju Lim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Joon Jang
- Natura Center of Life and Environment, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Luo M, Xu H, Dong Y, Shen K, Lu J, Yin Z, Qi M, Sun G, Tang L, Xiang J, Deng Z, Dickschat JS, Sun Y. Der Mechanismus von dehydatisierenden Bimodulen in der
trans
‐Acyltransferase‐Polketidbiosynthese: Eine Modellstudie am hepatoprotektiven Hangtaimycin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minghe Luo
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Houchao Xu
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Yulu Dong
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Junlei Lu
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Zhiyong Yin
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Miaomiao Qi
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Lingjie Tang
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| |
Collapse
|
13
|
Luo M, Xu H, Dong Y, Shen K, Lu J, Yin Z, Qi M, Sun G, Tang L, Xiang J, Deng Z, Dickschat JS, Sun Y. The Mechanism of Dehydrating Bimodules in trans-Acyltransferase Polyketide Biosynthesis: A Showcase Study on Hepatoprotective Hangtaimycin. Angew Chem Int Ed Engl 2021; 60:19139-19143. [PMID: 34219345 PMCID: PMC8456789 DOI: 10.1002/anie.202106250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Indexed: 11/29/2022]
Abstract
A bioassay‐guided fractionation led to the isolation of hangtaimycin (HTM) from Streptomyces spectabilis CCTCC M2017417 and the discovery of its hepatoprotective properties. Structure elucidation by NMR suggested the need for a structural revision. A putative HTM degradation product was also isolated and its structure was confirmed by total synthesis. The biosynthetic gene cluster was identified and resembles a hybrid trans‐AT PKS/NRPS biosynthetic machinery whose first PKS enzyme contains an internal dehydrating bimodule, which is usually found split in other trans‐AT PKSs. The mechanisms of such dehydrating bimodules have often been proposed, but have never been deeply investigated. Here we present in vivo mutations and in vitro enzymatic experiments that give first and detailed mechanistic insights into catalysis by dehydrating bimodules.
Collapse
Affiliation(s)
- Minghe Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Yulu Dong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Junlei Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Miaomiao Qi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Lingjie Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| |
Collapse
|
14
|
Beck C, Blin K, Gren T, Jiang X, Mohite OS, Palazzotto E, Tong Y, Charusanti P, Weber T. Metabolic Engineering of Filamentous Actinomycetes. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Genome mining Streptomyces sp. KCTC 0041BP as a producer of dihydrochalcomycin. Appl Microbiol Biotechnol 2021; 105:5023-5037. [PMID: 34136924 DOI: 10.1007/s00253-021-11393-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Streptomyces sp. KCTC 0041BP, which was isolated from a soil sample in Cheolwon, Republic of Korea, is a dihydrochalcomycin producer. In this study, we obtained the genome of S. sp. KCTC 0041BP with 7.54 Mb genome size. antiSMASH and the dbCAN2 meta server predicted that the genome would contain 26 secondary metabolite biosynthetic gene clusters (BGCs) and 285 carbohydrate-active enzymes. Besides dihydrochalcomycin, 21 compounds were successfully identified from S. sp. KCTC 0041BP, and among them, the structure of 8 compounds were proven by high-resolution electrospray ionization mass spectrometry (HRESIMS) and nuclear magnetic resonance (NMR). The identification of chalcomycin analogs led to a better understanding of the biosynthetic pathway of dihydrochalcomycin/chalcomycin. From the analysis of cluster 2 and solvent selection, linearmycins were determined. Linearmycins showed antibacterial activity with both Gram-positive and Gram-negative bacteria and antifungal activity. One strain many compounds (OSMAC) strategy was applied to activate the salicylic acid production in this strain. A salicylic acid biosynthetic pathway was also predicted, but not by antiSMASH. These results showed that this strain can produce many useful compounds and potentially produce novel compounds with most secondary BGCs yet to be experimentally identified.
Collapse
|
16
|
Yin Z, Dickschat JS. Cis double bond formation in polyketide biosynthesis. Nat Prod Rep 2021; 38:1445-1468. [PMID: 33475122 DOI: 10.1039/d0np00091d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2020Polyketides form a large group of bioactive secondary metabolites that usually contain one or more double bonds. Although most of the double bonds found in polyketides are trans or E-configured, several cases are known in which cis or Z-configurations are observed. Double bond formation by polyketide synthases (PKSs) is widely recognised to be catalysed by ketoreduction and subsequent dehydration of the acyl carrier protein (ACP)-tethered 3-ketoacyl intermediate in the PKS biosynthetic assembly line with a specific stereochemical course in which the ketoreduction step determines the usual trans or more rare cis double bond configuration. Occasionally, other mechanisms for the installation of cis double bonds such as double bond formation during chain release or post-PKS modifications including, amongst others, isomerisations or double bond installations by oxidation are observed. This review discusses the peculiar mechanisms of cis double bond formation in polyketide biosynthesis.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
17
|
SeMPI 2.0-A Web Server for PKS and NRPS Predictions Combined with Metabolite Screening in Natural Product Databases. Metabolites 2020; 11:metabo11010013. [PMID: 33383692 PMCID: PMC7823522 DOI: 10.3390/metabo11010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/10/2023] Open
Abstract
Microorganisms produce secondary metabolites with a remarkable range of bioactive properties. The constantly increasing amount of published genomic data provides the opportunity for efficient identification of biosynthetic gene clusters by genome mining. On the other hand, for many natural products with resolved structures, the encoding biosynthetic gene clusters have not been identified yet. Of those secondary metabolites, the scaffolds of nonribosomal peptides and polyketides (type I modular) can be predicted due to their building block-like assembly. SeMPI v2 provides a comprehensive prediction pipeline, which includes the screening of the scaffold in publicly available natural compound databases. The screening algorithm was designed to detect homologous structures even for partial, incomplete clusters. The pipeline allows linking of gene clusters to known natural products and therefore also provides a metric to estimate the novelty of the cluster if a matching scaffold cannot be found. Whereas currently available tools attempt to provide comprehensive information about a wide range of gene clusters, SeMPI v2 aims to focus on precise predictions. Therefore, the cluster detection algorithm, including building block generation and domain substrate prediction, was thoroughly refined and benchmarked, to provide high-quality scaffold predictions. In a benchmark based on 559 gene clusters, SeMPI v2 achieved comparable or better results than antiSMASH v5. Additionally, the SeMPI v2 web server provides features that can help to further investigate a submitted gene cluster, such as the incorporation of a genome browser, and the possibility to modify a predicted scaffold in a workbench before the database screening.
Collapse
|
18
|
Yarlagadda V, Medina R, Johnson TA, Koteva KP, Cox G, Thaker MN, Wright GD. Resistance-Guided Discovery of Elfamycin Antibiotic Producers with Antigonococcal Activity. ACS Infect Dis 2020; 6:3163-3173. [PMID: 33164482 DOI: 10.1021/acsinfecdis.0c00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rise of bacterial antibiotic resistance coupled with a diminished antibiotic drug pipeline underlines the importance of developing rational strategies to discover new antimicrobials. Microbially derived natural products are the basis for most of the antibiotic arsenal available to modern medicine. Here, we demonstrate a resistance-based approach to identify producers of elfamycins, an under-explored class of natural product antibiotics that target the essential translation factor EF-Tu. Antibiotic producers carry self-resistance genes to avoid suicide. These genes are often found within the same biosynthetic gene cluster (BGC) responsible for making the antibiotic, and we exploited this trait to identify members of the kirromycin class of elfamycin producers. Genome mining of Streptomyces spp. led to the identification of three isolates that harbor kirromycin-resistant EF-Tu (EF-TuKirR) within predicted natural product BGCs. Activity-guided purification on extracts of one of the Streptomyces isolates, which was not known to produce an elfamycin, identified it as a producer of phenelfamycin B, a linear polyketide. Phenelfamycin B demonstrates impressive antibacterial activity (MIC ∼ 1 μg/mL) against multidrug-resistant Neisseria gonorrhoeae, a clinically important Gram negative pathogen. The antigonococcal activity of phenelfamycin was shown to be the result of inhibition of protein biosynthesis by binding to EF-Tu. These results indicate that a resistance-based approach of identifying elfamycin producers is translatable to other antibiotic classes that can identify new and overlooked antibiotics necessary to address the antibiotic crisis.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Ricardo Medina
- Department of Microbiology, Chemical Bioactive Center, Central University Marta Abreu de las Villas, Santa Clara 54830, Villa Clara, Cuba
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University College of Agriculture, West Lafayette, Indiana 47907, United States
| | - Kalinka P. Koteva
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maulik N. Thaker
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
19
|
Lohman JR, Shen B. The LnmK Bifunctional Acyltransferase/Decarboxylase Specifying (2 R)-Methylmalonyl-CoA and Employing Substrate-Assisted Catalysis for Polyketide Biosynthesis. Biochemistry 2020; 59:4143-4147. [PMID: 33095002 DOI: 10.1021/acs.biochem.0c00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously showed that the bifunctional LnmK acyltransferase/decarboxylase (AT/DC) catalyzed the formation of a propionyl-S-acyl carrier protein (ACP) from methylmalonyl-CoA, but its substrate specificity to (2S)-, (2R)-, or (2RS)-methylmalonyl CoA was not known. We subsequently revealed that LnmK AT and DC activities share the same active site, employing a Tyr as the catalytic residue for AT, but failed to identify a general base within the vicinity of the active site for LnmK catalysis. We now show that (i) LnmK specifies (2R)-methylmalonyl-CoA and (ii) the AT and DC activities are coupled, featuring substrate-assisted catalysis via the enolate to account for the missing general base within the LnmK active site. LnmK and its homologues are the only bifunctional AT/DC enzymes known to date and are widespread. These findings, therefore, enrich PKS chemistry and enzymology. Since only the (2S)-methylmalonyl-CoA enantiomer has been established previously as a substrate for polyketide biosynthesis by PKSs, we now establish a role for both (2R)- and (2S)-methylmalonyl-CoA in polyketide biosynthesis, and (2R)-methylmalonyl-CoA should be considered as a substrate in future efforts for engineered production of polyketides by combinatorial biosynthesis or synthetic biology strategies in model hosts.
Collapse
Affiliation(s)
- Jeremy R Lohman
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
20
|
Cogan DP, Ly J, Nair SK. Structural Basis for Enzymatic Off-Loading of Hybrid Polyketides by Dieckmann Condensation. ACS Chem Biol 2020; 15:2783-2791. [PMID: 33017142 DOI: 10.1021/acschembio.0c00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While several bioactive natural products that contain tetramate or pyridone heterocycles have been described, information on the enzymology underpinning these functionalities has been limited. Here we biochemically characterize an off-loading Dieckmann cyclase, NcmC, that installs the tetramate headgroup in nocamycin, a hybrid polyketide/nonribosomal peptide natural product. Crystal structures of the enzyme (1.6 Å) and its covalent complex with the epoxide cerulenin (1.6 Å) guide additional structure-based mutagenesis and product-profile analyses. Our results offer mechanistic insights into how the conserved thioesterase-like scaffold has been adapted to perform a new chemical reaction, namely, heterocyclization. Additional bioinformatics combined with docking and modeling identifies likely candidates for heterocycle formation in underexplored gene clusters and uncovers a modular basis of substrate recognition by the two subdomains of these Dieckmann cyclases.
Collapse
|
21
|
Risser F, Collin S, Dos Santos-Morais R, Gruez A, Chagot B, Weissman KJ. Towards improved understanding of intersubunit interactions in modular polyketide biosynthesis: Docking in the enacyloxin IIa polyketide synthase. J Struct Biol 2020; 212:107581. [DOI: 10.1016/j.jsb.2020.107581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
|
22
|
Hou SY, Zhang MY, Wang HD, Zhang YX. Biosynthesis Gene Cluster and Oxazole Ring Formation Enzyme for Inthomycins in Streptomyces sp. Strain SYP-A7193. Appl Environ Microbiol 2020; 86:e01388-20. [PMID: 32801183 PMCID: PMC7531957 DOI: 10.1128/aem.01388-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022] Open
Abstract
Inthomycins belong to a growing family of oxazole-containing polyketides and exhibit a broad spectrum of anti-oomycete and herbicidal activities. In this study, we purified inthomycins A and B from the metabolites of Streptomyces sp. strain SYP-A7193 and determined their chemical structures. Genome sequencing, comparative genomic analysis, and gene disruption of Streptomyces sp. SYP-A7193 showed that the inthomycin biosynthetic gene cluster (itm) belonged to the hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) system. Functional domain comparison and disruption/complementation experiments of itm12 resulted in the complete loss of inthomycins A and B and the subsequent restoration of their production, confirming that itm12 encodes a discrete acyltransferase (AT), and hence, itm was considered to belong to the trans-AT type I PKS system. Moreover, the disruption/complementation experiments of itm15 also resulted in the loss and restoration of inthomycin A and B formation. Further gene cloning, expression, purification, and activity verification of itm15 revealed that Itm15 is a cyclodehydratase that catalyzes a straight-chain dehydration reaction to form an oxazole ring for the biosynthesis of inthomycins A and B. Thus, we discovered a novel enzyme that catalyzes oxazole ring formation and elucidated the complete biosynthetic pathway of inthomycins.IMPORTANCEStreptomyces species produce numerous secondary metabolites with diverse structures and pharmacological activities that are beneficial for human health and have several applications in agriculture. In this study, hybrid nonribosomal peptide synthetase/polyketide synthase metabolites inthomycins A and B were isolated from after fermenting Streptomyces sp. SYP-A7193. Genome sequencing, gene disruption, gene complementation, heterologous expression, and activity assay revealed that the biosynthesis gene assembly line of inthomycins A and B was a 95.3-kb trans-AT type I PKS system in the strain SYP-A7193. More importantly, Itm15, a cyclodehydratase, was identified to be an oxazole ring formation enzyme required for the biosynthesis of inthomycins A and B; it is significant to discover this catalyzation reaction in the PKS/NRPS system in the field of microbiology. Our findings could provide further insights into the diversity of trans-AT type I PKS systems and the mechanism of oxazole cyclization involved in the biosynthesis of natural products.
Collapse
Affiliation(s)
- Shao-Yang Hou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Hong-Da Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
23
|
Musiol-Kroll EM, Wohlleben W. Maßgeschneiderte Polyketidsynthasen zur Herstellung von Polyketid-Derivaten. BIOSPEKTRUM 2020; 26:437-439. [PMID: 32834540 PMCID: PMC7318727 DOI: 10.1007/s12268-020-1416-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ewa M. Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobiologie/Biotechnologie Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Deutschland
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobiologie/Biotechnologie Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Deutschland
| |
Collapse
|
24
|
Yuet KP, Liu CW, Lynch SR, Kuo J, Michaels W, Lee RB, McShane AE, Zhong BL, Fischer CR, Khosla C. Complete Reconstitution and Deorphanization of the 3 MDa Nocardiosis-Associated Polyketide Synthase. J Am Chem Soc 2020; 142:5952-5957. [PMID: 32182063 DOI: 10.1021/jacs.0c00904] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several Nocardia strains associated with nocardiosis, a potentially life-threatening disease, house a nonamodular assembly line polyketide synthase (PKS) that presumably synthesizes an unknown polyketide. Here, we report the discovery and structure elucidation of the NOCAP (nocardiosis-associated polyketide) aglycone by first fully reconstituting the NOCAP synthase in vitro from purified protein components followed by heterologous expression in E. coli and spectroscopic analysis of the purified products. The NOCAP aglycone has an unprecedented structure comprised of a substituted resorcylaldehyde headgroup linked to a 15-carbon tail that harbors two conjugated all-trans trienes separated by a stereogenic hydroxyl group. This report is the first example of reconstituting a trans-acyltransferase assembly line PKS in vitro and of using these approaches to "deorphanize" a complete assembly line PKS identified via genomic sequencing. With the NOCAP aglycone in hand, the stage is set for understanding how this PKS and associated tailoring enzymes confer an advantage to their native hosts during human Nocardia infections.
Collapse
|
25
|
Guerrero-Garzón JF, Zehl M, Schneider O, Rückert C, Busche T, Kalinowski J, Bredholt H, Zotchev SB. Streptomyces spp. From the Marine Sponge Antho dichotoma: Analyses of Secondary Metabolite Biosynthesis Gene Clusters and Some of Their Products. Front Microbiol 2020; 11:437. [PMID: 32256483 PMCID: PMC7093587 DOI: 10.3389/fmicb.2020.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/02/2020] [Indexed: 01/25/2023] Open
Abstract
Actinomycete bacteria from marine environments represent a potential source for new antibiotics and anti-tumor drugs. Ten strains belonging to the genus Streptomyces isolated from the marine sponge Antho dichotoma collected at the bottom of the Trondheim fjord (Norway) were screened for antibiotic activity. Since only few isolates proved to be bioactive in the conditions tested, we decided to gain an insight into their biosynthetic potential using genome sequencing and analysis. Draft genomes were analyzed for the presence of secondary metabolite biosynthesis gene clusters (BGCs) using antiSMASH software. BGCs specifying both known and potentially novel secondary metabolites were identified, suggesting that these isolates might be sources for new bioactive compounds. The results of this analysis also implied horizontal transfer of several gene clusters between the studied isolates, which was especially evident for the lantibiotic- and thiopeptide-encoding BGCs. The latter implies the significance of particular secondary metabolites for the adaptation of Streptomyces to the spatially enclosed marine environments such as marine sponges. Two bioactive isolates, one showing activity against both yeast and Bacillus subtilis, and one only against yeast were analyzed in details, leading to the identification of cycloheximide, linearmycins, and echinomycins that are presumably responsible for the observed bioactivities.
Collapse
Affiliation(s)
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Olha Schneider
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | | | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | | |
Collapse
|
26
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
27
|
Robertsen HL, Musiol-Kroll EM. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics (Basel) 2019; 8:E157. [PMID: 31547063 PMCID: PMC6963833 DOI: 10.3390/antibiotics8040157] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023] Open
Abstract
Actinomycetes are remarkable producers of compounds essential for human and veterinary medicine as well as for agriculture. The genomes of those microorganisms possess several sets of genes (biosynthetic gene cluster (BGC)) encoding pathways for the production of the valuable secondary metabolites. A significant proportion of the identified BGCs in actinomycetes encode pathways for the biosynthesis of polyketide compounds, nonribosomal peptides, or hybrid products resulting from the combination of both polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The potency of these molecules, in terms of bioactivity, was recognized in the 1940s, and started the "Golden Age" of antimicrobial drug discovery. Since then, several valuable polyketide drugs, such as erythromycin A, tylosin, monensin A, rifamycin, tetracyclines, amphotericin B, and many others were isolated from actinomycetes. This review covers the most relevant actinomycetes-derived polyketide drugs with antimicrobial activity, including anti-fungal agents. We provide an overview of the source of the compounds, structure of the molecules, the biosynthetic principle, bioactivity and mechanisms of action, and the current stage of development. This review emphasizes the importance of actinomycetes-derived antimicrobial polyketides and should serve as a "lexicon", not only to scientists from the Natural Products field, but also to clinicians and others interested in this topic.
Collapse
Affiliation(s)
- Helene L Robertsen
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Ewa M Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
28
|
Xu Z, Fang SM, Bakowski MA, Rateb ME, Yang D, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, Hull MV, McNamara CW, Shen B. Discovery of Kirromycins with Anti- Wolbachia Activity from Streptomyces sp. CB00686. ACS Chem Biol 2019; 14:1174-1182. [PMID: 31074963 DOI: 10.1021/acschembio.9b00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lymphatic filariasis and onchocerciasis diseases caused by filarial parasite infections can lead to profound disability and affect millions of people worldwide. Standard mass drug administration campaigns require repetitive delivery of anthelmintics for years to temporarily block parasite transmission but do not cure infection because long-lived adult worms survive the treatment. Depletion of the endosymbiont Wolbachia, present in most filarial nematode species, results in death of adult worms and therefore represents a promising target for the treatment of filariasis. Here, we used a high-content imaging assay to screen the pure compounds collection of the natural products library at The Scripps Research Institute for anti- Wolbachia activity, leading to the identification of kirromycin B (1) as a lead candidate. Two additional congeners, kirromycin (2) and kirromycin C (3), were isolated and characterized from the same producing strain Streptomyces sp. CB00686. All three kirromycin congeners depleted Wolbachia in LDW1 Drosophila cells in vitro with half-maximal inhibitory concentrations (IC50) in nanomolar range, while doxycycline, a registered drug with anti- Wolbachia activity, showed lower activity with an IC50 of 152 ± 55 nM. Furthermore, 1-3 eliminated the Wolbachia endosymbiont in Brugia pahangi ovaries ex vivo with higher efficiency (65%-90%) at 1 μM than that of doxycycline (50%). No cytotoxicity against HEK293T and HepG2 mammalian cells was observed with 1-3 at the highest concentration (40 μM) used in the assay. These results suggest kirromycin is an effective lead scaffold, further exploration of which could potentially lead to the development of novel treatments for filarial nematode infections.
Collapse
Affiliation(s)
- Zhengren Xu
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Shi-Ming Fang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | | | - Mostafa E. Rateb
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Mitchell V. Hull
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Case W. McNamara
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
29
|
Chen H, Bian Z, Ravichandran V, Li R, Sun Y, Huo L, Fu J, Bian X, Xia L, Tu Q, Zhang Y. Biosynthesis of polyketides by trans-AT polyketide synthases in Burkholderiales. Crit Rev Microbiol 2019; 45:162-181. [PMID: 31218924 DOI: 10.1080/1040841x.2018.1514365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Widely used as drugs and agrochemicals, polyketides are a family of bioactive natural products, with diverse structures and functions. Polyketides are produced by megaenzymes termed as polyketide synthases (PKSs). PKS biosynthetic pathways are divided into the cis-AT PKSs and trans-AT PKSs; a division based mainly on the absence of an acyltransferase (AT) domain in the trans-AT PKS modules. In trans-AT biosynthesis, the AT activity is contributed via one or several independent proteins, and there are few other characteristics that distinguish trans-AT PKSs from cis-AT PKSs, especially in the formation of the β-branch. The trans-AT PKSs constitute a major PKS pathway, and many are found in Burkholderia species, which are prevalent in the environment and prolific sources of polyketides. This review summarizes studies from 1973 to 2017 on the biosynthesis of natural products by trans-AT PKSs from Burkholderia species.
Collapse
Affiliation(s)
- Hanna Chen
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Zhilong Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Vinothkannan Ravichandran
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Ruijuan Li
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Yi Sun
- c Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing , People's Republic of China
| | - Liujie Huo
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Jun Fu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Xiaoying Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Liqiu Xia
- b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Qiang Tu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Youming Zhang
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| |
Collapse
|
30
|
Helal HS, Hanora A, Khattab RA, Hamouda H, Zedan H. Mining of Egypt's Red Sea invertebrates for potential bioactive producers. Biotechnol Lett 2018; 40:1519-1530. [PMID: 30120645 DOI: 10.1007/s10529-018-2600-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objective of this work was to isolate bacteria from Red Sea invertebrates, determine their antimicrobial activity, and screen for the biosynthetic gene clusters [polyketides (PKs) and nonribosomal peptides (NRPs)] which could be involved in the production of bioactive secondary metabolites. RESULT Eleven different samples of marine invertebrates' were collected from Egypt's Red Sea (El-Tor-Sharm El-Sheikh and Hurghada) by scuba diving, and a total 80 isolates of the associated microorganisms were obtained from the cultivation on six different cultural medium. Seven isolates of them showed an antimicrobial activity against five pathogenic reference strains, while the most active antimicrobial agent was isolate number HFF-8 which was 99% identical to Bacillus amyloliquefaciens. HFF-8's extract showed positive results against Gram negative bacteria, Gram positive bacteria and yeast. Moreover, the isolates gave positive bands when screened for the presence of PK synthase (PKS) I and II and NRP synthetase (NRPS) I and II biosynthetic genes, those biosynthetic fragments when cloned and sequenced were primitively predicted as biosynthetic fragments for kirromycin and leinamycin production by NaPDoS program with 56 and 55%, respectively. CONCLUSION The Red Sea can provide a sustainable solution to combat bacterial resistance. The contribution of this work is that B. amyloliquefaciens was isolated from Heteroxenia fuscescens, Red Sea, Egypt. Moreover, the bacterial extract showed a broad spectrum with a potent antimicrobial activity.
Collapse
Affiliation(s)
- Hala S Helal
- Microbiology and Public Health Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.,National Organization for Drug Control and Research, Giza, Egypt
| | - Amro Hanora
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Rania Abdelmonem Khattab
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Hayam Hamouda
- National Organization for Drug Control and Research, Giza, Egypt
| | - Hamdallah Zedan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| |
Collapse
|
31
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
32
|
Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions. Sci Rep 2018; 8:3230. [PMID: 29459765 PMCID: PMC5818483 DOI: 10.1038/s41598-018-21507-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 11/08/2022] Open
Abstract
Kirromycin is the main product of the soil-dwelling Streptomyces collinus Tü 365. The elucidation of the biosynthetic pathway revealed that the antibiotic is synthesised via a unique combination of trans-/cis-AT type I polyketide synthases and non-ribosomal peptide synthetases (PKS I/NRPS). This was the first example of an assembly line integrating the three biosynthetic principles in one pathway. However, information about other enzymes involved in kirromycin biosynthesis remained scarce. In this study, genes encoding tailoring enzymes KirM, KirHVI, KirOI, and KirOII, and the putative crotonyl-CoA reductase/carboxylase KirN were deleted, complemented, and the emerged products analysed by HPLC-HRMS and MS/MS. Derivatives were identified in mutants ΔkirM, ΔkirHVI, ΔkirOI, and ΔkirOII. The products of ΔkirOI, ΔkirOII, and kirHVI were subjected to 2D-NMR for structure elucidation. Our results enabled functional assignment of those enzymes, demonstrating their involvement in kirromycin tailoring. In the ΔkirN mutant, the production of kirromycin was significantly decreased. The obtained data enabled us to clarify the putative roles of the studied enzymes, ultimately allowing us to fill many of the missing gaps in the biosynthesis of the complex antibiotic. Furthermore, this collection of mutants can serve as a toolbox for generation of new kirromycins.
Collapse
|
33
|
Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci Rep 2018; 8:1594. [PMID: 29371699 PMCID: PMC5785472 DOI: 10.1038/s41598-018-20018-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/11/2018] [Indexed: 11/25/2022] Open
Abstract
Streptomyces are a genus of Actinobacteria capable of producing structurally diverse natural products. Here we report the isolation and characterization of a biosynthetically talented Streptomyces (Streptomyces sp. SD85) from tropical mangrove sediments. Whole-genome sequencing revealed that Streptomyces sp. SD85 harbors at least 52 biosynthetic gene clusters (BGCs), which constitute 21.2% of the 8.6-Mb genome. When cultivated under lab conditions, Streptomyces sp. SD85 produces sceliphrolactam, a 26-membered polyene macrolactam with unknown biosynthetic origin. Genome mining yielded a putative sceliphrolactam BGC (sce) that encodes a type I modular polyketide synthase (PKS) system, several β-amino acid starter biosynthetic enzymes, transporters, and transcriptional regulators. Using the CRISPR/Cas9–based gene knockout method, we demonstrated that the sce BGC is essential for sceliphrolactam biosynthesis. Unexpectedly, the PKS system encoded by sce is short of one module required for assembling the 26-membered macrolactam skeleton according to the collinearity rule. With experimental data disfavoring the involvement of a trans-PKS module, the biosynthesis of sceliphrolactam seems to be best rationalized by invoking a mechanism whereby the PKS system employs an iterative module to catalyze two successive chain extensions with different outcomes. The potential violation of the collinearity rule makes the mechanism distinct from those of other polyene macrolactams.
Collapse
|
34
|
López Y, Cepas V, Soto SM. The Marine Ecosystem as a Source of Antibiotics. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Prezioso SM, Brown NE, Goldberg JB. Elfamycins: inhibitors of elongation factor-Tu. Mol Microbiol 2017; 106:22-34. [PMID: 28710887 DOI: 10.1111/mmi.13750] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
Abstract
Elfamycins are a relatively understudied group of antibiotics that target the essential process of translation through impairment of EF-Tu function. For the most part, the utility of these compounds has been as laboratory tools for the study of EF-Tu and the ribosome, as their poor pharmacokinetic profile and solubility has prevented implementation as therapeutic agents. However, due to the slowing of the antibiotic pipeline and the rapid emergence of resistance to approved antibiotics, this group is being reconsidered. Some researchers are using screens for novel naturally produced variants, while others are making directed, systematic chemical improvements on publically disclosed compounds. As an example of the latter approach, a GE2270 A derivative, LFF571, has completed phase 2 clinical trials, thus demonstrating the potential for elfamycins to become more prominent antibiotics in the future.
Collapse
Affiliation(s)
- Samantha M Prezioso
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole E Brown
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Structural and Functional Trends in Dehydrating Bimodules from trans-Acyltransferase Polyketide Synthases. Structure 2017; 25:1045-1055.e2. [PMID: 28625788 PMCID: PMC5553570 DOI: 10.1016/j.str.2017.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023]
Abstract
In an effort to uncover the structural motifs and biosynthetic logic of the relatively uncharacterized trans-acyltransferase polyketide synthases, we have begun the dissection of the enigmatic dehydrating bimodules common in these enzymatic assembly lines. We report the 1.98 Å resolution structure of a ketoreductase (KR) from the first half of a type A dehydrating bimodule and the 2.22 Å resolution structure of a dehydratase (DH) from the second half of a type B dehydrating bimodule. The KR, from the third module of the bacillaene synthase, and the DH, from the tenth module of the difficidin synthase, possess features not observed in structurally characterized homologs. The DH architecture provides clues for how it catalyzes a unique double dehydration. Correlations between the chemistries proposed for dehydrating bimodules and bioinformatic analysis indicate that type A dehydrating bimodules generally produce an α/β-cis alkene moiety, while type B dehydrating bimodules generally produce an α/β-trans, γ/δ-cis diene moiety.
Collapse
|
37
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
38
|
Musiol-Kroll EM, Zubeil F, Schafhauser T, Härtner T, Kulik A, McArthur J, Koryakina I, Wohlleben W, Grond S, Williams GJ, Lee SY, Weber T. Polyketide Bioderivatization Using the Promiscuous Acyltransferase KirCII. ACS Synth Biol 2017; 6:421-427. [PMID: 28206741 DOI: 10.1021/acssynbio.6b00341] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During polyketide biosynthesis, acyltransferases (ATs) are the essential gatekeepers which provide the assembly lines with precursors and thus contribute greatly to structural diversity. Previously, we demonstrated that the discrete AT KirCII from the kirromycin antibiotic pathway accesses nonmalonate extender units. Here, we exploit the promiscuity of KirCII to generate new kirromycins with allyl- and propargyl-side chains in vivo, the latter were utilized as educts for further modification by "click" chemistry.
Collapse
Affiliation(s)
- Ewa M. Musiol-Kroll
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building B220, 2800 Kgs. Lyngby, Denmark
- German Centre
for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Florian Zubeil
- Institut
für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Schafhauser
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Thomas Härtner
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Kulik
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - John McArthur
- North Carolina State University, Department of
Chemistry, Raleigh, North Carolina 27695-8204, United States
| | - Irina Koryakina
- North Carolina State University, Department of
Chemistry, Raleigh, North Carolina 27695-8204, United States
| | - Wolfgang Wohlleben
- German Centre
for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Stephanie Grond
- Institut
für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Gavin J. Williams
- North Carolina State University, Department of
Chemistry, Raleigh, North Carolina 27695-8204, United States
| | - Sang Yup Lee
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building B220, 2800 Kgs. Lyngby, Denmark
- Department
of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tilmann Weber
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building B220, 2800 Kgs. Lyngby, Denmark
- German Centre
for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
40
|
Kuo J, Lynch SR, Liu CW, Xiao X, Khosla C. Partial In Vitro Reconstitution of an Orphan Polyketide Synthase Associated with Clinical Cases of Nocardiosis. ACS Chem Biol 2016; 11:2636-41. [PMID: 27384917 DOI: 10.1021/acschembio.6b00489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although a few well-characterized polyketide synthases (PKSs) have been functionally reconstituted in vitro from purified protein components, the use of this strategy to decode "orphan" assembly line PKSs has not been described. To begin investigating a PKS found only in Nocardia strains associated with clinical cases of nocardiosis, we reconstituted in vitro its five terminal catalytic modules. In the presence of octanoyl-CoA, malonyl-CoA, NADPH, and S-adenosyl methionine, this pentamodular PKS system yielded unprecedented octaketide and heptaketide products whose structures were partially elucidated using mass spectrometry and NMR spectroscopy. The PKS has several notable features, including a "split, stuttering" module and a terminal reductive release mechanism. Our findings pave the way for further analysis of this unusual biosynthetic gene cluster whose natural product may enhance the infectivity of its producer strains in human hosts.
Collapse
Affiliation(s)
- James Kuo
- Department of Chemical Engineering, ‡Department of Chemistry, §Stanford Magnetic
Resonance Laboratory, and ∥Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Stephen R. Lynch
- Department of Chemical Engineering, ‡Department of Chemistry, §Stanford Magnetic
Resonance Laboratory, and ∥Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Corey W. Liu
- Department of Chemical Engineering, ‡Department of Chemistry, §Stanford Magnetic
Resonance Laboratory, and ∥Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Xirui Xiao
- Department of Chemical Engineering, ‡Department of Chemistry, §Stanford Magnetic
Resonance Laboratory, and ∥Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department of Chemical Engineering, ‡Department of Chemistry, §Stanford Magnetic
Resonance Laboratory, and ∥Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
41
|
Isolation and structural determination of a new antibacterial compound demethyl-L-681,217 from Streptomyces cattleya. J Antibiot (Tokyo) 2016; 69:839-842. [PMID: 27220410 DOI: 10.1038/ja.2016.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/08/2022]
|
42
|
Carlier A, Fehr L, Pinto-Carbó M, Schäberle T, Reher R, Dessein S, König G, Eberl L. The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. Environ Microbiol 2016; 18:2507-22. [PMID: 26663534 DOI: 10.1111/1462-2920.13184] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Abstract
A majority of Ardisia species harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted hereditarily and have not yet been cultured outside of their host. Because the plants cannot develop beyond the seedling stage without their symbionts, the symbiosis is considered obligatory. We sequenced for the first time the genome of Candidatus Burkholderia crenata (Ca. B. crenata), the leaf nodule symbiont of Ardisia crenata. The genome of Ca. B. crenata is the smallest Burkholderia genome to date. It contains a large amount of insertion sequences and pseudogenes and displays features consistent with reductive genome evolution. The genome does not encode functions commonly associated with plant symbioses such as nitrogen fixation and plant hormone metabolism. However, we identified unique genes with a predicted role in secondary metabolism in the genome of Ca. B. crenata. Specifically, we provide evidence that the bacterial symbionts are responsible for the synthesis of compound FR900359, a cyclic depsipeptide with biomedical properties previously isolated from leaves of A. crenata.
Collapse
Affiliation(s)
- Aurelien Carlier
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland.,Department of Microbiology, University of Ghent, 9000, Gent, Belgium
| | - Linda Fehr
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland
| | - Marta Pinto-Carbó
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland
| | - Till Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Raphael Reher
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Steven Dessein
- Plant Conservation and Population Biology, KU Leuven, 3001, Leuven, Belgium.,National Botanic Garden of Belgium, 1860, Meise, Belgium
| | - Gabriele König
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Leo Eberl
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland
| |
Collapse
|
43
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
44
|
Jungmann K, Jansen R, Gerth K, Huch V, Krug D, Fenical W, Müller R. Two of a Kind--The Biosynthetic Pathways of Chlorotonil and Anthracimycin. ACS Chem Biol 2015; 10:2480-90. [PMID: 26348978 DOI: 10.1021/acschembio.5b00523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorotonil A is a novel polyketide isolated from the myxobacterium Sorangium cellulosum So ce1525 that features a unique gem-dichloro-1,3-dione moiety. It exhibits potent bioactivity, most notably against the problematic malaria pathogen Plasmodium falciparum in the nanomolar range. In addition, strong antibacterial and moderate antifungal activity were determined. The outstanding biological activity of chlorotonil A as well as its unusual chemical structure triggered our interest in elucidating its biosynthesis, a prerequisite for alteration of the scaffold by synthetic biology approaches. This endeavor was facilitated by a recent report describing the strikingly similar structure of anthracimycin from a marine streptomycete, a compound of considerable interest due to its potent antibacterial activity. In this study, we report the identification and characterization of the chlorotonil A biosynthetic gene cluster from So ce1525 and compare it with that for anthracimycin biosynthesis. Access to both gene clusters allowed us to highlight commonalities between the two pathways and revealed striking differences, some of which can plausibly explain the structural differences observed between these intriguing natural products.
Collapse
Affiliation(s)
- Katrin Jungmann
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| | - Rolf Jansen
- Helmholtz Centre for Infection Research, Department of Microbial Drugs, Braunschweig, Germany
| | - Klaus Gerth
- Helmholtz Centre for Infection Research, Department of Microbial Drugs, Braunschweig, Germany
| | - Volker Huch
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| | - Daniel Krug
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| | - William Fenical
- Center for Marine
Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States
| | - Rolf Müller
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
45
|
Iftime D, Jasyk M, Kulik A, Imhoff JF, Stegmann E, Wohlleben W, Süssmuth RD, Weber T. Streptocollin, a Type IV Lanthipeptide Produced by Streptomyces collinus Tü 365. Chembiochem 2015; 16:2615-23. [PMID: 26437689 DOI: 10.1002/cbic.201500377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/10/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of class IV lanthipeptides. Insertion of the constitutive ermE* promoter upstream of the lanthipeptide synthetase gene stcL resulted in peptide production. The streptocollin gene cluster was heterologously expressed in S. coelicolor M1146 and M1152 with 3.5- and 5.5-fold increased yields, respectively. The structure and ring topology of streptocollin were determined by high resolution MS/MS analysis. Streptocollin contains four macrocyclic rings, with one lanthionine and three methyllanthionine residues. To the best of our knowledge, this is the first report on the isolation of a class IV lanthipeptide in preparative amounts, and on the successful heterologous expression of a class IV lanthipeptide gene cluster.
Collapse
Affiliation(s)
- Dumitrita Iftime
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Martin Jasyk
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Andreas Kulik
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Johannes F Imhoff
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Evi Stegmann
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Tilmann Weber
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany. .,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany. .,The Novo Nordisk foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
46
|
Iftime D, Kulik A, Härtner T, Rohrer S, Niedermeyer THJ, Stegmann E, Weber T, Wohlleben W. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365. J Ind Microbiol Biotechnol 2015; 43:277-91. [PMID: 26433383 DOI: 10.1007/s10295-015-1685-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 11/27/2022]
Abstract
Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus Tü 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.
Collapse
Affiliation(s)
- Dumitrita Iftime
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Andreas Kulik
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Thomas Härtner
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Sabrina Rohrer
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Timo Horst Johannes Niedermeyer
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Evi Stegmann
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Tilmann Weber
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970, Hørsholm, Denmark
| | - Wolfgang Wohlleben
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
47
|
Matilla MA, Leeper FJ, Salmond GPC. Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environ Microbiol 2015; 17:2993-3008. [PMID: 25753587 PMCID: PMC4552970 DOI: 10.1111/1462-2920.12839] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 02/02/2023]
Abstract
Polyketides represent an important class of bioactive natural products with a broad range of biological activities. We identified recently a large trans-acyltransferase (AT) polyketide synthase gene cluster responsible for the biosynthesis of the antifungal, anti-oomycete and antitumor haterumalide, oocydin A (ooc). Using genome sequencing and comparative genomics, we show that the ooc gene cluster is widespread within biocontrol and phytopathogenic strains of the enterobacteria, Serratia and Dickeya. The analysis of in frame deletion mutants confirmed the role of a hydroxymethylglutaryl-coenzyme A synthase cassette, three flavin-dependent tailoring enzymes, a free-standing acyl carrier protein and two hypothetical proteins in oocydin A biosynthesis. The requirement of the three trans-acting AT domains for the biosynthesis of the macrolide was also demonstrated. Expression of the ooc gene cluster was shown to be positively regulated by an N-acyl-L-homoserine lactone-based quorum sensing system, but operating in a strain-dependent manner. At a post-transcriptional level, the RNA chaperone, Hfq, plays a key role in oocydin A biosynthesis. The Hfq-dependent regulation is partially mediated by the stationary phase sigma factor, RpoS, which was also shown to positively regulate the synthesis of the macrolide. Our results reveal differential regulation of the divergently transcribed ooc transcriptional units, highlighting the complexity of oocydin A production.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
| | - Finian J Leeper
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW, UK
| | - George P C Salmond
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK,*For correspondence. E-mail ; Tel. +44 (0)1223 333650; Fax +44 (0)1223 766108
| |
Collapse
|
48
|
Gui C, Li Q, Mo X, Qin X, Ma J, Ju J. Discovery of a New Family of Dieckmann Cyclases Essential to Tetramic Acid and Pyridone-Based Natural Products Biosynthesis. Org Lett 2015; 17:628-31. [PMID: 25621700 DOI: 10.1021/ol5036497] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun Gui
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Qinglian Li
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xuhua Mo
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Shandong
Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangjing Qin
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Junying Ma
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
49
|
Dunn BJ, Watts KR, Robbins T, Cane DE, Khosla C. Comparative analysis of the substrate specificity of trans- versus cis-acyltransferases of assembly line polyketide synthases. Biochemistry 2014; 53:3796-806. [PMID: 24871074 PMCID: PMC4067149 DOI: 10.1021/bi5004316] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Due
to their pivotal role in extender unit selection during polyketide
biosynthesis, acyltransferase (AT) domains are important engineering
targets. A subset of assembly line polyketide synthases (PKSs) are
serviced by discrete, trans-acting ATs. Theoretically,
these trans-ATs can complement an inactivated cis-AT, promoting introduction of a noncognate extender
unit. This approach requires a better understanding of the substrate
specificity and catalytic mechanism of naturally occurring trans-ATs. We kinetically analyzed trans-ATs from the disorazole and kirromycin synthases and compared them
to a representative cis-AT from the 6-deoxyerythronolide
B synthase (DEBS). During transacylation, the disorazole AT favored
malonyl-CoA over methylmalonyl-CoA by >40000-fold, whereas the
kirromycin
AT favored ethylmalonyl-CoA over methylmalonyl-CoA by 20-fold. Conversely,
the disorazole AT had broader specificity than its kirromycin counterpart
for acyl carrier protein (ACP) substrates. The presence of the ACP
had little effect on the specificity (kcat/KM) of the cis-AT domain
for carboxyacyl-CoA substrates but had a marked influence on the corresponding
specificity parameters for the trans-ATs, suggesting
that these enzymes do not act strictly by a canonical ping-pong mechanism.
To investigate the relevance of the kinetic analysis of isolated ATs
in the context of intact PKSs, we complemented an in vitro AT-null DEBS assembly line with either trans-AT.
Whereas the disorazole AT efficiently complemented the mutant PKS
at substoichiometric protein ratios, the kirromycin AT was considerably
less effective. Our findings suggest that knowledge of both carboxyacyl-CoA
and ACP specificity is critical to the choice of a trans-AT in combination with a mutant PKS to generate novel polyketides.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, ‡Department of Chemistry, and ∥Department of Biochemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
50
|
Ye Z, Musiol EM, Weber T, Williams GJ. Reprogramming acyl carrier protein interactions of an Acyl-CoA promiscuous trans-acyltransferase. ACTA ACUST UNITED AC 2014; 21:636-46. [PMID: 24726832 DOI: 10.1016/j.chembiol.2014.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
Abstract
Protein interactions between acyl carrier proteins (ACPs) and trans-acting acyltransferase domains (trans-ATs) are critical for regioselective extender unit installation by many polyketide synthases, yet little is known regarding the specificity of these interactions, particularly for trans-ATs with unusual extender unit specificities. Currently, the best-studied trans-AT with nonmalonyl specificity is KirCII from kirromycin biosynthesis. Here, we developed an assay to probe ACP interactions based on leveraging the extender unit promiscuity of KirCII. The assay allows us to identify residues on the ACP surface that contribute to specific recognition by KirCII. This information proved sufficient to modify a noncognate ACP from a different biosynthetic system to be a substrate for KirCII. The findings form a foundation for further understanding the specificity of trans-AT:ACP protein interactions and for engineering modular polyketide synthases to produce analogs.
Collapse
Affiliation(s)
- Zhixia Ye
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Ewa M Musiol
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tilmann Weber
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Gavin J Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|