1
|
Nakamura A, Goto Y, Sugiyama H, Tsukiji S, Aoki K. Chemogenetic Manipulation of Endogenous Proteins in Fission Yeast Using a Self-Localizing Ligand-Induced Protein Translocation System. ACS Chem Biol 2023; 18:2506-2515. [PMID: 37990966 DOI: 10.1021/acschembio.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cells sense extracellular stimuli through membrane receptors and process information through an intracellular signaling network. Protein translocation triggers intracellular signaling, and techniques such as chemically induced dimerization (CID) have been used to manipulate signaling pathways by altering the subcellular localization of signaling molecules. However, in the fission yeast Schizosaccharomyces pombe, the commonly used FKBP-FRB system has technical limitations, and therefore, perturbation tools with low cytotoxicity and high temporal resolution are needed. We here applied our recently developed self-localizing ligand-induced protein translocation (SLIPT) system to S. pombe and successfully perturbed several cell cycle-related proteins. The SLIPT system utilizes self-localizing ligands to recruit binding partners to specific subcellular compartments such as the plasma membrane or nucleus. We optimized the self-localizing ligands to maintain the long-term recruitment of target molecules to the plasma membrane. By knocking in genes encoding the binding partners for self-localizing ligands, we observed changes in the localization of several endogenous molecules and found perturbations in the cell cycle and associated phenotypes. This study demonstrates the effectiveness of the SLIPT system as a chemogenetic tool for rapid perturbation of endogenous molecules in S. pombe, providing a valuable approach for studying intracellular signaling and cell cycle regulation with an improved temporal resolution.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hironori Sugiyama
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
2
|
A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation. Cell Chem Biol 2022; 29:1446-1464.e10. [PMID: 35835118 DOI: 10.1016/j.chembiol.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 12/31/2022]
Abstract
Chemogenetic methods enabling the rapid translocation of specific proteins to the plasma membrane (PM) in a single protein-single ligand manner are useful tools in cell biology. We recently developed a technique, in which proteins fused to an Escherichia coli dihydrofolate reductase (eDHFR) variant carrying N-terminal hexalysine residues are recruited from the cytoplasm to the PM using the synthetic myristoyl-d-Cys-tethered trimethoprim (mDcTMP) ligand. However, this system achieved PM-specific translocation only when the eDHFR tag was fused to the N terminus of proteins, thereby limiting its application. In this report, we engineered a universal PM-targeting tag for mDcTMP-induced protein translocation by grafting the hexalysine motif into an intra-loop region of eDHFR. We demonstrate the broad applicability of the new loop-engineered eDHFR tag and mDcTMP pair for conditional PM recruitment and activation of various tag-fused signaling proteins with different fusion configurations and for reversibly and repeatedly controlling protein localization to generate synthetic signal oscillations.
Collapse
|
3
|
Yoshii T, Oki C, Tsukiji S. A photoactivatable self-localizing ligand with improved photosensitivity for chemo-optogenetic control of protein localization in living cells. Bioorg Med Chem Lett 2022; 72:128865. [PMID: 35738351 DOI: 10.1016/j.bmcl.2022.128865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Light-mediated control of protein localization in living cells is a powerful approach for manipulating and probing complex biological systems. By incorporating a classical 6-nitroveratryloxycarbonyl (NVOC) caging group into the inner plasma membrane (PM)-localizing trimethoprim ligand, we recently developed a photoactivatable self-localizing ligand (paSL) that can rapidly recruit engineered Escherichia coli dihydrofolate reductase-fusion proteins from the cytoplasm to the PM upon violet (ca. 400 nm)-light illumination. However, because the photosensitivity of the NVOC-caged paSL is low to moderate, photouncaging experiments require high light intensity, which may not be ideal for many cell applications. Herein, we present a new 7-diethylaminocoumarin (DEAC)-caged paSL with improved photosensitivity. DEAC-caged paSL induced efficient protein recruitment upon violet-light irradiation, even at the low intensity under which NVOC-caged paSL does not respond. DEAC-caged paSL was insensitive to excitation light used to image green fluorescent proteins (GFPs), and it was applicable for simultaneous optical stimulation of Gαq signaling and fluorescence imaging of subsequent Ca2+ oscillations using a GFP-based Ca2+ biosensor in living cells.
Collapse
Affiliation(s)
- Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Choji Oki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
4
|
Miura Y, Senoo A, Doura T, Kiyonaka S. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chem Biol 2022; 3:269-287. [PMID: 35359495 PMCID: PMC8905536 DOI: 10.1039/d1cb00195g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell surface receptors transmit extracellular information into cells. Spatiotemporal regulation of receptor signaling is crucial for cellular functions, and dysregulation of signaling causes various diseases. Thus, it is highly desired to control receptor functions with high spatial and/or temporal resolution. Conventionally, genetic engineering or chemical ligands have been used to control receptor functions in cells. As the alternative, chemogenetics has been proposed, in which target proteins are genetically engineered to interact with a designed chemical partner with high selectivity. The engineered receptor dissects the function of one receptor member among a highly homologous receptor family in a cell-specific manner. Notably, some chemogenetic strategies have been used to reveal the receptor signaling of target cells in living animals. In this review, we summarize the developing chemogenetic methods of transmembrane receptors for cell-specific regulation of receptor signaling. We also discuss the prospects of chemogenetics for clinical applications.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akinobu Senoo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| |
Collapse
|
5
|
Singh AK, Saharan K, Baral S, Luan S, Vasudevan D. Crystal packing reveals rapamycin-mediated homodimerization of an FK506-binding domain. Int J Biol Macromol 2022; 206:670-680. [PMID: 35218805 DOI: 10.1016/j.ijbiomac.2022.02.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Chemically induced dimerization (CID) is used to induce proximity and result in artificial complex formation between a pair of proteins involved in biological processes in cells to investigate and regulate these processes. The induced heterodimerization of FKBP fusion proteins by rapamycin and FK506 has been extensively exploited as a chemically induced dimerization system to regulate and understand highly dynamic cellular processes. Here, we report the crystal structure of the AtFKBP53 FKBD in complex with rapamycin. The crystal packing reveals an unusual feature whereby two rapamycin molecules appear to mediate homodimerization of the FKBD. The triene arm of rapamycin appears to play a significant role in forming this dimer. This forms the first structural report of rapamycin-mediated homodimerization of an FKBP. The structural information on the rapamycin-mediated FKBD dimerization may be employed to design and synthesize covalently linked dimeric rapamycin, which may subsequently serve as a chemically induced dimerization system for the regulation and characterization of cellular processes.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Ketul Saharan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Somanath Baral
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Dileep Vasudevan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India.
| |
Collapse
|
6
|
Doumane M, Caillaud MC, Jaillais Y. Experimental manipulation of phosphoinositide lipids: from cells to organisms. Trends Cell Biol 2022; 32:445-461. [DOI: 10.1016/j.tcb.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
|
7
|
A Class of New Correlative and Switchable Hyperchaotic Systems and Their Switch-Synchronization. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new population of correlative and switchable 4D hyperchaotic systems and their switch-synchronization are investigated. First, the switched system with the self-contained subsystems which show some symmetry are constructed. The Lyapunov exponent spectrums and Lyapunov dimensions are displayed to indicate the existence of hyperchaos, and the complex dynamical properties are discussed. Second, its real circuit implement is exhibited for application, and the switching with the flexible and diverse operation assembled can be accomplished randomly by using system selector. Third, nonlinear control strategies are presented to ensure the synchronization stability of the switched system. Simulations are displayed to verify the effectiveness of the control.
Collapse
|
8
|
Courtney TM, Hankinson CP, Horst TJ, Deiters A. Targeted protein oxidation using a chromophore-modified rapamycin analog. Chem Sci 2021; 12:13425-13433. [PMID: 34777761 PMCID: PMC8528027 DOI: 10.1039/d1sc04464h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Chemically induced dimerization of FKBP and FRB using rapamycin and rapamycin analogs has been utilized in a variety of biological applications. Formation of the FKBP-rapamycin-FRB ternary complex is typically used to activate a biological process and this interaction has proven to be essentially irreversible. In many cases, it would be beneficial to also have temporal control over deactivating a biological process once it has been initiated. Thus, we developed the first reactive oxygen species-generating rapamycin analog toward this goal. The BODIPY-rapamycin analog BORap is capable of dimerizing FKBP and FRB to form a ternary complex, and upon irradiation with 530 nm light, generates singlet oxygen to oxidize and inactivate proteins of interest fused to FKBP/FRB.
Collapse
Affiliation(s)
- Taylor M Courtney
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | | | - Trevor J Horst
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
9
|
Li S, Ahn CK, Guo J, Xiang Z. Neural-Network Approximation-Based Adaptive Periodic Event-Triggered Output-Feedback Control of Switched Nonlinear Systems. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:4011-4020. [PMID: 33001824 DOI: 10.1109/tcyb.2020.3022270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study considers an adaptive neural-network (NN) periodic event-triggered control (PETC) problem for switched nonlinear systems (SNSs). In the system, only the system output is available at sampling instants. A novel adaptive law and a state observer are constructed by using only the sampled system output. A new output-feedback adaptive NN PETC strategy is developed to reduce the usage of communication resources; it includes a controller that only uses event-sampling information and an event-triggering mechanism (ETM) that is only intermittently monitored at sampling instants. The proposed adaptive NN PETC strategy does not need restrictions on nonlinear functions reported in some previous studies. It is proven that all states of the closed-loop system (CLS) are semiglobally uniformly ultimately bounded (SGUUB) under arbitrary switchings by choosing an allowable sampling period. Finally, the proposed scheme is applied to a continuous stirred tank reactor (CSTR) system and a numerical example to verify its effectiveness.
Collapse
|
10
|
Ko J, Myeong J, Kwak M, Jeon JH, So I. Identification of phospholipase C β downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:357-366. [PMID: 31496873 PMCID: PMC6717798 DOI: 10.4196/kjpp.2019.23.5.357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Gαq-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate (PI(4,5)P2) depletion. When PI(4,5)P2 depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon Gαq-phospholipase C β (Gαq-PLCβ) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in PLCβ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by Ca2+ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic Ca2+ due to Ca2+ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following PI(4,5)P2 depletion.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
11
|
Werner N, Ramirez-Sarmiento CA, Agosin E. Protein engineering of carotenoid cleavage dioxygenases to optimize β-ionone biosynthesis in yeast cell factories. Food Chem 2019; 299:125089. [PMID: 31319343 DOI: 10.1016/j.foodchem.2019.125089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Synthesis of β-ionone in recombinant Saccharomyces cerevisiae is limited by the efficiency of Carotenoid Cleavage Dioxygenases (CCD), membrane-tethered enzymes catalyzing the last step in the pathway. We performed in silico design and membrane affinity analysis, focused on single-point mutations of PhCCD1 to improve membrane anchoring. The resulting constructs were tested in a β-carotene hyper-producing strain by comparing colony pigmentation against colonies transformed with native PhCCD1 and further analyzed by β-ionone quantification via RP-HPLC. Two single-point mutants increased β-ionone yields almost 3-fold when compared to native PhCCD1. We also aimed to improve substrate accessibility of PhCCD1 through the amino-terminal addition of membrane destination peptides directed towards the endoplasmic reticulum or plasma membrane. Yeast strains expressing peptide-PhCCD1 constructs showed β-ionone yields up to 4-fold higher than the strain carrying the native enzyme. Our results demonstrate that protein engineering of CCDs significantly increases the yield of β-ionone synthesized by metabolically engineered yeast.
Collapse
Affiliation(s)
- Nicole Werner
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile.
| | - César A Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile.
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
12
|
van Unen J, Botman D, Yin T, Wu YI, Hink MA, Gadella TWJ, Postma M, Goedhart J. The C-terminus of the oncoprotein TGAT is necessary for plasma membrane association and efficient RhoA-mediated signaling. BMC Cell Biol 2018; 19:6. [PMID: 29879899 PMCID: PMC5992656 DOI: 10.1186/s12860-018-0155-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
Background Rho guanine exchange factors (RhoGEFs) control cellular processes such as migration, adhesion and proliferation. Alternative splicing of the RhoGEF Trio produces TGAT. The RhoGEF TGAT is an oncoprotein with constitutive RhoGEF activity. We investigated whether the subcellular location of TGAT is critical for its RhoGEF activity. Methods Since plasma membrane associated RhoGEFs are particularly effective at activating RhoA, plasma membrane localization of TGAT was examined. To this end, we developed a highly sensitive image analysis method to quantitatively measure plasma membrane association. The method requires a cytoplasmic marker and a plasma membrane marker, which are co-imaged with the tagged protein of interest. Linear unmixing is performed to determine the plasma membrane and cytoplasmic component in the fluorescence signal of protein of interest. Results The analysis revealed that wild-type TGAT is partially co-localized with the plasma membrane. Strikingly, cysteine TGAT-mutants lacking one or more putative palmitoylation sites in the C-tail, still showed membrane association. In contrast, a truncated variant, lacking the last 15 amino acids, TGATΔ15, lost membrane association. We show that membrane localization of TGAT was responsible for high RhoGEF activity by using a RhoA FRET-sensor and by determining F-actin levels. Mutants of TGAT that still maintained membrane association showed similar activity as wild-type TGAT. In contrast, the activity was abrogated for the cytoplasmic TGATΔ15 variant. Synthetic recruitment of TGATΔ15 to membranes confirmed that TGAT effectively activates RhoA at the plasma membrane. Conclusion Together, these results show that membrane association of TGAT is critical for its activity. Electronic supplementary material The online version of this article (10.1186/s12860-018-0155-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J van Unen
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL, -1090, GE, Amsterdam, The Netherlands
| | - D Botman
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL, -1090, GE, Amsterdam, The Netherlands
| | - T Yin
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06032-6406, USA
| | - Y I Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06032-6406, USA
| | - M A Hink
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL, -1090, GE, Amsterdam, The Netherlands
| | - T W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL, -1090, GE, Amsterdam, The Netherlands
| | - M Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL, -1090, GE, Amsterdam, The Netherlands.
| | - J Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL, -1090, GE, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Reinhard NR, Mastop M, Yin T, Wu Y, Bosma EK, Gadella TWJ, Goedhart J, Hordijk PL. The balance between Gα i-Cdc42/Rac and Gα 12/ 13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate. Mol Biol Cell 2017; 28:3371-3382. [PMID: 28954861 PMCID: PMC5687037 DOI: 10.1091/mbc.e17-03-0136] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 01/18/2023] Open
Abstract
The bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein-coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signaling events activated immediately downstream of GPCR activation are unclear. To examine these, we used a set of fluorescence resonance energy transfer-based biosensors for different RhoGTPases (Rac1, RhoA/B/C, and Cdc42) as well as for heterotrimeric G-proteins in a series of live-cell imaging experiments in primary human endothelial cells. These experiments were accompanied by biochemical GTPase activity assays and transendothelial resistance measurements. We show that S1P promotes cell spreading and endothelial barrier function through S1PR1-Gαi-Rac1 and S1PR1-Gαi-Cdc42 pathways. In parallel, a S1PR2-Gα12/13-RhoA pathway is activated that can induce cell contraction and loss of barrier function, but only if Gαi-mediated signaling is suppressed. Our results suggest that Gαq activity is not involved in S1P-mediated regulation of barrier integrity. Moreover, we show that early activation of RhoA by S1P inactivates Rac1 but not Cdc42, and vice versa. Together, our data show that the rapid S1P-induced increase in endothelial integrity is mediated by a S1PR1-Gαi-Cdc42 pathway.
Collapse
Affiliation(s)
- Nathalie R Reinhard
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
- Molecular Cell Biology and
- University of Amsterdam Academic Medical Centre-Landsteiner Laboratory, Sanquin Research, 1066 CX Amsterdam, Netherlands
| | - Marieke Mastop
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Taofei Yin
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Esmeralda K Bosma
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Theodorus W J Gadella
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Joachim Goedhart
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Peter L Hordijk
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
- Molecular Cell Biology and
- University of Amsterdam Academic Medical Centre-Landsteiner Laboratory, Sanquin Research, 1066 CX Amsterdam, Netherlands
- Department of Physiology, Free University Medical Center, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
14
|
Grundmann M, Kostenis E. Temporal Bias: Time-Encoded Dynamic GPCR Signaling. Trends Pharmacol Sci 2017; 38:1110-1124. [PMID: 29074251 DOI: 10.1016/j.tips.2017.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Evidence suggests that cells can time-encode signals for secure transport and perception of information, and it appears that this dynamic signaling is a common principle of nature to code information in time. G-protein-coupled receptor (GPCR) signaling networks are no exception as their composition and signal transduction appear temporally flexible. In this review, we discuss the potential mechanisms by which GPCRs code biological information in time to create 'temporal bias.' We highlight dynamic signaling patterns from the second messenger to the receptor-ligand level and shed light on the dynamics of G-protein cycles, the kinetics of ligand-receptor interaction, and the occurrence of distinct signaling waves within the cell. A dynamic feature such as temporal bias adds to the complexity of GPCR signaling bias and gives rise to the question whether this trait could be exploited to gain control over time-encoded cell physiology.
Collapse
Affiliation(s)
- Manuel Grundmann
- Molecular-, Cellular- and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; Kidney Disease Research, Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Evi Kostenis
- Molecular-, Cellular- and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
15
|
Abstract
An optimal tool to unravel the role of a specific player within a cellular network or process requires its spatiotemporally resolved perturbation. Chemically induced dimerization (CID) by the rapamycin system has proven useful to induce protein dimerization or translocation with high spatiotemporal precision. Recently, we and others have added reversibility of the dimerization event as a novel feature to CID approaches. Among those, our reversible chemical dimerizer (rCD1) shows the fastest release kinetics observed, comparable to optogenetic methods. Induction and termination of enzyme activities, including phosphatidylinositol 3-kinase (PI3K) and 5-phosphatase (5Ptase), therefore allowed us to monitor the relaxation of the downstream effectors within living cells by imaging and traditional biochemical methods. Because switching off the rCD1-induced enzyme activity is sufficiently fast, it is possible to estimate kinetic parameters for enzyme activity and metabolism. Fast reversible CIDs are therefore unique tools for performing semiquantitative biochemistry in intact cells. In this chapter, we discuss advantages and constraints for the design of reversible CID applications. We provide detailed protocols for rCD1 synthesis, CID component expression in and delivery to mammalian cells and the determination of enzyme kinetics inside intact cells by a specially designed image acquisition and data analysis method.
Collapse
Affiliation(s)
- M Schifferer
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - S Feng
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - F Stein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - C Schultz
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
16
|
Kinetics of recruitment and allosteric activation of ARHGEF25 isoforms by the heterotrimeric G-protein Gαq. Sci Rep 2016; 6:36825. [PMID: 27833100 PMCID: PMC5105084 DOI: 10.1038/srep36825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Rho GTPases are master regulators of the eukaryotic cytoskeleton. The activation of Rho GTPases is governed by Rho guanine nucleotide exchange factors (GEFs). Three RhoGEF isoforms are produced by the gene ARHGEF25; p63RhoGEF580, GEFT and a recently discovered longer isoform of 619 amino acids (p63RhoGEF619). The subcellular distribution of p63RhoGEF580 and p63RhoGEF619 is strikingly different in unstimulated cells, p63RhoGEF580 is located at the plasma membrane and p63RhoGEF619 is confined to the cytoplasm. Interestingly, we find that both P63RhoGEF580 and p63RhoGEF619 activate RhoGTPases to a similar extent after stimulation of Gαq coupled GPCRs. Furthermore, we show that p63RhoGEF619 relocates to the plasma membrane upon activation of Gαq coupled GPCRs, resembling the well-known activation mechanism of RhoGEFs activated by Gα12/13. Synthetic recruitment of p63RhoGEF619 to the plasma membrane increases RhoGEF activity towards RhoA, but full activation requires allosteric activation via Gαq. Together, these findings reveal a dual role for Gαq in RhoGEF activation, as it both recruits and allosterically activates cytosolic ARHGEF25 isoforms.
Collapse
|
17
|
Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems. Sci Rep 2016; 6:35777. [PMID: 27767077 PMCID: PMC5073340 DOI: 10.1038/srep35777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023] Open
Abstract
Alpha subunits of heterotrimeric G proteins (Gα) are involved in a variety of cellular functions. Here we report an optogenetic strategy to spatially and temporally manipulate Gα in living cells. More specifically, we applied the blue light-induced dimerization system, known as the Magnet system, and an alternative red light-induced dimerization system consisting of Arabidopsis thaliana phytochrome B (PhyB) and phytochrome-interacting factor 6 (PIF6) to optically control the activation of two different classes of Gα (Gαq and Gαs). By utilizing this strategy, we demonstrate successful regulation of Ca2+ and cAMP using light in mammalian cells. The present strategy is generally applicable to different kinds of Gα and could contribute to expanding possibilities of spatiotemporal regulation of Gα in mammalian cells.
Collapse
|
18
|
Nakase I. [Creation of artificial receptors activated by coiled-coil peptides and cellular regulation]. YAKUGAKU ZASSHI 2016; 135:375-81. [PMID: 25759046 DOI: 10.1248/yakushi.14-00240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exploiting the ability of coiled-coil peptides to induce dimer formation, we designed an artificial epidermal growth factor receptor (EGFR) in which dimerization is essential for increasing the tyrosine kinase activity of its intracellular domain. Using leucine-zipper coiled-coil peptides, the surface-exposed E3 ((EIAALEK)3) tag sequence was fused with EGFR (E3-EGFR) lacking domains I-III and a part of IV, which participate in dimerization of EGFR after binding to natural ligand (that is, epidermal growth factor). To dimerize E3-EGFR we synthesized conjugates of two K4 ((KIAALKE)4) peptides, called K4-conjugates, with linker lengths approximately 10 angstrom that mimic the distance of EGFR dimerization. Receptor phosphorylation of E3-EGFR was found to increase within 5 min in CHO cells expressing E3-EGFR after treatment with K4 conjugates. Increased lamellipodia formation and migration of the cells was also observed when treated with the artificial ligands. This receptor model can be applied to a wide variety of membrane-associated proteins to control cellular processes and to elucidate the functional mechanisms of these proteins using chemical biology.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University
| |
Collapse
|
19
|
Lu VB, Ikeda SR. Strategies for Investigating G-Protein Modulation of Voltage-Gated Ca2+ Channels. Cold Spring Harb Protoc 2016; 2016:2016/5/pdb.top087072. [PMID: 27140924 DOI: 10.1101/pdb.top087072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G-protein-coupled receptor modulation of voltage-gated ion channels is a common means of fine-tuning the response of channels to changes in membrane potential. Such modulation impacts physiological processes such as synaptic transmission, and hence therapeutic strategies often directly or indirectly target these pathways. As an exemplar of channel modulation, we examine strategies for investigating G-protein modulation of CaV2.2 or N-type voltage-gated Ca(2+) channels. We focus on biochemical and genetic tools for defining the molecular mechanisms underlying the various forms of CaV2.2 channel modulation initiated following ligand binding to G-protein-coupled receptors.
Collapse
Affiliation(s)
- Van B Lu
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| | - Stephen R Ikeda
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| |
Collapse
|
20
|
Samarin J, Laketa V, Malz M, Roessler S, Stein I, Horwitz E, Singer S, Dimou E, Cigliano A, Bissinger M, Falk CS, Chen X, Dooley S, Pikarsky E, Calvisi DF, Schultz C, Schirmacher P, Breuhahn K. PI3K/AKT/mTOR-dependent stabilization of oncogenic far-upstream element binding proteins in hepatocellular carcinoma cells. Hepatology 2016; 63:813-26. [PMID: 26901106 PMCID: PMC5262441 DOI: 10.1002/hep.28357] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Transcription factors of the far-upstream element-binding protein (FBP) family represent cellular pathway hubs, and their overexpression in liver cancer (hepatocellular carcinoma [HCC]) stimulates tumor cell proliferation and correlates with poor prognosis. Here we determine the mode of oncogenic FBP overexpression in HCC cells. Using perturbation approaches (kinase inhibitors, small interfering RNAs) and a novel system for rapalog-dependent activation of AKT isoforms, we demonstrate that activity of the phosphatidylinositol-4,5-biphosphate 3-kinase/AKT pathway is involved in the enrichment of nuclear FBP1 and FBP2 in liver cancer cells. In human HCC tissues, phospho-AKT significantly correlates with nuclear FBP1/2 accumulation and expression of the proliferation marker KI67. Mechanistic target of rapamycin (mTOR) inhibition or blockade of its downstream effector eukaryotic translation initiation factor 4E activity equally reduced FBP1/2 concentrations. The mTORC1 inhibitor rapamycin diminishes FBP enrichment in liver tumors after hydrodynamic gene delivery of AKT plasmids. In addition, the multikinase inhibitor sorafenib significantly reduces FBP levels in HCC cells and in multidrug resistance 2-deficient mice that develop HCC due to severe inflammation. Both FBP1/2 messenger RNAs are highly stable, with FBP2 being more stable than FBP1. Importantly, inhibition of phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR signaling significantly diminishes FBP1/2 protein stability in a caspase-3/-7-dependent manner. CONCLUSION These data provide insight into a transcription-independent mechanism of FBP protein enrichment in liver cancer; further studies will have to show whether this previously unknown interaction between phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR pathway activity and caspase-mediated FBP stabilization allows the establishment of interventional strategies in FBP-positive HCCs.
Collapse
Affiliation(s)
- Jana Samarin
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mona Malz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ilan Stein
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elad Horwitz
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eleni Dimou
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Cigliano
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eli Pikarsky
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Carsten Schultz
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
van Unen J, Reinhard NR, Yin T, Wu YI, Postma M, Gadella TWJ, Goedhart J. Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization. Sci Rep 2015; 5:14693. [PMID: 26435194 PMCID: PMC4592971 DOI: 10.1038/srep14693] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023] Open
Abstract
The small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined. To study the mechanism underlying the spatiotemporal control of RhoA activity by GEFs, we performed single cell imaging with an improved FRET sensor reporting on the nucleotide loading state of RhoA. By employing the FRET sensor we show that a plasma membrane located RhoGEF, p63RhoGEF, can rapidly activate RhoA through endogenous GPCRs and that localized RhoA activity at the cell periphery correlates with actin polymerization. Moreover, synthetic recruitment of the catalytic domain derived from p63RhoGEF to the plasma membrane, but not to the Golgi apparatus, is sufficient to activate RhoA. The synthetic system enables local activation of endogenous RhoA and effectively induces actin polymerization and changes in cellular morphology. Together, our data demonstrate that GEF activity at the plasma membrane is sufficient for actin polymerization via local RhoA signaling.
Collapse
Affiliation(s)
- Jakobus van Unen
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Nathalie R Reinhard
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Taofei Yin
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032-6406
| | - Yi I Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032-6406
| | - Marten Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands
| |
Collapse
|
22
|
Abstract
The growing use of fluorescent biosensors to directly probe the spatiotemporal dynamics of biochemical processes in living cells has revolutionized the study of intracellular signaling. In this review, we summarize recent developments in the use of biosensors to illuminate the molecular details of G-protein-coupled receptor (GPCR) signaling pathways, which have long served as the model for our understanding of signal transduction, while also offering our perspectives on the future of this exciting field. Specifically, we highlight several ways in which biosensor-based single-cell analyses are being used to unravel many of the enduring mysteries that surround these diverse signaling pathways.
Collapse
Affiliation(s)
- Terri Clister
- From the Department of Pharmacology and Molecular Sciences and
| | - Sohum Mehta
- From the Department of Pharmacology and Molecular Sciences and
| | - Jin Zhang
- From the Department of Pharmacology and Molecular Sciences and The Solomon H. Snyder Department of Neuroscience and Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
23
|
Pastuszka MK, Okamoto CT, Hamm-Alvarez SF, MacKay JA. Flipping the Switch on Clathrin-Mediated Endocytosis using Thermally Responsive Protein Microdomains. ADVANCED FUNCTIONAL MATERIALS 2014; 24:5340-5347. [PMID: 25419208 PMCID: PMC4235962 DOI: 10.1002/adfm.201400715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A ubiquitous approach to study protein function is to knock down activity (gene deletions, siRNA, small molecule inhibitors, etc) and study the cellular effects. Using a new methodology, this manuscript describes how to rapidly and specifically switch off cellular pathways using thermally responsive protein polymers. A small increase in temperature stimulates cytosolic elastin-like polypeptides (ELPs) to assemble microdomains. We hypothesize that ELPs fused to a key effector in a target macromolecular complex will sequester the complex within these microdomains, which will bring the pathway to a halt. To test this hypothesis, we fused ELPs to clathrin-light chain (CLC), a protein associated with clathrin-mediated endocytosis. Prior to thermal stimulation, the ELP fusion is soluble and clathrin-mediated endocytosis remains 'on.' Increasing the temperature induces the assembly of ELP fusion proteins into organelle-sized microdomains that switches clathrin-mediated endocytosis 'off.' These microdomains can be thermally activated and inactivated within minutes, are reversible, do not require exogenous chemical stimulation, and are specific for components trafficked within the clathrin-mediated endocytosis pathway. This temperature-triggered cell switch system represents a new platform for the temporal manipulation of trafficking mechanisms in normal and disease cell models and has applications for manipulating other intracellular pathways.
Collapse
Affiliation(s)
- Martha K. Pastuszka
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| |
Collapse
|
24
|
Goedhart J, van Unen J, Adjobo-Hermans MJW, Gadella TWJ. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location. Sci Rep 2014; 3:2284. [PMID: 23884432 PMCID: PMC3722567 DOI: 10.1038/srep02284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/10/2013] [Indexed: 02/02/2023] Open
Abstract
The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.
Collapse
Affiliation(s)
- Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Diandong H, Kefeng S, Weixin F, Moran W, Jiahui W, Zaifu L. The role of Gαs in activation of NK92-MI cells by neuropeptide substance P. Neuropeptides 2014; 48:1-5. [PMID: 24411772 DOI: 10.1016/j.npep.2013.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/03/2013] [Accepted: 12/03/2013] [Indexed: 01/27/2023]
Abstract
Substance P (SP) is well known for its immunoregulatory influence on NK cells. The biological actions of SP are mediated primarily through the high-affinity neurokinin-1 receptor (NK-1R), a G protein-coupled receptor (GPCR). Receptor binding triggers a cAMP signaling pathway and intracellular levels of cAMP are regulated via Gαs and Gαi. In this study NF449, a Gαs-selective G protein antagonist, was used to study the role of Gαs in the activation of NK92-MI cells by SP. Results show that 10(-12)M SP enhances the expression of Gαs and Gαi3 in NK92-MI cells promoting a cytotoxic phenotype characterized by expression of perforin and granzyme B. Development of a cytotoxic phenotype in NK92-MI cells stimulated with SP is blunted by inhibition of Gαs by NF449. In summary, SP signaling through NK-1R promotes a cytotoxic phenotype in NK92-MI cells characterized by upregulation of both Gαs and Gαi3. NF449 inhibits Gαs, blunts SP-induced expression of perforin and granzyme B, and represents a potential therapeutic avenue for reducing NK-cell mediated cytotoxicity.
Collapse
Affiliation(s)
- Hou Diandong
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China; Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Sun Kefeng
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Fu Weixin
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Wang Moran
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Wang Jiahui
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Liang Zaifu
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Stein F, Kress M, Reither S, Piljić A, Schultz C. FluoQ: a tool for rapid analysis of multiparameter fluorescence imaging data applied to oscillatory events. ACS Chem Biol 2013; 8:1862-8. [PMID: 23882997 DOI: 10.1021/cb4003442] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The number of fluorescent sensors and their use in living cells has significantly increased in the past years. Yet, the analysis of data from single cells or cell populations usually remains a very time-consuming enterprise. Here, we introduce FluoQ, a new macro for the image analysis software ImageJ, which enables fast analysis of multiparameter time-lapse fluorescence microscopy data with minimal manual input. FluoQ provides statistical analysis of all measured parameters and delivers the results in multiple graphic and numeric displays. We demonstrate the power of FluoQ by applying the macro to data analysis in the development and optimization of novel FRET reporters for monitoring the performance of calcium/calmodulin-binding inositol trisphosphate kinases A and B (ITPKA and ITPKB) in HeLa cells. We find that conformational changes in the ITPKA-based sensor follow receptor-mediated calcium oscillations. This indicates that ITPKA contributes to the regulation of intracellular calcium transients by limiting inositol trisphosphate levels.
Collapse
Affiliation(s)
- Frank Stein
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstraße
1, 69117 Heidelberg, Germany
| | - Manuel Kress
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstraße
1, 69117 Heidelberg, Germany
| | - Sabine Reither
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstraße
1, 69117 Heidelberg, Germany
| | - Alen Piljić
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstraße
1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstraße
1, 69117 Heidelberg, Germany
| |
Collapse
|
27
|
Coutinho-Budd JC, Snider SB, Fitzpatrick BJ, Rittiner JE, Zylka MJ. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons. J Negat Results Biomed 2013; 12:13. [PMID: 24010830 PMCID: PMC3844522 DOI: 10.1186/1477-5751-12-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. RESULTS We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. CONCLUSIONS Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
28
|
Kim H, Jeon JP, Hong C, Kim J, Myeong J, Jeon JH, So I. An essential role of PI(4,5)P₂ for maintaining the activity of the transient receptor potential canonical (TRPC)4β. Pflugers Arch 2013; 465:1011-21. [PMID: 23417604 DOI: 10.1007/s00424-013-1236-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 01/21/2023]
Abstract
The transient receptor potential canonical 4 (TRPC4) channel is a Ca(2+)-permeable nonselective cation channel in mammalian cells and mediates a number of cellular functions. Many studies show that TRPC channels are activated by stimulation of Gαq-phospholipase C (PLC)-coupled receptors. However, our previous study showed that the TRPC4 current was inhibited by co-expression of a constitutively active form of Gαq (Gαq (Q209L)). A shortage of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in Gαq (Q209L) may be responsible for reduced TRPC4 activity. Here, we tested this hypothesis by using a rapamycin-inducible system that regulates PI(4,5)P2 acutely and specifically. Our results showed that the TRPC4β current was reduced by inducible Gαq (Q209L), but not by the mutants with impaired binding ability to PLCβ. Depletion of PI(4,5)P2 by inducing the inositol polyphosphate 5-phosphatase to HEK293 cells that express TRPC4β led to an irreversible inhibition of TRPC4β currents. In contrast, inducing phosphatidylinositol 4-phosphate 5-kinase or intracellular PI(4,5)P2 application did not activate the TRPC4β current. Finally, we revealed that PI(4,5)P2 is important in delaying the desensitization of TRPC4β. Taken together, we suggest that PI(4,5)P2 is not the activator of TRPC4β activation, but it is still necessary for regulating TRPC4β activation.
Collapse
Affiliation(s)
- Hana Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Adjobo-Hermans MJ, Crosby KC, Putyrski M, Bhageloe A, van Weeren L, Schultz C, Goedhart J, Gadella TW. PLCβ isoforms differ in their subcellular location and their CT-domain dependent interaction with Gαq. Cell Signal 2013; 25:255-63. [DOI: 10.1016/j.cellsig.2012.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/08/2012] [Accepted: 09/16/2012] [Indexed: 11/15/2022]
|
30
|
|
31
|
Wymann MP, Schultz C. The chemical biology of phosphoinositide 3-kinases. Chembiochem 2012; 13:2022-35. [PMID: 22965647 DOI: 10.1002/cbic.201200089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 07/13/2012] [Indexed: 01/14/2023]
Abstract
Since its discovery in the late 1980s, phosphoinositide 3-kinase (PI3K), and its isoforms have arguably reached the forefront of signal transduction research. Regulation of this lipid kinase, its functions, its effectors, in short its entire signaling network, has been extensively studied. PI3K inhibitors are frequently used in biochemistry and cell biology. In addition, many pharmaceutical companies have launched drug-discovery programs to identify modulators of PI3Ks. Despite these efforts and a fairly good knowledge of the PI3K signaling network, we still have only a rudimentary picture of the signaling dynamics of PI3K and its lipid products in space and time. It is therefore essential to create and use novel biological and chemical tools to manipulate the phosphoinositide signaling network with spatial and temporal resolution. In this review, we discuss the current and potential future tools that are available and necessary to unravel the various functions of PI3K and its isoforms.
Collapse
Affiliation(s)
- Matthias P Wymann
- Institute of Biochemistry & Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | |
Collapse
|
32
|
Meyer C, Köhn M. Künstliche Adapterproteine zur Initiierung von Protein-Protein-Wechselwirkungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Meyer C, Köhn M. A molecular tête-à-tête arranged by a designed adaptor protein. Angew Chem Int Ed Engl 2012; 51:8160-2. [PMID: 22806966 DOI: 10.1002/anie.201203345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Meyer
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
34
|
Olson EJ, Tabor JJ. Post-translational tools expand the scope of synthetic biology. Curr Opin Chem Biol 2012; 16:300-6. [PMID: 22766485 DOI: 10.1016/j.cbpa.2012.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 12/26/2022]
Abstract
Synthetic biology is improving our understanding of and ability to control living organisms. To date, most progress has been made by engineering gene expression. However, computational and genetically encoded tools that allow protein activity and protein-protein interactions to be controlled on their natural time and length scales are emerging. These technologies provide a basis for the construction of post-translational circuits, which are capable of fast, robust and highly spatially resolved signal processing. When combined with their transcriptional and translational counterparts, synthetic post-translational circuits will allow better analysis and control of otherwise intractable biological processes such as cellular differentiation and the growth of tissues.
Collapse
Affiliation(s)
- Evan J Olson
- Graduate Program in Applied Physics, Rice University, Houston, TX 77005, United States
| | | |
Collapse
|
35
|
Rutkowska A, Schultz C. Protein Tango: The Toolbox to Capture Interacting Partners. Angew Chem Int Ed Engl 2012; 51:8166-76. [DOI: 10.1002/anie.201201717] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Indexed: 11/07/2022]
|
36
|
|
37
|
Putyrski M, Schultz C. Protein translocation as a tool: The current rapamycin story. FEBS Lett 2012; 586:2097-105. [DOI: 10.1016/j.febslet.2012.04.061] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 01/08/2023]
|
38
|
Hong C, Kim J, Jeon JP, Wie J, Kwak M, Ha K, Kim H, Myeong J, Kim SY, Jeon JH, So I. Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+ release and ion channel trafficking. Biochem Biophys Res Commun 2012; 421:105-11. [PMID: 22490661 DOI: 10.1016/j.bbrc.2012.03.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 11/26/2022]
Abstract
Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable, non-selective cation channels those are widely expressed in mammalian cells. Various molecules have been found to regulate TRPC both in vivo and in vitro, but it is unclear how heterotrimeric G proteins transmit external stimuli to regulate the activity of TRPC5. Here, we demonstrated that TRPC5 was potentiated by the Gα(s) regulatory pathway. Whole-cell TRPC5 current was significantly increased by β-adrenergic receptor agonist, isoproterenol (ISO, 246±36%, n=6), an activator of the adenylate cyclase, forskolin (FSK, 273±6%, n=5), or a membrane permeable cAMP analogue, 8-Br-cAMP (251±63%, n=7). In addition, robust Ca(2+) transient induced by isoproterenol was observed utilizing a Ca(2+) imaging technique. When intracellular [Ca(2+)](i) was buffered to 50nM, cAMP-induced potentiation was attenuated. We also found that the Ca(2+) release is mediated by IP(3) since intracellular IP(3) infusion attenuated the potentiation of TRPC5 by Gα(s) cascade. Finally, we identified that the membrane localization of TRPC5 was significantly increased by ISO (155±17%, n=3), FSK (172±39%, n=3) or 8-Br-cAMP (216±59%, n=3). In conclusion, these results suggest that the Gα(s)-cAMP pathway potentiates the activity of TRPC5 via facilitating intracellular Ca(2+) dynamics and increasing channel trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|