1
|
Dederer V, Sanz Murillo M, Karasmanis EP, Hatch KS, Chatterjee D, Preuss F, Abdul Azeez KR, Nguyen LV, Galicia C, Dreier B, Plückthun A, Versees W, Mathea S, Leschziner AE, Reck-Peterson SL, Knapp S. A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. J Biol Chem 2024; 300:107469. [PMID: 38876305 DOI: 10.1016/j.jbc.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.
Collapse
Affiliation(s)
- Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Eva P Karasmanis
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kathryn S Hatch
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Kamal R Abdul Azeez
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Landon Vu Nguyen
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Christian Galicia
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Wim Versees
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Andres E Leschziner
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Samara L Reck-Peterson
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA.
| |
Collapse
|
2
|
Ivanova JR, Benk AS, Schaefer JV, Dreier B, Hermann LO, Plückthun A, Missirlis D, Spatz JP. Designed Ankyrin Repeat Proteins as Actin Labels of Distinct Cytoskeletal Structures in Living Cells. ACS NANO 2024; 18:8919-8933. [PMID: 38489155 DOI: 10.1021/acsnano.3c12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The orchestrated assembly of actin and actin-binding proteins into cytoskeletal structures coordinates cell morphology changes during migration, cytokinesis, and adaptation to external stimuli. The accurate and unbiased visualization of the diverse actin assemblies within cells is an ongoing challenge. We describe here the identification and use of designed ankyrin repeat proteins (DARPins) as synthetic actin binders. Actin-binding DARPins were identified through ribosome display and validated biochemically. When introduced or expressed inside living cells, fluorescently labeled DARPins accumulated at actin filaments, validated through phalloidin colocalization on fixed cells. Nevertheless, different DARPins displayed different actin labeling patterns: some DARPins labeled efficiently dynamic structures, such as filopodia, lamellipodia, and blebs, while others accumulated primarily in stress fibers. This differential intracellular distribution correlated with DARPin-actin binding kinetics, as measured by fluorescence recovery after photobleaching experiments. Moreover, the rapid arrest of actin dynamics induced by pharmacological treatment led to the fast relocalization of DARPins. Our data support the hypothesis that the localization of actin probes depends on the inherent dynamic movement of the actin cytoskeleton. Compared to the widely used LifeAct probe, one DARPin exhibited enhanced signal-to-background ratio while retaining a similar ability to label stress fibers. In summary, we propose DARPins as promising actin-binding proteins for labeling or manipulation in living cells.
Collapse
Affiliation(s)
- Julia R Ivanova
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Amelie S Benk
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- CSL Behring AG, 3014 Bern, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Leon O Hermann
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, D-69120 Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Pimenta FM, Huh J, Guzman B, Amanah D, Marston DJ, Pinkin NK, Danuser G, Hahn KM. Rho MultiBinder, a fluorescent biosensor that reports the activity of multiple GTPases. Biophys J 2023; 122:3646-3655. [PMID: 37085995 PMCID: PMC10541480 DOI: 10.1016/j.bpj.2023.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Imaging two or more fluorescent biosensors in the same living cell can reveal the spatiotemporal coordination of protein activities. However, using multiple Förster resonance energy transfer (FRET) biosensors together is challenging due to toxicity and the need for orthogonal fluorophores. Here we generate a biosensor component that binds selectively to the activated conformation of three different proteins. This enabled multiplexed FRET with fewer fluorophores, and reduced toxicity. We generated this MultiBinder (MB) reagent for the GTPases RhoA, Rac1, and Cdc42 by combining portions of the downstream effector proteins Pak1 and Rhotekin. Using FRET between mCherry on the MB and YPet or mAmetrine on two target proteins, the activities of any pair of GTPases could be distinguished. The MB was used to image Rac1 and RhoA together with a third, dye-based biosensor for Cdc42. Quantifying effects of biosensor combinations on the frequency, duration, and velocity of cell protrusions and retractions demonstrated reduced toxicity. Multiplexed imaging revealed signaling hierarchies between the three proteins at the cell edge where they regulate motility.
Collapse
Affiliation(s)
- Frederico M Pimenta
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jaewon Huh
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bryan Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Diepreye Amanah
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel J Marston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas K Pinkin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
4
|
Kulmala A, Lappalainen M, Lamminmäki U, Huovinen T. Synonymous Codons and Hydrophobicity Optimization of Post-translational Signal Peptide PelB Increase Phage Display Efficiency of DARPins. ACS Synth Biol 2022; 11:3174-3181. [PMID: 36178799 PMCID: PMC9594773 DOI: 10.1021/acssynbio.2c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DsbA leader peptide targets proteins for cotranslational translocation by signal recognition particle (SRP) pathway and has been the standard signal sequence for filamentous phage display of fast-folding Designed Ankyrin Repeat Proteins (DARPins). In contrast, translocation of DARPins via the post-translational pathway, for example, with the commonly used PelB leader, has been reported to be highly inefficient. In this study, two PelB signal sequence libraries were screened covering different regions of the leader peptide for identifying mutants with improved display of DARPins on phage. A PelB variant with the most favorable combination of synonymous mutations in the n-region and hydrophobic substitutions in the h-region increased the display efficiency of a DARPin library 44- and 12-fold compared to PelBWT and DsbA, respectively. Based on thioredoxin-1 (TrxA) export studies the triple valine mutant PelB DN5 V3 leader was capable of more efficient cotranslational translocation than PelBWT, but the overall display efficiency improvement over DsbA suggests that besides increased cotranslational translocation other factors contribute to the observed enhancement in DARPin display efficiency.
Collapse
Affiliation(s)
- Antti Kulmala
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Matias Lappalainen
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Urpo Lamminmäki
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Tuomas Huovinen
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland,
| |
Collapse
|
5
|
Izert MA, Szybowska PE, Górna MW, Merski M. The Effect of Mutations in the TPR and Ankyrin Families of Alpha Solenoid Repeat Proteins. FRONTIERS IN BIOINFORMATICS 2021; 1:696368. [PMID: 36303725 PMCID: PMC9581033 DOI: 10.3389/fbinf.2021.696368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Protein repeats are short, highly similar peptide motifs that occur several times within a single protein, for example the TPR and Ankyrin repeats. Understanding the role of mutation in these proteins is complicated by the competing facts that 1) the repeats are much more restricted to a set sequence than non-repeat proteins, so mutations should be harmful much more often because there are more residues that are heavily restricted due to the need of the sequence to repeat and 2) the symmetry of the repeats in allows the distribution of functional contributions over a number of residues so that sometimes no specific site is singularly responsible for function (unlike enzymatic active site catalytic residues). To address this issue, we review the effects of mutations in a number of natural repeat proteins from the tetratricopeptide and Ankyrin repeat families. We find that mutations are context dependent. Some mutations are indeed highly disruptive to the function of the protein repeats while mutations in identical positions in other repeats in the same protein have little to no effect on structure or function.
Collapse
Affiliation(s)
| | | | | | - Matthew Merski
- *Correspondence: Maria Wiktoria Górna, ; Matthew Merski,
| |
Collapse
|
6
|
Incaviglia I, Frutiger A, Blickenstorfer Y, Treindl F, Ammirati G, Lüchtefeld I, Dreier B, Plückthun A, Vörös J, Reichmuth AM. An Approach for the Real-Time Quantification of Cytosolic Protein-Protein Interactions in Living Cells. ACS Sens 2021; 6:1572-1582. [PMID: 33759497 DOI: 10.1021/acssensors.0c02480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In recent years, cell-based assays have been frequently used in molecular interaction analysis. Cell-based assays complement traditional biochemical and biophysical methods, as they allow for molecular interaction analysis, mode of action studies, and even drug screening processes to be performed under physiologically relevant conditions. In most cellular assays, biomolecules are usually labeled to achieve specificity. In order to overcome some of the drawbacks associated with label-based assays, we have recently introduced "cell-based molography" as a biosensor for the analysis of specific molecular interactions involving native membrane receptors in living cells. Here, we expand this assay to cytosolic protein-protein interactions. First, we created a biomimetic membrane receptor by tethering one cytosolic interaction partner to the plasma membrane. The artificial construct is then coherently arranged into a two-dimensional pattern within the cytosol of living cells. Thanks to the molographic sensor, the specific interactions between the coherently arranged protein and its endogenous interaction partners become visible in real time without the use of a fluorescent label. This method turns out to be an important extension of cell-based molography because it expands the range of interactions that can be analyzed by molography to those in the cytosol of living cells.
Collapse
Affiliation(s)
- Ilaria Incaviglia
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Yves Blickenstorfer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Fridolin Treindl
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Giulia Ammirati
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Ines Lüchtefeld
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Janos Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Andreas M Reichmuth
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Dokholyan NV. Nanoscale programming of cellular and physiological phenotypes: inorganic meets organic programming. NPJ Syst Biol Appl 2021; 7:15. [PMID: 33707429 PMCID: PMC7952909 DOI: 10.1038/s41540-021-00176-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
The advent of protein design in recent years has brought us within reach of developing a "nanoscale programing language," in which molecules serve as operands with their conformational states functioning as logic gates. Combining these operands into a set of operations will result in a functional program, which is executed using nanoscale computing agents (NCAs). These agents would respond to any given input and return the desired output signal. The ability to utilize natural evolutionary processes would allow code to "evolve" in the course of computation, thus enabling radically new algorithmic developments. NCAs will revolutionize the studies of biological systems, enable a deeper understanding of human biology and disease, and facilitate the development of in situ precision therapeutics. Since NCAs can be extended to novel reactions and processes not seen in biological systems, the growth of this field will spark the growth of biotechnological applications with wide-ranging impacts, including fields not typically considered relevant to biology. Unlike traditional approaches in synthetic biology that are based on the rewiring of signaling pathways in cells, NCAs are autonomous vehicles based on single-chain proteins. In this perspective, I will introduce and discuss this new field of biological computing, as well as challenges and the future of the NCA. Addressing these challenges will provide a significant leap in technology for programming living cells.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
- Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
- Departments of Chemistry, and Biomedical Engineering, Penn State University, University Park, PA, 16802, USA.
- Departments of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol 2020; 3:342. [PMID: 32620833 PMCID: PMC7335062 DOI: 10.1038/s42003-020-1072-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-based affinity reagents (like antibodies or alternative binding scaffolds) offer wide-ranging applications for basic research and therapeutic approaches. However, whereas small chemical molecules efficiently reach intracellular targets, the delivery of macromolecules into the cytosol of cells remains a major challenge; thus cytosolic applications of protein-based reagents are rather limited. Some pathogenic bacteria have evolved a conserved type III secretion system (T3SS) which allows the delivery of effector proteins into eukaryotic cells. Here, we enhance the T3SS of an avirulent strain of Salmonella typhimurium to reproducibly deliver multiple classes of recombinant proteins into eukaryotic cells. The efficacy of the system is probed with both DARPins and monobodies to functionally inhibit the paradigmatic and largely undruggable RAS signaling pathway. Thus, we develop a bacterial secretion system for potent cytosolic delivery of therapeutic macromolecules. To develop a bacterial secretion system for cytosolic delivery of therapeutic macromolecules, Chabloz et al. improve an “effectorless” Salmonella strain and combine it with a plasmid modified to boost the secretion of proteins of interest. With this system, they demonstrate efficient translocation of functional DARPins and monobodies into the cytosol of different eukaryotic cells lines and successfully block the paradigmatic RAS pathway.
Collapse
|
9
|
McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers 2020; 111:e23348. [PMID: 32031681 DOI: 10.1002/bip.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule. Like other repeat proteins, these proteins can be very stable and have a monomeric mode of binding, with elongated and highly variable binding surfaces. The ability to target glycans and glycoproteins fill an important gap in current tools for research and biomedical applications.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A
| | - Tijana Z Grove
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.,Zarkovic Grove Consulting, LLC, Blacksburg, VA, U.S.A
| |
Collapse
|
10
|
Mittl PR, Ernst P, Plückthun A. Chaperone-assisted structure elucidation with DARPins. Curr Opin Struct Biol 2020; 60:93-100. [PMID: 31918361 DOI: 10.1016/j.sbi.2019.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are artificial binding proteins that have found many uses in therapy, diagnostics and biochemical research. They substantially extend the scope of antibody-derived binders. Their high affinity and specificity, rigidity, extended paratope, and facile bacterial production make them attractive for structural biology. Complexes with simple DARPins have been crystallized for a long time, but particularly the rigid helix fusion strategy has opened new opportunities. Rigid DARPin fusions expand crystallization space, enable recruitment of targets in a host lattice and reduce the size limit for cryo-EM. Besides applications in structural biology, rigid DARPin fusions also serve as molecular probes in cells to investigate spatial restraints in targets.
Collapse
Affiliation(s)
- Peer Re Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
11
|
Shilovskiy IP, Dyneva ME, Kurbacheva OM, Kudlay DA, Khaitov MR. The Role of Interleukin-37 in the Pathogenesis of Allergic Diseases. Acta Naturae 2019; 11:54-64. [PMID: 31993235 PMCID: PMC6977961 DOI: 10.32607/20758251-2019-11-4-54-64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cytokines of the interleukin-1 (IL-1) family play an important role in the realization of the protective functions of innate immunity and are the key mediators involved in the pathogenesis of a wide range of diseases, including various manifestations of allergy. The IL-1 family includes more than 11 members. However, the functions of many of them remain to be elucidated. Recently, new members of the IL-1 family have been discovered. In 2000, several independent research groups reported the discovery of a new interleukin of this family, which was named IL-37, or IL-1F7 (according to the new nomenclature). IL-37 was assigned to the IL-1 family based on its structural similarity with other members of this family. The study of its biological properties showed that its activity changes in inflammatory diseases, such as rheumatoid arthritis, psoriasis, as well as allergic diseases (allergic rhinitis, bronchial asthma, and atopic dermatitis). However, unlike most members of the IL-1 family, IL-37 acts as a negative regulator of inflammation. Activation of IL-37 suppresses inflammation, resulting in the suppression of inflammatory cytokines and chemokines, which in turn prevents infiltration of pro-inflammatory cells, mainly eosinophils and neutrophils. The exact molecular and cellular mechanisms of the anti-inflammatory effect of IL-37 in the development of allergic diseases (AD) have not been fully studied. This review summarizes and analyzes the accumulated experimental data on the role of IL-37 in the pathogenesis of AD, such as allergic rhinitis, bronchial asthma, and atopic dermatitis.
Collapse
Affiliation(s)
- I. P. Shilovskiy
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - M. E. Dyneva
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - O. M. Kurbacheva
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - D. A. Kudlay
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - M. R. Khaitov
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| |
Collapse
|
12
|
Shilova ON, Deyev SM. DARPins: Promising Scaffolds for Theranostics. Acta Naturae 2019; 11:42-53. [PMID: 31993234 PMCID: PMC6977956 DOI: 10.32607/20758251-2019-11-4-42-53] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies are the classical basis for targeted therapy, but the development of alternative binding proteins has made it possible to use non-immunoglobulin proteins as targeting modules. The advantages of DARPins, scaffold proteins based on ankyrin repeats, over antibodies are as follows: small size, stability over a wide range of temperatures and pH values, low aggregation tendency, and ease of production in heterologous expression systems. The differences in the structure of the paratope of DARPin and antibodies broaden the spectrum of target molecules, while the ease of creating hybrid fusion proteins allows one to obtain bispecific and multivalent constructs. In this article, we summarize recent data on the development of therapeutic and imaging compounds based on DARPins.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | - S. M. Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| |
Collapse
|
13
|
MacNevin CJ, Watanabe T, Weitzman M, Gulyani A, Fuehrer S, Pinkin NK, Tian X, Liu F, Jin J, Hahn KM. Membrane-Permeant, Environment-Sensitive Dyes Generate Biosensors within Living Cells. J Am Chem Soc 2019; 141:7275-7282. [PMID: 30994345 DOI: 10.1021/jacs.8b09841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dyes with environment-sensitive fluorescence have proven useful to study the spatiotemporal dynamics of protein activity in living cells. When attached to proteins, their fluorescence can reflect protein conformational changes, post-translational modifications, or protein interactions. However, the utility of such dye-protein conjugates has been limited because it is difficult to load them into cells. They usually must be introduced using techniques that perturb cell physiology, limit throughput, or generate fluorescent vesicles (e.g., electroporation, microinjection, or membrane transduction peptides). Here we circumvent these problems by modifying a proven, environment-sensitive biosensor fluorophore so that it can pass through cell membranes without staining intracellular compartments and can be attached to proteins within living cells using unnatural amino acid (UAA) mutagenesis. Reactive groups were incorporated for attachment to UAAs or small molecules (mero166, azide; mero167, alkyne; mero76, carboxylic acid). These dyes are bright and fluoresce at long wavelengths (reaching ε = 100 000 M-1 cm-1, ϕ = 0.24, with excitation 565 nm and emission 594 nm). The utility of mero166 was demonstrated by in-cell labeling of a UAA to generate a biosensor for the small GTPase Cdc42. In addition, conjugation of mero166 to a small molecule produced a membrane-permeable probe that reported the localization of the DNA methyltransferase G9a in cells. This approach provides a strategy to access biosensors for many targets and to more practically harness the varied environmental sensitivities of synthetic dyes.
Collapse
Affiliation(s)
- Christopher J MacNevin
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Takashi Watanabe
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew Weitzman
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Akash Gulyani
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Sheryl Fuehrer
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nicholas K Pinkin
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xu Tian
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Feng Liu
- Center for Integrative Chemical Biology and Drug Discovery, School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
14
|
Ligand-induced conformational switch in an artificial bidomain protein scaffold. Sci Rep 2019; 9:1178. [PMID: 30718544 PMCID: PMC6362204 DOI: 10.1038/s41598-018-37256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022] Open
Abstract
Artificial proteins binding any predefined “target” protein can now be efficiently generated using combinatorial libraries based on robust protein scaffolds. αRep is such a family of artificial proteins, based on an α-solenoid protein repeat scaffold. The low aggregation propensity of the specific “binders” generated from this library opens new protein engineering opportunities such as the creation of biosensors within multidomain constructions. Here, we have explored the properties of two new types of artificial bidomain proteins based on αRep structures. Their structural and functional properties are characterized in detail using biophysical methods. The results clearly show that both bidomain proteins adopt a closed bivalve shell-like conformation, in the ligand free form. However, the presence of ligands induces a conformational transition, and the proteins adopt an open form in which each domain can bind its cognate protein partner. The open/closed equilibria alter the affinities of each domain and induce new cooperative effects. The binding-induced relative domain motion was monitored by FRET. Crystal structures of the chimeric proteins indicate that the conformation of each constituting domain is conserved but that their mutual interactions explain the emergent properties of these artificial bidomain proteins. The ligand-induced structural transition observed in these bidomain proteins should be transferable to other αRep proteins with different specificity and could provide the basis of a new generic biosensor design.
Collapse
|
15
|
Parameswaran S, Kundapur D, Vizeacoumar FS, Freywald A, Uppalapati M, Vizeacoumar FJ. A Road Map to Personalizing Targeted Cancer Therapies Using Synthetic Lethality. Trends Cancer 2018; 5:11-29. [PMID: 30616753 DOI: 10.1016/j.trecan.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Targeted therapies rely on the genetic and epigenetic status of the tumor cells and are seen as the most promising approach to treat cancer today. However, current targeted therapies focus on directly inhibiting those molecules that are altered in tumor cells. Unfortunately, targeting these molecules, even with specific inhibitors, is challenging as tumor cells rewire their genetic circuitry to eliminate genetic dependency on these targets. Here, we describe how synthetic lethality approaches can be used to identify genetic dependencies and develop personalized targeted therapies. We also discuss strategies to specifically target these genetic dependencies, using small molecule and biologic drugs.
Collapse
Affiliation(s)
- Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; These authors contributed equally
| | - Deeksha Kundapur
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; These authors contributed equally
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
16
|
Vigano MA, Bieli D, Schaefer JV, Jakob RP, Matsuda S, Maier T, Plückthun A, Affolter M. DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations. Biol Open 2018; 7:bio.036749. [PMID: 30237292 PMCID: PMC6262872 DOI: 10.1242/bio.036749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the last few years, protein-based affinity reagents have proven very helpful in cell and developmental biology. While many of these versatile small proteins can be expressed both in the intracellular and extracellular milieu in cultured cells and in living organisms, they can also be functionalized by fusing them to different protein domains in order to regulate or modulate their target proteins in diverse manners. For example, protein binders have been employed to degrade, trap, localize or enzymatically modify specific target proteins. Whereas binders to many endogenous proteins or small protein tags have been generated, several affinity reagents against fluorescent proteins have also been created and used to manipulate target proteins tagged with the corresponding fluorescent protein. Both of these approaches have resulted in improved methods for cell biological and developmental studies. While binders against GFP and mCherry have been previously isolated and validated, we now report the generation and utilization of designed ankyrin repeat proteins (DARPins) against the monomeric teal fluorescent protein 1 (mTFP1). Here we use the generated DARPins to delocalize Rab proteins to the nuclear compartment, in which they cannot fulfil their regular functions anymore. In the future, such manipulations might enable the production of acute loss-of-function phenotypes in different cell types or in living organisms based on direct protein manipulation rather than on genetic loss-of-function analyses. Summary: Structural characterization of two novel DARPins (designed ankyrin repeat proteins) recognizing the monomeric teal fluorescent protein 1 (mTFP1) and their functionalization for protein manipulation strategies in cultured cells and potentially in living organisms.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Dimitri Bieli
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Roman P Jakob
- Structural Biology and Biophysics, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Timm Maier
- Structural Biology and Biophysics, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Generating a recombinant phosphothreonine-binding domain for a phosphopeptide of the human transcription factor, c-Myc. N Biotechnol 2018; 45:36-44. [PMID: 29763736 DOI: 10.1016/j.nbt.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 11/21/2022]
Abstract
Transcription factor c-Myc is an oncoprotein that is regulated at the post-translational level through phosphorylation of two conserved residues, Serine 62 (Ser62) and Threonine 58 (Thr58). A highly specific tool capable of recognizing Myc via pThr58 is needed to monitor activation and localization. Through phage display, we have isolated 10 engineered Forkhead-associated (FHA) domains that selectively bind to a phosphothreonine (pThr)-containing peptide (53-FELLPpTPPLSPS-64) segment of human c-Myc. One domain variant was observed to bind to the Myc-pThr58 peptide with a KD value of 800 nM and had >1000-fold discrimination between the phosphorylated and non-phosphorylated peptide. The crystal structure of the engineered FHA Myc-pThr-binding domain (Myc-pTBD) was solved in complex with its cognate ligand. The Myc-pTBD was observed to be structurally similar to the yeast Rad9 FHA1 domain, except that its β4-β5 and β10-β11 loops form a hydrophobic pocket to facilitate the interaction between the domain and the peptide ligand. The Myc-pTBD's specificity for its cognate ligand was demonstrated to be on a par with 3 commercial polyclonal antibodies, suggesting that this recombinant reagent is a viable alternative to antibodies for monitoring Myc regulation.
Collapse
|
18
|
Martin HL, Bedford R, Heseltine SJ, Tang AA, Haza KZ, Rao A, McPherson MJ, Tomlinson DC. Non-immunoglobulin scaffold proteins: Precision tools for studying protein-protein interactions in cancer. N Biotechnol 2018; 45:28-35. [DOI: 10.1016/j.nbt.2018.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/08/2018] [Accepted: 02/18/2018] [Indexed: 02/08/2023]
|
19
|
Harmansa S, Affolter M. Protein binders and their applications in developmental biology. Development 2018; 145:145/2/dev148874. [PMID: 29374062 DOI: 10.1242/dev.148874] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developmental biology research would benefit greatly from tools that enable protein function to be regulated, both systematically and in a precise spatial and temporal manner, in vivo In recent years, functionalized protein binders have emerged as versatile tools that can be used to target and manipulate proteins. Such protein binders can be based on various scaffolds, such as nanobodies, designed ankyrin repeat proteins (DARPins) and monobodies, and can be used to block or perturb protein function in living cells. In this Primer, we provide an overview of the protein binders that are currently available and highlight recent progress made in applying protein binder-based tools in developmental and synthetic biology.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Advances in the Application of Designed Ankyrin Repeat Proteins (DARPins) as Research Tools and Protein Therapeutics. Methods Mol Biol 2018; 1798:307-327. [PMID: 29868969 DOI: 10.1007/978-1-4939-7893-9_23] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonimmunoglobulin scaffolds have been developed to overcome the limitations of monoclonal antibodies with regard to stability and size. Of these scaffolds, the class of designed ankyrin repeat proteins (DARPins) has advanced the most in biochemical and biomedical applications. This review focuses on the recent progress in DARPin technology, highlighting the scaffold's potential and possibilities.
Collapse
|
21
|
Rigidly connected multispecific artificial binders with adjustable geometries. Sci Rep 2017; 7:11217. [PMID: 28894181 PMCID: PMC5593856 DOI: 10.1038/s41598-017-11472-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Multivalent binding proteins can gain biological activities beyond what is inherent in the individual binders, by bringing together different target molecules, restricting their conformational flexibility or changing their subcellular localization. In this study, we demonstrate a method to build up rigid multivalent and multispecific scaffolds by exploiting the modular nature of a repeat protein scaffold and avoiding flexible linkers. We use DARPins (Designed Ankyrin Repeat Proteins), synthetic binding proteins based on the Ankyrin-repeat protein scaffold, as binding units. Their ease of in vitro selection, high production yield and stability make them ideal specificity-conferring building blocks for the design of more complex constructs. C- and N-terminal DARPin capping repeats were re-designed to be joined by a shared helix in such a way that rigid connector modules are formed. This allows us to join two or more DARPins in predefined geometries without compromising their binding affinities and specificities. Nine connector modules with distinct geometries were designed; for eight of these we were able to confirm the structure by X-ray crystallography, while only one did not crystallize. The bispecific constructs were all able to bind both target proteins simultaneously.
Collapse
|
22
|
de Picciotto S, Dickson PM, Traxlmayr MW, Marques BS, Socher E, Zhao S, Cheung S, Kiefer JD, Wand AJ, Griffith LG, Imperiali B, Wittrup KD. Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions. J Mol Biol 2016; 428:4228-4241. [PMID: 27448945 PMCID: PMC5048519 DOI: 10.1016/j.jmb.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
Abstract
Quantifying protein location and concentration is critical for understanding function in situ. Scaffold conjugated to environment-sensitive fluorophore (SuCESsFul) biosensors, in which a reporting fluorophore is conjugated to a binding scaffold, can, in principle, detect analytes of interest with high temporal and spatial resolution. However, their adoption has been limited due to the extensive empirical screening required for their development. We sought to establish design principles for this class of biosensor by characterizing over 400 biosensors based on various protein analytes, binding proteins, and fluorophores. We found that the brightest readouts are attained when a specific binding pocket for the fluorophore is present on the analyte. Also, interaction of the fluorophore with the binding protein it is conjugated to can raise background fluorescence, considerably limiting sensor dynamic range. Exploiting these two concepts, we designed biosensors that attain a 100-fold increase in fluorescence upon binding to analyte, an order of magnitude improvement over the previously best-reported SuCESsFul biosensor. These design principles should facilitate the development of improved SuCESsFul biosensors.
Collapse
Affiliation(s)
- Seymour de Picciotto
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paige M Dickson
- Department of Chemistry, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michael W Traxlmayr
- Koch Institute for Integrative Cancer Research, 500 Main Street, Cambridge, MA 02139, USA
| | - Bryan S Marques
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elke Socher
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA
| | - Sixing Zhao
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephanie Cheung
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA
| | - Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, 8093, Switzerland
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Barbara Imperiali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Abstract
If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.
Collapse
Affiliation(s)
- Shane Miersch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Generation of Fluorogen-Activating Designed Ankyrin Repeat Proteins (FADAs) as Versatile Sensor Tools. J Mol Biol 2016; 428:1272-1289. [PMID: 26812208 DOI: 10.1016/j.jmb.2016.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 11/21/2022]
Abstract
Fluorescent probes constitute a valuable toolbox to address a variety of biological questions and they have become irreplaceable for imaging methods. Commonly, such probes consist of fluorescent proteins or small organic fluorophores coupled to biological molecules of interest. Recently, a novel class of fluorescence-based probes, fluorogen-activating proteins (FAPs), has been reported. These binding proteins are based on antibody single-chain variable fragments and activate fluorogenic dyes, which only become fluorescent upon activation and do not fluoresce when free in solution. Here we present a novel class of fluorogen activators, termed FADAs, based on the very robust designed ankyrin repeat protein scaffold, which also readily folds in the reducing environment of the cytoplasm. The FADA generated in this study was obtained by combined selections with ribosome display and yeast surface display. It enhances the fluorescence of malachite green (MG) dyes by a factor of more than 11,000 and thus activates MG to a similar extent as FAPs based on single-chain variable fragments. As shown by structure determination and in vitro measurements, this FADA was evolved to form a homodimer for the activation of MG dyes. Exploiting the favorable properties of the designed ankyrin repeat protein scaffold, we created a FADA biosensor suitable for imaging of proteins on the cell surface, as well as in the cytosol. Moreover, based on the requirement of dimerization for strong fluorogen activation, a prototype FADA biosensor for in situ detection of a target protein and protein-protein interactions was developed. Therefore, FADAs are versatile fluorescent probes that are easily produced and suitable for diverse applications and thus extend the FAP technology.
Collapse
|
25
|
Gower CM, Thomas JR, Harrington E, Murphy J, Chang MEK, Cornella-Taracido I, Jain RK, Schirle M, Maly DJ. Conversion of a Single Polypharmacological Agent into Selective Bivalent Inhibitors of Intracellular Kinase Activity. ACS Chem Biol 2016; 11:121-31. [PMID: 26505072 DOI: 10.1021/acschembio.5b00847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss-of-function studies are valuable for elucidating kinase function and the validation of new drug targets. While genetic techniques, such as RNAi and genetic knockouts, are highly specific and easy to implement, in many cases post-translational perturbation of kinase activity, specifically pharmacological inhibition, is preferable. However, due to the high degree of structural similarity between kinase active sites and the large size of the kinome, identification of pharmacological agents that are sufficiently selective to probe the function of a specific kinase of interest is challenging, and there is currently no systematic method for accomplishing this goal. Here, we present a modular chemical genetic strategy that uses antibody mimetics as highly selective targeting components of bivalent kinase inhibitors. We demonstrate that it is possible to confer high kinase selectivity to a promiscuous ATP-competitive inhibitor by tethering it to an antibody mimetic fused to the self-labeling protein SNAPtag. With this approach, a potent bivalent inhibitor of the tyrosine kinase Abl was generated. Profiling in complex cell lysates, with competition-based quantitative chemical proteomics, revealed that this bivalent inhibitor possesses greatly enhanced selectivity for its target, BCR-Abl, in K562 cells. Importantly, we show that both components of the bivalent inhibitor can be assembled in K562 cells to block the ability of BCR-Abl to phosphorylate a direct cellular substrate. Finally, we demonstrate the generality of using antibody mimetics as components of bivalent inhibitors by generating a reagent that is selective for the activated state of the serine/threonine kinase ERK2.
Collapse
Affiliation(s)
| | - Jason R. Thomas
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Edmund Harrington
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Jason Murphy
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | | | - Ivan Cornella-Taracido
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Rishi K. Jain
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
26
|
Bieli D, Alborelli I, Harmansa S, Matsuda S, Caussinus E, Affolter M. Development and Application of Functionalized Protein Binders in Multicellular Organisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:181-213. [DOI: 10.1016/bs.ircmb.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 2015; 55:489-511. [PMID: 25562645 DOI: 10.1146/annurev-pharmtox-010611-134654] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) can recognize targets with specificities and affinities that equal or surpass those of antibodies, but because of their robustness and extreme stability, they allow a multitude of more advanced formats and applications. This review highlights recent advances in DARPin design, illustrates their properties, and gives some examples of their use. In research, they have been established as intracellular, real-time sensors of protein conformations and as crystallization chaperones. For future therapies, DARPins have been developed by advanced, structure-based protein engineering to selectively induce apoptosis in tumors by uncoupling surface receptors from their signaling cascades. They have also been used successfully for retargeting viruses. In ongoing clinical trials, DARPins have shown good safety and efficacy in macular degeneration diseases. These developments all ultimately exploit the high stability, solubility, and aggregation resistance of these molecules, permitting a wide range of conjugates and fusions to be produced and purified.
Collapse
Affiliation(s)
- Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| |
Collapse
|
28
|
Helma J, Cardoso MC, Muyldermans S, Leonhardt H. Nanobodies and recombinant binders in cell biology. J Cell Biol 2015; 209:633-44. [PMID: 26056137 PMCID: PMC4460151 DOI: 10.1083/jcb.201409074] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes.
Collapse
Affiliation(s)
- Jonas Helma
- Department of Biology II, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 2015; 33:408-18. [DOI: 10.1016/j.tibtech.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
|
30
|
Goode JA, Rushworth JVH, Millner PA. Biosensor Regeneration: A Review of Common Techniques and Outcomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6267-76. [PMID: 25402969 DOI: 10.1021/la503533g] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biosensors are ideally portable, low-cost tools for the rapid detection of pathogens, proteins, and other analytes. The global biosensor market is currently worth over 10 billion dollars annually and is a burgeoning field of interdisciplinary research that is hailed as a potential revolution in consumer, healthcare, and industrial testing. A key barrier to the widespread adoption of biosensors, however, is their cost. Although many systems have been validated in the laboratory setting and biosensors for a range of analytes are proven at the concept level, many have yet to make a strong commercial case for their acceptance. Though it is true with the development of cheaper electrodes, circuits, and components that there is a downward pressure on costs, there is also an emerging trend toward the development of multianalyte biosensors that is pushing in the other direction. One way to reduce the cost that is suitable for certain systems is to enable their reuse, thus reducing the cost per test. Regenerating biosensors is a technique that can often be used in conjunction with existing systems in order to reduce costs and accelerate the commercialization process. This article discusses the merits and drawbacks of regeneration schemes that have been proven in various biosensor systems and indicates parameters for successful regeneration based on a systematic review of the literature. It also outlines some of the difficulties encountered when considering the role of regeneration at the point of use. A brief meta-analysis has been included in this review to develop a working definition for biosensor regeneration, and using this analysis only ∼60% of the reported studies analyzed were deemed a success. This highlights the variation within the field and the need to normalize regeneration as a standard process across the field by establishing a consensus term.
Collapse
Affiliation(s)
- J A Goode
- †School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- ‡AbCam Plc, Cambridge, United Kingdom
| | - J V H Rushworth
- †School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- §School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - P A Millner
- †School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Specific GFP-binding artificial proteins (αRep): a new tool for in vitro to live cell applications. Biosci Rep 2015; 35:BSR20150080. [PMID: 26182430 PMCID: PMC4613692 DOI: 10.1042/bsr20150080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/23/2015] [Indexed: 02/08/2023] Open
Abstract
Artificial proteins, named αRep, binding tightly and specifically to EGFP are described. The structures of αRep–EGFP complexes explain how αRep recognize their cognate partner. Specific αRep can be used for biochemical or live cells experiments. A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes.
Collapse
|
32
|
Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS One 2015; 10:e0118215. [PMID: 25705880 PMCID: PMC4337908 DOI: 10.1371/journal.pone.0118215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022] Open
Abstract
We here describe a convenient method for preparation, fixation and fluorescence analysis of in vitro cultivated metacestode vesicles from E. multilocularis. Parasite materials could be prepared in one hour, did not need to be sectioned, and were subsequently utilized for further whole-mount staining assays directly. Using these preparations, in combination with conventional fluorescence staining techniques, we could detect the expression and subcellular localization of a specific protein and identify in situ proliferative or apoptotic cells in the germinal layer of metacestode vesicles. Based on this approach, future molecular and cellular analysis of Echinococcus metacestode vesicles in the in vitro system will be greatly facilitated.
Collapse
Affiliation(s)
- Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Shan Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Liang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
33
|
Takikawa K, Asanuma D, Namiki S, Sakamoto H, Ariyoshi T, Kimpara N, Hirose K. High-Throughput Development of a Hybrid-Type Fluorescent Glutamate Sensor for Analysis of Synaptic Transmission. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Takikawa K, Asanuma D, Namiki S, Sakamoto H, Ariyoshi T, Kimpara N, Hirose K. High-throughput development of a hybrid-type fluorescent glutamate sensor for analysis of synaptic transmission. Angew Chem Int Ed Engl 2014; 53:13439-43. [PMID: 25297726 DOI: 10.1002/anie.201407181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 11/10/2022]
Abstract
Fluorescent sensors are powerful tools for visualizing cellular molecular dynamics. We present a high-throughput screening system, designated hybrid-type fluorescence indicator development (HyFInD), to identify optimal position-specific fluorophore labeling in hybrid-type sensors consisting of combinations of ligand-binding protein mutants with small molecular fluorophores. We screened sensors for glutamate among hybrid molecules obtained by the reaction of four cysteine-reactive fluorescence probes with a set of cysteine-scanning mutants of the 274 amino acid S1S2 domain of AMPA-type glutamate receptor GluA2 subunit. HyFInD identified a glutamate-responsive probe (enhanced glutamate optical sensor: eEOS) with a dynamic range >2400 %, good photostability, and high selectivity. When eEOS was specifically tethered to neuronal surfaces, it reliably visualized the spatiotemporal dynamics of glutamate release at single synapses, revealing synapse-to-synapse heterogeneity of short-term plasticity.
Collapse
Affiliation(s)
- Kenji Takikawa
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan)
| | | | | | | | | | | | | |
Collapse
|
35
|
Scholz O, Hansen S, Plückthun A. G-quadruplexes are specifically recognized and distinguished by selected designed ankyrin repeat proteins. Nucleic Acids Res 2014; 42:9182-94. [PMID: 25053846 PMCID: PMC4132713 DOI: 10.1093/nar/gku571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We introduce designed ankyrin repeat binding proteins (DARPins) as a novel class of highly specific and structure-selective DNA-binding proteins, which can be functionally expressed within all cells. Human telomere quadruplex was used as target to select specific binders with ribosome display. The selected DARPins discriminate the human telomere quadruplex against the telomeric duplex and other quadruplexes. Affinities of the selected binders range from 3 to 100 nM. CD studies confirm that the quadruplex fold is maintained upon binding. The DARPins show different specificity profiles: some discriminate human telomere quadruplexes from other quadruplex-forming sequences like ILPR, c-MYC and c-KIT, while others recognize two of the sequences tested or even all quadruplexes. None of them recognizes dsDNA. Quadruplex-binding DARPins constitute valuable tools for specific detection at very small scales and for the in vivo investigation of quadruplex DNA.
Collapse
Affiliation(s)
- Oliver Scholz
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Hansen
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
36
|
Van Deventer JA, Yuet KP, Yoo TH, Tirrell DA. Cell surface display yields evolvable, clickable antibody fragments. Chembiochem 2014; 15:1777-81. [PMID: 25045032 DOI: 10.1002/cbic.201402184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 01/06/2023]
Abstract
Non-canonical amino acids (ncAAs) provide powerful tools for engineering the chemical and physical properties of proteins. However, introducing ncAAs into proteins can affect protein properties in unpredictable ways, thus necessitating screening efforts to identify mutants with desirable properties. In this work, we describe an Escherichia coli cell surface display platform for the directed evolution of clickable antibody fragments. This platform enabled isolation of antibody fragments with improved digoxigenin binding and modest affinity maturation in several different ncAA contexts. Azide-functionalized fragments exhibited improved binding kinetics relative to their methionine counterparts, facile chemical modification through azide-alkyne cycloaddition, and retention of binding properties after modification. The results described here suggest new possibilities for protein engineering, including modulation of molecular recognition events by ncAAs and direct screening of libraries of chemically modified proteins.
Collapse
Affiliation(s)
- James A Van Deventer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, MC 210-41, Pasadena, CA 91125 (USA); The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | | | | | | |
Collapse
|
37
|
Jost C, Plückthun A. Engineered proteins with desired specificity: DARPins, other alternative scaffolds and bispecific IgGs. Curr Opin Struct Biol 2014; 27:102-12. [PMID: 25033247 DOI: 10.1016/j.sbi.2014.05.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/13/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022]
Abstract
Specific binding proteins have become essential for diagnostic and therapeutic applications, and traditionally these have been antibodies. Nowadays an increasing number of alternative scaffolds have joined these ranks. These additional folds have raised a lot of interest and expectations within the last decade. It appears that they have come of age and caught up with antibodies in many fields of applications. The last years have seen an exploration of possibilities in research, diagnostics and therapy. Some scaffolds have received further improvements broadening their fields of application, while others have started to occupy their respective niche. Protein engineering, the prerequisite for the advent of all alternative scaffolds, remains the driving force in this process, for both non-immunoglobulins and immunoglobulins alike.
Collapse
Affiliation(s)
- Christian Jost
- Department of Biochemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
38
|
Ueda H, Dong J. From fluorescence polarization to Quenchbody: Recent progress in fluorescent reagentless biosensors based on antibody and other binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1951-1959. [PMID: 24931832 DOI: 10.1016/j.bbapap.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
Abstract
Recently, antibody-based fluorescent biosensors are receiving considerable attention as a suitable biomolecule for diagnostics, namely, homogeneous immunoassay and also as an imaging probe. To date, several strategies for "reagentless biosensors" based on antibodies and natural and engineered binding proteins have been described. In this review, several approaches are introduced including a recently described fluorescent antibody-based biosensor Quenchbody, which works on the principle of fluorescence quenching of attached dye and its antigen-dependent release. The merits and possible demerits of each approach are discussed. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan.
| | - Jinhua Dong
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| |
Collapse
|
39
|
de Picciotto S, Imperiali B, Griffith LG, Wittrup KD. Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors. Anal Biochem 2014; 460:9-15. [PMID: 24814226 DOI: 10.1016/j.ab.2014.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023]
Abstract
Reagentless biosensors rely on the interaction of a binding partner and its target to generate a change in fluorescent signal using an environment-sensitive fluorophore or Förster resonance energy transfer. Binding affinity can exert a significant influence on both the equilibrium and the dynamic response characteristics of such a biosensor. We here develop a kinetic model for the dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average predicted input signal, while maximizing both the association rate constant and the dissociation rate constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations constrain the attainment of these objectives, the derivation of these design principles provides guidance for improved reagentless biosensor performance and metrics for quality standards in the development of biosensors. These concepts are broadly relevant to reagentless biosensor modalities.
Collapse
Affiliation(s)
- Seymour de Picciotto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
40
|
Abe R, Jeong HJ, Arakawa D, Dong J, Ohashi H, Kaigome R, Saiki F, Yamane K, Takagi H, Ueda H. Ultra Q-bodies: quench-based antibody probes that utilize dye-dye interactions with enhanced antigen-dependent fluorescence. Sci Rep 2014; 4:4640. [PMID: 24721819 PMCID: PMC3983608 DOI: 10.1038/srep04640] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/21/2014] [Indexed: 11/09/2022] Open
Abstract
Recently, we described a novel reagentless fluorescent biosensor strategy named Quenchbody, which functions via the antigen-dependent removal of the quenching effect on a fluorophore that is attached to a single-chain antibody variable region. To explore the practical utility of Quenchbodies, we prepared antibody Fab fragments that were fluorolabeled at either one or two of the N-terminal regions, using a cell-free translation-mediated position-specific protein labeling system. Unexpectedly, the Fab fragment labeled at the heavy chain N-terminal region demonstrated a deeper quenching and antigen-dependent release compared to that observed using scFv. Moreover, when the Fab was fluorolabeled at the two N-termini with either the same dye or with two different dyes, an improved response due to enhanced quenching via dye-dye interactions was observed. On the basis of this approach, several targets, including peptides, proteins, and haptens, as well as narcotics, were quantified with a higher response up to 50-fold. In addition, differentiation of osteosarcoma to osteoblasts was successfully imaged using a similarly fluorolabeled recombinant Fab protein prepared from E. coli. Due to its versatility, this "Ultra-Quenchbody" is expected to exhibit a range of applications from in vitro diagnostics to the live imaging of various targets in situ.
Collapse
Affiliation(s)
- Ryoji Abe
- Ushio Inc., 6409 Moto-Ishikawa-cho, Aoba-ku, Yokohama, Kanagawa 225-0004, Japan
| | - Hee-Jin Jeong
- 1] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| | - Dai Arakawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jinhua Dong
- 1] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| | - Hiroyuki Ohashi
- 1] Ushio Inc., 6409 Moto-Ishikawa-cho, Aoba-ku, Yokohama, Kanagawa 225-0004, Japan [2] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rena Kaigome
- Ushio Inc., 6409 Moto-Ishikawa-cho, Aoba-ku, Yokohama, Kanagawa 225-0004, Japan
| | - Fujio Saiki
- Ushio Inc., 6409 Moto-Ishikawa-cho, Aoba-ku, Yokohama, Kanagawa 225-0004, Japan
| | - Kyosuke Yamane
- 1] Ushio Inc., 6409 Moto-Ishikawa-cho, Aoba-ku, Yokohama, Kanagawa 225-0004, Japan [2] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Takagi
- Ushio Inc., 6409 Moto-Ishikawa-cho, Aoba-ku, Yokohama, Kanagawa 225-0004, Japan
| | - Hiroshi Ueda
- 1] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| |
Collapse
|
41
|
Schilling J, Schöppe J, Plückthun A. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J Mol Biol 2014; 426:691-721. [PMID: 24513107 DOI: 10.1016/j.jmb.2013.10.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/19/2022]
Abstract
Antibodies are the most versatile binding proteins in nature with six loops creating a flexible continuous interaction surface. However, in some molecular formats, antibodies are aggregation prone. Designed ankyrin repeat proteins (DARPins) were successfully created as alternative design solutions. Nevertheless, their concave shape, rigidity and incompletely randomized binding surface may limit the epitopes that can be targeted by this extremely stable scaffold. Combining conformational diversity and a continuous convex paratope found in many antibodies with the beneficial biophysical properties of DARPins, we created LoopDARPins, a next generation of DARPins with extended epitope binding properties. We employed X-ray structure determination of a LoopDARPin for design validation. Biophysical characterizations show that the introduction of an elongated loop through consensus design does not decrease the stability of the scaffold,consistent with molecular dynamics simulations. Ribosome-display selections against extracellular signal-regulated kinase 2 (ERK2) and four members of the BCL-2 family (BCL-2, BCL-XL, BCL-W and MCL-1) of anti-apoptotic regulators yielded LoopDARPins with affinities in the mid-picomolar to low nanomol arrange against all targets. The BCL-2 family binders block the interaction with their natural interaction partner and will be valuable reagents to test the apoptotic response in functional assays. With the LoopDARPin scaffold, binders for BCL-2 with an affinity of 30 pM were isolated with only a single round of ribosome display,an enrichment that has not been described for any scaffold. Identical stringent one-round selections with conventional DARPins without loop yielded no binders. The LoopDARPin scaffold may become a highly valuable tool for biotechnological high-throughput applications.
Collapse
|
42
|
Reichert JM, Beck A, Lugovskoy AA, Wurch T, Coats S, Brezski RJ. 9th annual European Antibody Congress, November 11-13, 2013, Geneva, Switzerland. MAbs 2014; 6:309-26. [PMID: 24492298 PMCID: PMC7098616 DOI: 10.4161/mabs.27903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The annual European Antibody Congress (EAC) has traditionally been the key event for updates on critical scientific advances in the antibody field, and 2013 was no exception. Organized by Terrapinn, the well-attended meeting featured presentations on considerations for developing antibodies and antibody-like therapeutics, with separate tracks for antibody-drug conjugates, naked antibodies, and multispecific antibodies or protein scaffolds. The overall focus of the EAC was current approaches to enhance the functionality of therapeutic antibodies or other targeted proteins, with the ultimate goal being improvement of the safety and efficacy of the molecules as treatments for cancer, immune-mediated disorders and other diseases. Roundtable discussion sessions gave participants opportunities to engage in group discussions with industry leaders from companies such as Genmab, Glenmark Pharmaceuticals, MedImmune, Merrimack Pharmaceuticals, and Pierre Fabre. As the 2013 EAC was co-located with the World Biosimilar Congress, participants also received an update on European Medicines Agency guidelines and thoughts on the future direction and development of biosimilar antibodies in the European Union.
Collapse
Affiliation(s)
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint Julien en Genevois, France
| | | | - Thierry Wurch
- Institut de Recherches SERVIER; Oncology R&D Unit, F-78290; Croissy-sur-Seine, France
| | | | | |
Collapse
|