1
|
Nemanichvili N, Tomris I, Turner HL, McBride R, Grant OC, van der Woude R, Aldosari MH, Pieters RJ, Woods RJ, Paulson JC, Boons GJ, Ward AB, Verheije MH, de Vries RP. Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. J Mol Biol 2018; 431:842-856. [PMID: 30597163 DOI: 10.1016/j.jmb.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
Influenza A virus carries hundreds of trimeric hemagglutinin (HA) proteins on its viral envelope that interact with various sialylated glycans on a host cell. This interaction represents a multivalent binding event that is present in all the current receptor binding assays, including those employing viruses or precomplexed HA trimers. To study the nature of such multivalent binding events, we fused a superfolder green fluorescent protein (sfGFP) to the C-terminus of trimeric HA to allow for direct visualization of HA-receptor interactions without the need for additional fluorescent antibodies. The multivalent binding of the HA-sfGFP proteins was studied using glycan arrays and tissue staining. The HA-sfGFP with human-type receptor specificity was able to bind to a glycan array as the free trimer. In contrast, the HA-sfGFP with avian-type receptor specificity required multimerization by antibodies before binding to glycans on the glycan array could be observed. Interestingly, multimerization was not required for binding to tissues. The array data may be explained by the possible bivalent binding mode of a single human-specific HA trimer to complex branched N-glycans, which is not possible for the avian-specific HA due to geometrical constrains of the binding sites. The fact that this specificity pattern changes upon interaction with a cell surface probably represents the enhanced amount of glycan orientations and variable densities versus those on the glycan array.
Collapse
Affiliation(s)
- Nikoloz Nemanichvili
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands
| | - Ilhan Tomris
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Mohammed H Aldosari
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Drug sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Monique H Verheije
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands.
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Murugan V, Parasuraman P, Selvin JFA, Gromiha MM, Fukui K, Veluraja K. Theoretical investigation on the binding specificity of fluorinated sialyldisaccharides Neu5Acα(2–3)Gal and Neu5Acα(2–6)Gal with influenza hemagglutinin H1 – A Molecular Dynamics Study. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1365153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Veeramani Murugan
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Ponnusamy Parasuraman
- Department of Physical Sciences, Bannari Amman Institute of Technology, Erode, Tamilnadu, India
| | | | - Michael M. Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Kazuhiko Fukui
- National Institute of Advanced Industrial Science and Technology (AIST), Molecular Profiling Research Center for Drug Discovery (molprof), 2-4-7 Aomi, Koto-ku, Tokyo, Japan
| | | |
Collapse
|
3
|
Lipsitch M, Barclay W, Raman R, Russell CJ, Belser JA, Cobey S, Kasson PM, Lloyd-Smith JO, Maurer-Stroh S, Riley S, Beauchemin CA, Bedford T, Friedrich TC, Handel A, Herfst S, Murcia PR, Roche B, Wilke CO, Russell CA. Viral factors in influenza pandemic risk assessment. eLife 2016; 5. [PMID: 27834632 PMCID: PMC5156527 DOI: 10.7554/elife.18491] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk.
Collapse
Affiliation(s)
- Marc Lipsitch
- Center for Communicable Disease Dynamics, Harvard T. H Chan School of Public Health, Boston, United States.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Wendy Barclay
- Division of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Rahul Raman
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jessica A Belser
- Centers for Disease Control and Prevention, Atlanta, United States
| | - Sarah Cobey
- Department of Ecology and Evolutionary Biology, University of Chicago, Chicago, United States
| | - Peter M Kasson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.,Fogarty International Center, National Institutes of Health, Bethesda, United States
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore.,National Public Health Laboratory, Communicable Diseases Division, Ministry of Health, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, United States
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, United States
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pablo R Murcia
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
| | | | - Claus O Wilke
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States.,Department of Integrative Biology, The University of Texas at Austin, Austin, United States
| | - Colin A Russell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Glycan-protein interactions in viral pathogenesis. Curr Opin Struct Biol 2016; 40:153-162. [PMID: 27792989 PMCID: PMC5526076 DOI: 10.1016/j.sbi.2016.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022]
Abstract
The surfaces of host cells and viruses are decorated by complex glycans, which play multifaceted roles in the dynamic interplay between the virus and the host including viral entry into host cell, modulation of proteolytic cleavage of viral proteins, recognition and neutralization of virus by host immune system. These roles are mediated by specific multivalent interactions of glycans with their cognate proteins (generally termed as glycan-binding proteins or GBPs or lectins). The advances in tools and technologies to chemically synthesize and structurally characterize glycans and glycan-GBP interactions have offered several insights into the role of glycan-GBP interactions in viral pathogenesis and have presented opportunities to target these interactions for novel antiviral therapeutic or vaccine strategies. This review covers aspects of role of host cell surface glycan receptors and viral surface glycans in viral pathogenesis and offers perspectives on how to employ various analytical tools to target glycan-GBP interactions.
Collapse
|
5
|
Wang J, Cheng B, Li J, Zhang Z, Hong W, Chen X, Chen PR. Chemical Remodeling of Cell-Surface Sialic Acids through a Palladium-Triggered Bioorthogonal Elimination Reaction. Angew Chem Int Ed Engl 2015; 54:5364-8. [DOI: 10.1002/anie.201409145] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/11/2015] [Indexed: 01/01/2023]
|
6
|
Wang J, Cheng B, Li J, Zhang Z, Hong W, Chen X, Chen PR. Chemical Remodeling of Cell-Surface Sialic Acids through a Palladium-Triggered Bioorthogonal Elimination Reaction. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus. Trends Microbiol 2014; 22:632-41. [PMID: 25108746 DOI: 10.1016/j.tim.2014.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
Influenza A viruses are rapidly evolving pathogens with the potential for novel strains to emerge and result in pandemic outbreaks in humans. Some avian-adapted subtypes have acquired the ability to bind to human glycan receptors and cause severe infections in humans but have yet to adapt to and transmit between humans. The emergence of new avian strains and their ability to infect humans has confounded their distinction from circulating human virus strains through linking receptor specificity to human adaptation. Herein we review the various structural and biochemical analyses of influenza hemagglutinin-glycan receptor interactions. We provide our perspectives on how receptor specificity can be used to monitor evolution of the virus to adapt to human hosts so as to facilitate improved surveillance and pandemic preparedness.
Collapse
|
8
|
Yoo E. Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu. Biomol Ther (Seoul) 2014; 22:93-9. [PMID: 24753813 PMCID: PMC3975476 DOI: 10.4062/biomolther.2014.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/08/2022] Open
Abstract
The interaction between viral HA (hemagglutinin) and oligosaccharide of the host plays an important role in the infection and transmission of avian and human flu viruses. Until now, this interaction has been classified by sialyl(α2-3) or sialyl(α2-6) linkage specificity of oligosaccharide moieties for avian or human virus, respectively. In the case of H5N1 and newly mutated flu viruses, classification based on the linkage type does not correlate with human infection and human-to-human transmission of these viruses. It is newly suggested that flu infection and transmission to humans require high affinity binding to the extended conformation with long length sialyl(α2-6)galactose containing oligosaccharides. On the other hand, the avian flu virus requires folded conformation with sialyl(α2-3) or short length sialyl(α2-6) containing trisaccharides. This suggests a potential future direction for the development of new species-specific antiviral drugs to prevent and treat pandemic flu.
Collapse
Affiliation(s)
- Eunsun Yoo
- College of Health Science, Honam University, Gwangju 506-714, Republic of Korea
| |
Collapse
|
9
|
Elli S, Macchi E, Rudd TR, Raman R, Sassaki G, Viswanathan K, Yates EA, Shriver Z, Naggi A, Torri G, Sasisekharan R, Guerrini M. Insights into the human glycan receptor conformation of 1918 pandemic hemagglutinin-glycan complexes derived from nuclear magnetic resonance and molecular dynamics studies. Biochemistry 2014; 53:4122-35. [PMID: 24878075 PMCID: PMC4082378 DOI: 10.1021/bi500338r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
The glycan receptor binding and specificity
of influenza A viral
hemagglutinin (HA) are critical for virus infection and transmission
in humans. However, ambiguities in the interpretation of the receptor
binding specificity of hemagglutinin from human- and avian-adapted
viruses have prevented an understanding of its relationship with aerosol
transmissibility, an exclusive property of human-adapted viruses.
A previous conformational study, which we performed, indicated that
human and avian receptors sample distinct conformations in solution.
On the basis of detailed nuclear magnetic resonance (NMR) studies
provided herein, we offer evidence of the distinct structural constraints
imposed by hemagglutinin receptor binding sites on the glycan conformational
space upon binding. The hemagglutinin from the SC18 virus, which has
efficient aerosol transmissibility in humans (human-adapted), imposed
the most stringent constraints on the conformational space of the
human glycan receptor (LSTc), compared to single (NY18) or double
(AV18) amino acid HA mutants, a property correlating to the ligand–HA
binding strength. This relationship was also observed for the avian-adapted
HA, where the high affinity binding partner, AV18, imposed the most
stringent conformational constraints on the avian receptor, compared
to those imposed by NY18. In particular, it is interesting to observe
how different HAs when binding to human or avian glycosidic receptors
impose significantly different conformational states, in terms of
the states sampled by the glycosidic backbone and/or the entire molecule
shape (linear or bent), when compared to the corresponding unbound
glycans. Significantly, we delineate a “characteristic NMR
signature” for the human adapted hemagglutinin (SC18) binding
to human glycan receptors. Therefore, the conformational space constraints
imposed by the hemagglutinin receptor binding site provide a characteristic
signature that could be a useful tool for the surveillance of human
adaptation of other (such as H7N9 and H5N1) deadly influenza viruses.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni" , Via Giuseppe Colombo 81, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Sassaki GL, Elli S, Rudd TR, Macchi E, Yates EA, Naggi A, Shriver Z, Raman R, Sasisekharan R, Torri G, Guerrini M. Human (α2→6) and avian (α2→3) sialylated receptors of influenza A virus show distinct conformations and dynamics in solution. Biochemistry 2013; 52:7217-7230. [PMID: 24015903 DOI: 10.1021/bi400677n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential interactions between influenza A virus protein hemagglutinin (HA) and α2→3 (avian) or α2→6 (human) sialylated glycan receptors play an important role in governing host specificity and adaptation of the virus. Previous analysis of HA-glycan interactions with trisaccharides showed that, in addition to the terminal sialic acid linkage, the conformation and topology of the glycans, while they are bound to HA, are key factors in regulating these interactions. Here, the solution conformation and dynamics of two representative avian and human glycan pentasaccharide receptors [LSTa, Neu5Ac-α(2→3)-Gal-β(1→3)-GlcNAc-β(1→3)-Gal-β(1→4)-Glc; LSTc, (Neu5Ac-α(2→6)-Gal-β(1→4)-GlcNAc-β(1→3)-Gal-β(1→4)-Glc] have been explored using nuclear magnetic resonance and molecular dynamics simulation. Analyses demonstrate that, in solution, human and avian receptors sample distinct conformations, topologies, and dynamics. These unique features of avian and human receptors in solution could represent distinct molecular characteristics for recognition by HA, thereby providing the HA-glycan interaction specificity in influenza.
Collapse
Affiliation(s)
- Guilherme L Sassaki
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo, 81, Milano, 20133 Italy
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo, 81, Milano, 20133 Italy
| | - Timothy R Rudd
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo, 81, Milano, 20133 Italy
| | - Eleonora Macchi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo, 81, Milano, 20133 Italy
| | - Edwin A Yates
- Department of Structural and Chemical Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo, 81, Milano, 20133 Italy
| | - Zachary Shriver
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rahul Raman
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - R Sasisekharan
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Giangiacomo Torri
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo, 81, Milano, 20133 Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo, 81, Milano, 20133 Italy
| |
Collapse
|
12
|
Tharakaraman K, Raman R, Viswanathan K, Stebbins NW, Jayaraman A, Krishnan A, Sasisekharan V, Sasisekharan R. Structural determinants for naturally evolving H5N1 hemagglutinin to switch its receptor specificity. Cell 2013; 153:1475-85. [PMID: 23746829 DOI: 10.1016/j.cell.2013.05.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/09/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
Of the factors governing human-to-human transmission of the highly pathogenic avian-adapted H5N1 virus, the most critical is the acquisition of mutations on the viral hemagglutinin (HA) to "quantitatively switch" its binding from avian to human glycan receptors. Here, we describe a structural framework that outlines a necessary set of H5 HA receptor-binding site (RBS) features required for the H5 HA to quantitatively switch its preference to human receptors. We show here that the same RBS HA mutations that lead to aerosol transmission of A/Vietnam/1203/04 and A/Indonesia/5/05 viruses, when introduced in currently circulating H5N1, do not lead to a quantitative switch in receptor preference. We demonstrate that HAs from circulating clades require as few as a single base pair mutation to quantitatively switch their binding to human receptors. The mutations identified by this study can be used to monitor the emergence of strains having human-to-human transmission potential.
Collapse
Affiliation(s)
- Kannan Tharakaraman
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Srinivasan K, Raman R, Jayaraman A, Viswanathan K, Sasisekharan R. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin. PLoS One 2013; 8:e59550. [PMID: 23626667 PMCID: PMC3634032 DOI: 10.1371/journal.pone.0059550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA) and neuraminidase (NA) genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1) subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Binding Sites
- Evolution, Molecular
- Ferrets/virology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H9N2 Subtype/chemistry
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/metabolism
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/virology
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Protein Binding
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/virology
- Receptors, Virus/chemistry
- Receptors, Virus/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Tissue Culture Techniques
- Trachea/metabolism
- Trachea/virology
Collapse
Affiliation(s)
- Karunya Srinivasan
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Rahul Raman
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Akila Jayaraman
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Karthik Viswanathan
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Ram Sasisekharan
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Quantitative description of glycan-receptor binding of influenza A virus H7 hemagglutinin. PLoS One 2013; 8:e49597. [PMID: 23437033 PMCID: PMC3577880 DOI: 10.1371/journal.pone.0049597] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.
Collapse
|
15
|
Chen W, Sun S, Li Z. Two glycosylation sites in H5N1 influenza virus hemagglutinin that affect binding preference by computer-based analysis. PLoS One 2012; 7:e38794. [PMID: 22719948 PMCID: PMC3375263 DOI: 10.1371/journal.pone.0038794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/10/2012] [Indexed: 11/25/2022] Open
Abstract
Increasing numbers of H5N1 influenza viruses (IVs) are responsible for human deaths, especially in North Africa and Southeast Asian. The binding of hemagglutinin (HA) on the viral surface to host sialic acid (SA) receptors is a requisite step in the infection process. Phylogenetic analysis reveals that H5N1 viruses can be divided into 10 clades based on their HA sequences, with most human IVs centered from clade 1 and clade 2.1 to clade 2.3. Protein sequence alignment in various clades indicates the high conservation in the receptor-binding domains (RBDs) is essential for binding with the SA receptor. Two glycosylation sites, 158N and 169N, also participate in receptor recognition. In the present work, we attempted to construct a serial H5N1 HA models including diverse glycosylated HAs to simulate the binding process with various SA receptors in silico. As the SA-α-2,3-Gal and SA-α-2,6-Gal receptor adopted two distinctive topologies, straight and fishhook-like, respectively, the presence of N-glycans at 158N would decrease the affinity of HA for all of the receptors, particularly SA-α-2,6-Gal analogs. The steric clashes of the huge glycans shown at another glycosylation site, 169N, located on an adjacent HA monomer, would be more effective in preventing the binding of SA-α-2,3-Gal analogs.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, People’s Republic of China
| | - Shisheng Sun
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University, Baltimore, United States of America
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, People’s Republic of China
| |
Collapse
|
16
|
Pabbaraju K, Wong S, Drews SJ. Rethinking approaches to improve the utilization of nucleic acid amplification tests for detection and characterization of influenza A in diagnostic and reference laboratories. Future Microbiol 2011; 6:1443-60. [PMID: 22122441 DOI: 10.2217/fmb.11.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Influenza A virus (IFVA) is a significant cause of respiratory infections worldwide and was also responsible for a recent pandemic in 2009. Laboratory identification of IFVA can guide antiviral therapy, assist in cohorting of patients and prevent antibiotic use. Characterization of the virus can track the emergence of novel strains, identify resistance and determine how circulating strains match with vaccine components. The gold standard for detection and characterization of IFVA is nucleic acid amplification technology (e.g., reverse transcriptase PCR [RT-PCR]), which must contend with a constantly evolving viral genome. Although molecular technology has been available for over two decades, there is still an operational gap between assay design and utilization of these tests for the diagnosis and characterization of IFVA. This review will discuss issues surrounding the implementation and use of RT-PCR for the identification and characterization of IFVA, and speculate on why RT-PCR has not been used more widely in clinical laboratories or moved closer to the patient. Newer, less widely used technologies that may change our laboratory practices will be identified and the authors will close with an attempt to identify some future applications of RT-PCR-based technologies for the detection and characterization of IFVA.
Collapse
Affiliation(s)
- Kanti Pabbaraju
- Provincial Laboratory for Public Health, Microbiology, 3030 Hospital Drive NW, Calgary, Alberta T2N 4W4, Canada
| | | | | |
Collapse
|
17
|
Aich U, Beckley N, Shriver Z, Raman R, Viswanathan K, Hobbie S, Sasisekharan R. Glycomics-based analysis of chicken red blood cells provides insight into the selectivity of the viral agglutination assay. FEBS J 2011; 278:1699-712. [PMID: 21410647 DOI: 10.1111/j.1742-4658.2011.08096.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Agglutination of red blood cells (RBCs), including chicken RBCs (cRBCs), has been used extensively to estimate viral titer, to screen glycan-receptor binding preference, and to assess the protective response of vaccines. Although this assay enjoys widespread use, some virus strains do not agglutinate RBCs. To address these underlying issues and to increase the usefulness of cRBCs as tools for studying viruses, such as influenza, we analyzed the cell surface N-glycans of cRBCs. On the basis of the results obtained from complementary analytical strategies, including MS, 1D and 2D-NMR spectroscopy, exoglycosidase digestions, and HPLC profiling, we report the major glycan structures present on cRBCs. By comparing the glycan structures of cBRCs with those of representative human upper respiratory cells, we offer a possible explanation for the fact that certain influenza strains do not agglutinate cRBCs, using specific human-adapted influenza hemagglutinins as examples. Finally, recent understanding of the role of various glycan structures in high affinity binding to influenza hemagglutinins provides context to our findings. These results illustrate that the field of glycomics can provide important information with respect to the experimental systems used to characterize, detect and study viruses.
Collapse
Affiliation(s)
- Udayanath Aich
- Harvard-MIT Division of Health Sciences & Technology, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Xu HL, Li CY, He XM, Niu KQ, Peng H, Li WW, Zhou CC, Bao JK. Molecular modeling, docking and dynamics simulations of GNA-related lectins for potential prevention of influenza virus (H1N1). J Mol Model 2011; 18:27-37. [PMID: 21445708 DOI: 10.1007/s00894-011-1022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/13/2011] [Indexed: 11/24/2022]
Abstract
The Galanthus nivalis agglutinin (GNA)-related lectin family exhibit significant anti-HIV and anti-HSV properties that are closely related to their carbohydrate-binding activities. However, there is still no conclusive evidence that GNA-related lectins possess anti-influenza properties. The hemagglutinin (HA) of influenza virus is a surface protein that is involved in binding host cell sialic acid during the early stages of infection. Herein, we studied the 3D-QSARs (three-dimensional quantitative structure-activity relationships) of lectin- and HA-sialic acid by molecular modeling. The affinities and stabilities of lectin- and HA-sialic acid complexes were also assessed by molecular docking and molecular dynamics simulations. Finally, anti-influenza GNA-related lectins that possess stable conformations and higher binding affinities for sialic acid than HAs of human influenza virus were screened, and a possible mechanism was proposed. Accordingly, our results indicate that some GNA-related lectins, such as Yucca filamentosa lectin and Polygonatum cyrtonema lectin, could act as drugs that prevent influenza virus infection via competitive binding. In conclusion, the GNA-related lectin family may be helpful in the design of novel candidate agents for preventing influenza A infection through the use of competitive combination against sialic acid specific viral infection.
Collapse
Affiliation(s)
- Huai-long Xu
- School of Life Sciences, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Viswanathan K, Koh X, Chandrasekaran A, Pappas C, Raman R, Srinivasan A, Shriver Z, Tumpey TM, Sasisekharan R. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin. PLoS One 2010; 5:e13768. [PMID: 21060797 PMCID: PMC2966429 DOI: 10.1371/journal.pone.0013768] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/07/2010] [Indexed: 12/02/2022] Open
Abstract
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.
Collapse
Affiliation(s)
- Karthik Viswanathan
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Xiaoying Koh
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Aarthi Chandrasekaran
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Claudia Pappas
- Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Rahul Raman
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Aravind Srinivasan
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Zachary Shriver
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Terrence M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Ram Sasisekharan
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|