1
|
Wang Y, Duan Y, Zhang M, Liang C, Li W, Liu C, Ye Y. Genome Sequencing and Metabolic Potential Analysis of Irpex lacteus. J Fungi (Basel) 2024; 10:846. [PMID: 39728342 DOI: 10.3390/jof10120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Irpex lacteus is an edible and medicinal macrofungus with significant biological activity and broad pharmaceutical prospects that has received increasing attention in recent years. Although it is an important resource for macrofungi, knowledge of it remains limited. In this study, we sequenced, de novo assembled, and annotated the whole genome of I. lacteus using a PacBio Sequel II sequencer. The assembled 41.83 Mb genome contains 13,135 predicted protein-coding genes, 83.44% of which have searchable sequence similarity to other genes available in public databases. Using genome-based bioinformatics analysis, we identified 556 enzymes involved in carbohydrate metabolism and 103 cytochrome P450 proteins. Genome annotation revealed genes for key enzymes responsible for the biosynthesis of secondary metabolites, such as terpenoids and polyketides. Among them, we identified 14 terpene synthases, 8 NRPS-like enzymes, and 4 polyketide synthases (PKS), as well as 2 clusters of biosynthetic genes presumably related to terpene synthesis in I. lacteus. Gene family analysis revealed that the MYB transcription factor gene family plays an important role in the growth and development of I. lacteus. This study further enriches the genomic content of I. lacteus, provides genomic information for further research on the molecular mechanism of I. lacteus, and promotes the development of I. lacteus in the fields of drug research and functional food production.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingce Duan
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Menghan Zhang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chaoqin Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenli Li
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Platz L, Löhr NA, Girkens MP, Eisen F, Braun K, Fessner N, Bär C, Hüttel W, Hoffmeister D, Müller M. Regioselective Oxidative Phenol Coupling by a Mushroom Unspecific Peroxygenase. Angew Chem Int Ed Engl 2024; 63:e202407425. [PMID: 38963262 DOI: 10.1002/anie.202407425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Bioactive dimeric (pre-)anthraquinones are ubiquitous in nature and are found in bacteria, fungi, insects, and plants. Their biosynthesis via oxidative phenol coupling (OPC) is catalyzed by cytochrome P450 enzymes, peroxidases, or laccases. While the biocatalysis of OPC in molds (Ascomycota) is well-known, the respective enzymes in mushroom-forming fungi (Basidiomycota) are unknown. Here, we report on the biosynthesis of the atropisomers phlegmacin A1 and B1 of the mushroom Cortinarius odorifer. The biosynthesis of these unsymmetrically 7,10'-homo-coupled dihydroanthracenones was heterologously reconstituted in the mold Aspergillus niger. Methylation of the parental monomer atrochrysone to its 6-O-methyl ether torosachrysone by the O-methyltransferase CoOMT1 precedes the regioselective homocoupling to phlegmacin, catalyzed by the enzyme CoUPO1 annotated as an "unspecific peroxygenase" (UPO). Our results reveal an unprecedented UPO reaction, thereby expanding the biocatalytic portfolio of oxidative phenol coupling beyond the commonly reported enzymes. The results show that Basidiomycota use peroxygenases to selectively couple aryls independently of and convergently to any other group of organisms, emphasizing the central role of OPC in natural processes.
Collapse
Affiliation(s)
- Lukas Platz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Nikolai A Löhr
- Department Pharmaceutical Microbiology at the Hans-Knöll- Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Max P Girkens
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Frederic Eisen
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Konstantin Braun
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Nico Fessner
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Christian Bär
- Department Pharmaceutical Microbiology at the Hans-Knöll- Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Wolfgang Hüttel
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll- Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
3
|
Löhr NA, Platz L, Hoffmeister D, Müller M. From the forest floor to the lab: Insights into the diversity and complexity of mushroom polyketide synthases. Curr Opin Chem Biol 2024; 82:102510. [PMID: 39128325 DOI: 10.1016/j.cbpa.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Mushroom-forming fungi exhibit a distinctive ecology, which is unsurprisingly also reflected in unique and divergent biosynthetic pathways. We review this phenomenon through the lens of the polyketide metabolism, where mushrooms often deviate from established principles and challenge conventional paradigms. This is evident not only by non-canonical enzyme architectures and functions but also by their propensity for multi-product synthases rather than single-product pathways. Nevertheless, mushrooms also feature many polyketides familiar from plants, bacteria, and fungi of their sister division Ascomycota, which, however, are the result of an independent evolution. In this regard, the captivating biosynthetic pathways of mushrooms might even help us understand the biological pressures that led to the simultaneous production of the same natural products (via convergent evolution, co-evolution, and/or metaevolution) and thus address the question of their raison d'être.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department of Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany; Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Lukas Platz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department of Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany; Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Bai G, Li D, Wang Y, Yi J, Xu K, Wang W, Li J, Tan G, Yu X. Challenging Aromaticity: Revealing a Thioesterase Domain in a Fungal Nonreducing Polyketide Synthase Governing the Production of 3-Methylene Isochromanone. Org Lett 2024; 26:6303-6308. [PMID: 38815056 DOI: 10.1021/acs.orglett.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Thioesterase (TE) domain exerts a great influence over the structure of the final product and TE-released nonreduced polyketides (nrPKs) retain aromaticity. 3-Methylene isochromanones are lactones with a unique olefin at C3 that disrupts the aromaticity, whose biosynthetic details are speculative. Our study unveils the complete biosynthesis of ascochin, in which the construction of the 3-methylene isochromanone backbone is achieved by a nonreducing polyketide synthase (nrPKS) alone and two subsequent oxidations are involved. Intriguingly, the TEAscD serves as a gatekeeper to direct the product release toward formation of nonaromatic 3-methylene isochromanone, rather than the typical aromatic product.
Collapse
Affiliation(s)
- Guitao Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Dan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jiale Yi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jing Li
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Guishan Tan
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
5
|
Zhao P, Cao S, Wang J, Lin J, Zhang Y, Liu C, Liu H, Zhang Q, Wang M, Meng Y, Yin X, Qi J, Zhang L, Xia X. Activation of secondary metabolite gene clusters in Chaetomium olivaceum via the deletion of a histone deacetylase. Appl Microbiol Biotechnol 2024; 108:332. [PMID: 38734756 PMCID: PMC11088548 DOI: 10.1007/s00253-024-13173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.
Collapse
Affiliation(s)
- Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Shengling Cao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jiahui Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jiaying Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Yunzeng Zhang
- Department of Thoracic Surgery, Shandong Public Health Clinical Center, Jinan, 250013, Shandong, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Hairong Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Qingqing Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jun Qi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China.
| |
Collapse
|
6
|
Stroe MC, Gao J, Pitz M, Fischer R. Complexity of fungal polyketide biosynthesis and function. Mol Microbiol 2024; 121:18-25. [PMID: 37961029 DOI: 10.1111/mmi.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi.
Collapse
Affiliation(s)
- Maria C Stroe
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Jia Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Michael Pitz
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| |
Collapse
|
7
|
Fukaya M, Nagamine S, Ozaki T, Liu Y, Ozeki M, Matsuyama T, Miyamoto K, Kawagishi H, Uchiyama M, Oikawa H, Minami A. Total Biosynthesis of Melleolides from Basidiomycota Fungi: Mechanistic Analysis of the Multifunctional GMC Oxidase Mld7. Angew Chem Int Ed Engl 2023; 62:e202308881. [PMID: 37534412 DOI: 10.1002/anie.202308881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Mushroom terpenoids are biologically and chemically diverse fungal metabolites. Among them, melleolides are representative sesquiterpenoids with a characteristic protoilludane skeleton. In this study, we applied a recently established hot spot knock-in method to elucidate the biosynthetic pathway leading to 1α-hydroxymelleolide. The biosynthesis of the sesquiterpene core involves the cytochrome P450 catalyzing stepwise hydroxylation of the Δ6 -protoilludene framework and a stereochemical inversion process at the C5 position catalyzed by short-chain dehydrogenase/reductase family proteins. The highlight of the biosynthesis is that the flavoprotein Mld7 catalyzes an oxidation-triggered double-bond shift accompanying dehydration and acyl-group-assisted substitution with two different nucleophiles at the C6 position to afford the Δ7 -protoilludene derivatives, such as melleolide and armillarivin. The complex reaction mechanism was proposed by DFT calculations. Of particular importance is that product distribution is regulated by interaction with the cell membrane.
Collapse
Affiliation(s)
- Mitsunori Fukaya
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shota Nagamine
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yaping Liu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Miina Ozeki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8526, Japan
- Research Institute for Mushroom Science, Shizuoka, 422-8529, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
8
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Löhr NA, Rakhmanov M, Wurlitzer JM, Lackner G, Gressler M, Hoffmeister D. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biol Biotechnol 2023; 10:17. [PMID: 37542286 PMCID: PMC10401856 DOI: 10.1186/s40694-023-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Malik Rakhmanov
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
10
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
11
|
Han H, Yu C, Qi J, Wang P, Zhao P, Gong W, Xie C, Xia X, Liu C. High-efficient production of mushroom polyketide compounds in a platform host Aspergillus oryzae. Microb Cell Fact 2023; 22:60. [PMID: 36998045 PMCID: PMC10064546 DOI: 10.1186/s12934-023-02071-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid, OA) and its structural analog o-Orsellinaldehyde, have become widely used intermediates in clinical drugs synthesis. Although the research on the biosynthesis of such compounds has made significant progress, due to the lack of suitable hosts, there is still far from the industrial production of such compounds based on synthetic biology. RESULTS With the help of genome mining, we found a polyketide synthase (PKS, HerA) in the genome of the Hericium erinaceus, which shares 60% amino acid sequence homology with ArmB from Armillaria mellea, an identified PKS capable of synthesizing OA. To characterize the function of HerA, we cloned herA and heterologously expressed it in Aspergillus oryzae, and successfully detected the production of OA. Subsequently, the introduction of an incomplete PKS (Pks5) from Ustilago maydis containing only three domains (AMP-ACP-R), which was into herA-containing A. oryzae, the resulted in the production of o-Orsellinaldehyde. Considering the economic value of OA and o-Orsellinaldehyde, we then optimized the yield of these compounds in A. oryzae. The screening showed that when maltose was used as carbon source, the yields of OA and o-Orsellinaldehyde were 57.68 mg/L and 15.71 mg/L respectively, while the yields were 340.41 mg/Kg and 84.79 mg/Kg respectively in rice medium for 10 days. CONCLUSIONS Herein, we successfully expressed the genes of basidiomycetes using A. oryzae heterologous host. As a fungus of ascomycetes, which not only correctly splices genes of basidiomycetes containing multiple introns, but also efficiently produces their metabolites. This study highlights that A. oryzae is an excellent host for the heterologous production of fungal natural products, and has the potential to become an efficient chassis for the production of basidiomycete secondary metabolites in synthetic biology.
Collapse
Affiliation(s)
- Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Chunyan Yu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
12
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
13
|
Zhang T, Cai G, Rong X, Wang Y, Gong K, Liu W, Wang L, Pang X, Yu L. A Combination of Genome Mining with an OSMAC Approach Facilitates the Discovery of and Contributions to the Biosynthesis of Melleolides from the Basidiomycete Armillaria tabescens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12430-12441. [PMID: 36134616 DOI: 10.1021/acs.jafc.2c04079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genome mining revealed that the genomes of basidiomycetes may include a considerable number of biosynthetic gene clusters (BGCs), yet numerous clusters remain unidentified. Herein, we report a combination of genome mining with an OSMAC (one strain, many compounds) approach to characterize the spectrum of melleolides produced by Armillaria tabescens CPCC 401429. Using F1 fermentation medium, the metabolic pathway of the gene cluster mel was successfully upregulated. From the extracts of the wild-type strain, two new melleolides (1 and 2), along with five new orsellinic acid-derived lactams (10-14), were isolated, and their structures were elucidated by LC-HR-ESIMS/MS and 2D-NMR. Several melleolides exhibited moderate anti-carcinoma (A549, NCI-H520, and H1299) effects with IC50 values of 4.0-48.8 μM. RNA-sequencing based transcriptomic profiling broadened our knowledge of the genetic background, regulation, and mechanisms of melleolide biosynthesis. These results may promote downstream metabolic engineering studies of melleolides. Our study demonstrates the approach is effective for discovering new secondary metabolites from Armillaria sp. and will facilitate the mining of the unexploited biosynthetic potential in other basidiomycetes.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Xiaoting Rong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yuquan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - KaiKai Gong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wancang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xu Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Souza JL, Nunes VV, Calazans CC, Silva-Mann R. Biotechnological potential of medicinal plant Erythrina velutina Willd: A systematic review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Moussa AY, Fayez S, Xiao H, Xu B. New insights into antimicrobial and antibiofilm effects of edible mushrooms. Food Res Int 2022; 162:111982. [DOI: 10.1016/j.foodres.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
16
|
Dörner S, Rogge K, Fricke J, Schäfer T, Wurlitzer JM, Gressler M, Pham DNK, Manke DR, Chadeayne AR, Hoffmeister D. Genetic Survey of Psilocybe Natural Products. Chembiochem 2022; 23:e202200249. [PMID: 35583969 PMCID: PMC9400892 DOI: 10.1002/cbic.202200249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Psilocybe magic mushrooms are best known for their main natural product, psilocybin, and its dephosphorylated congener, the psychedelic metabolite psilocin. Beyond tryptamines, the secondary metabolome of these fungi is poorly understood. The genomes of five species (P. azurescens, P. cubensis, P. cyanescens, P. mexicana, and P. serbica) were browsed to understand more profoundly common and species-specific metabolic capacities. The genomic analyses revealed a much greater and yet unexplored metabolic diversity than evident from parallel chemical analyses. P. cyanescens and P. mexicana were identified as aeruginascin producers. Lumichrome and verpacamide A were also detected as Psilocybe metabolites. The observations concerning the potential secondary metabolome of this fungal genus support pharmacological and toxicological efforts to find a rational basis for yet elusive phenomena, such as paralytic effects, attributed to consumption of some magic mushrooms.
Collapse
Affiliation(s)
- Sebastian Dörner
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Kai Rogge
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Janis Fricke
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Tim Schäfer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Jacob M. Wurlitzer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Duyen N. K. Pham
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | - David R. Manke
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | | | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
17
|
Löhr NA, Eisen F, Thiele W, Platz L, Motter J, Hüttel W, Gressler M, Müller M, Hoffmeister D. Unprecedented Mushroom Polyketide Synthases Produce the Universal Anthraquinone Precursor. Angew Chem Int Ed Engl 2022; 61:e202116142. [PMID: 35218274 PMCID: PMC9325552 DOI: 10.1002/anie.202116142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/11/2022]
Abstract
(Pre-)anthraquinones are widely distributed natural compounds and occur in plants, fungi, microorganisms, and animals, with atrochrysone (1) as the key biosynthetic precursor. Chemical analyses established mushrooms of the genus Cortinarius-the webcaps-as producers of atrochrysone-derived octaketide pigments. However, more recent genomic data did not provide any evidence for known atrochrysone carboxylic acid (4) synthases nor any other polyketide synthase (PKS) producing oligocyclic metabolites. Here, we describe an unprecedented class of non-reducing (NR-)PKS. In vitro assays with recombinant enzyme in combination with in vivo product formation in the heterologous host Aspergillus niger established CoPKS1 and CoPKS4 of C. odorifer as members of a new class of atrochrysone carboxylic acid synthases. CoPKS4 catalyzed both hepta- and octaketide synthesis and yielded 6-hydroxymusizin (6), along with 4. These first mushroom PKSs for oligocyclic products illustrate how the biosynthesis of bioactive natural metabolites evolved independently in various groups of life.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Frederic Eisen
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Wiebke Thiele
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lukas Platz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Jonas Motter
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| |
Collapse
|
18
|
Liu Q, Zhang D, Xu Y, Gao S, Gong Y, Cai X, Yao M, Yang X. Cloning and Functional Characterization of the Polyketide Synthases Based on Genome Mining of Preussia isomera XL-1326. Front Microbiol 2022; 13:819086. [PMID: 35602042 PMCID: PMC9116485 DOI: 10.3389/fmicb.2022.819086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Fungal polyketides (PKs) are one of the largest families of structurally diverse bioactive natural products biosynthesized by multidomain megasynthases, in which thioesterase (TE) domains act as nonequivalent decision gates determining both the shape and the yield of the polyketide intermediate. The endophytic fungus Preussia isomera XL-1326 was discovered to have an excellent capacity for secreting diverse bioactive PKs, i.e., the hot enantiomers (±)-preuisolactone A with antibacterial activity, the single-spiro minimoidione B with α-glucosidase inhibition activity, and the uncommon heptaketide setosol with antifungal activity, which drive us to illustrate how the unique PKs are biosynthesized. In this study, we first reported the genome sequence information of P. isomera. Based on genome mining, we discovered nine transcriptionally active genes encoding polyketide synthases (PKSs), Preu1–Preu9, of which those of Preu3, Preu4, and Preu6 were cloned and functionally characterized due to possessing complete sets of synthetic and release domains. Through heterologous expression in Saccharomyces cerevisiae, Preu3 and Preu6 could release high yields of orsellinic acid (OA) derivatives [3-methylorsellinic acid (3-MOA) and lecanoric acid, respectively]. Correspondingly, we found that Preu3 and Preu6 were clustered into OA derivative synthase groups by phylogenetic analysis. Next, with TE domain swapping, we constructed a novel “non-native” PKS, Preu6-TEPreu3, which shared a very low identity with OA synthase, OrsA, from Aspergillus nidulans but could produce a large amount of OA. In addition, with the use of Preu6-TEPreu3, we synthesized methyl 3-methylorsellinate (synthetic oak moss of great economic value) from 3-MOA as the substrate, and interestingly, 3-MOA exhibited remarkable antibacterial activities, while methyl 3-methylorsellinate displayed broad-spectrum antifungal activity. Taken together, we identified two novel PKSs to biosynthesize 3-MOA and lecanoric acid, respectively, with information on such kinds of PKSs rarely reported, and constructed one novel “non-native” PKS to largely biosynthesize OA. This work is our first step to explore the biosynthesis of the PKs in P. isomera, and it also provides a new platform for high-level environment-friendly production of OA derivatives and the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Dan Zhang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yao Xu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shuaibiao Gao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yifu Gong
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xianhua Cai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Ming Yao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
19
|
Liu F, Li Q, Wei M, Kang X, Zhu H, Sun W, Chen C, Zhang Y. Sterehirsutynes A - C: three new acetylenic aromatic metabolites from Stereum hirsutum. Nat Prod Res 2022:1-8. [PMID: 35232300 DOI: 10.1080/14786419.2022.2047046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Three new acetylenic aromatic compounds, sterehirsutynes A-C (1-3), along with three known congeners, frustulosinol (4), vibrayne (5), and sterehirsutinol (6), were isolated from the culture broth of Stereum hirsutum. Their structures were determined by detailed analyses of NMR and high-resolution mass. Chiral column analysis showed that compounds 2 and 3 were racemic mixtures. These new compounds were evaluated for porcine pancreatic lipase (PPL) inhibitory activities, and compounds 1 and (±) 3 showed moderate inhibitory activity against PPL, with IC50 values of 23.2 ± 1.04 and 21.8 ± 2.15 μM, respectively.
Collapse
Affiliation(s)
- Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| | - Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China
| |
Collapse
|
20
|
Löhr NA, Eisen F, Thiele W, Platz L, Motter J, Hüttel W, Gressler M, Müller M, Hoffmeister D. Unprecedented Mushroom Polyketide Synthases Produce the Universal Anthraquinone Precursor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nikolai A Löhr
- Friedrich-Schiller-Universitat Jena Pharmaceutical Microbiology GERMANY
| | - Frederic Eisen
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Wiebke Thiele
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Lukas Platz
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Jonas Motter
- Friedrich-Schiller-Universitat Jena Pharmaceutical Microbiology GERMANY
| | - Wolfgang Hüttel
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Markus Gressler
- Friedrich-Schiller-Universitat Jena Pharmaceutical Microbiology GERMANY
| | - Michael Müller
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Dirk Hoffmeister
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Pharmaceutical Microbiology at the Hans-Kn�ll-Institute Beutenbergstrasse 11a 07745 Jena GERMANY
| |
Collapse
|
21
|
Comparative Genomic and Metabolomic Analysis of Termitomyces Species Provides Insights into the Terpenome of the Fungal Cultivar and the Characteristic Odor of the Fungus Garden of Macrotermes natalensis Termites. mSystems 2022; 7:e0121421. [PMID: 35014870 PMCID: PMC8751386 DOI: 10.1128/msystems.01214-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrotermitinae termites have domesticated fungi of the genus Termitomyces as food for their colony, analogously to human farmers growing crops. Termites propagate the fungus by continuously blending foraged and predigested plant material with fungal mycelium and spores (fungus comb) within designated subterranean chambers. To test the hypothesis that the obligate fungal symbiont emits specific volatiles (odor) to orchestrate its life cycle and symbiotic relations, we determined the typical volatile emission of fungus comb biomass and Termitomyces nodules, revealing α-pinene, camphene, and d-limonene as the most abundant terpenes. Genome mining of Termitomyces followed by gene expression studies and phylogenetic analysis of putative enzymes related to secondary metabolite production encoded by the genomes uncovered a conserved and specific biosynthetic repertoire across strains. Finally, we proved by heterologous expression and in vitro enzymatic assays that a highly expressed gene sequence encodes a rare bifunctional mono-/sesquiterpene cyclase able to produce the abundant comb volatiles camphene and d-limonene. IMPORTANCE The symbiosis between macrotermitinae termites and Termitomyces is obligate for both partners and is one of the most important contributors to biomass conversion in the Old World tropic’s ecosystems. To date, research efforts have dominantly focused on acquiring a better understanding of the degradative capabilities of Termitomyces to sustain the obligate nutritional symbiosis, but our knowledge of the small-molecule repertoire of the fungal cultivar mediating interspecies and interkingdom interactions has remained fragmented. Our omics-driven chemical, genomic, and phylogenetic study provides new insights into the volatilome and biosynthetic capabilities of the evolutionarily conserved fungal genus Termitomyces, which allows matching metabolites to genes and enzymes and, thus, opens a new source of unique and rare enzymatic transformations.
Collapse
|
22
|
Liu Z, Lu H, Zhang X, Chen Q. The Genomic and Transcriptomic Analyses of Floccularia luteovirens, a Rare Edible Fungus in the Qinghai-Tibet Plateau, Provide Insights into the Taxonomy Placement and Fruiting Body Formation. J Fungi (Basel) 2021; 7:jof7110887. [PMID: 34829176 PMCID: PMC8618933 DOI: 10.3390/jof7110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floccularia luteovirens is a famous and precious edible mushroom (Huang Mogu) on the Qinghai–Tibet plateau that has a unique flavor and remarkable medical functions. Herein, we report a reference-grade 27 Mb genome of F. luteovirens containing 7068 protein-coding genes. The genome component and gene functions were predicted. Genome ontology enrichment and pathway analyses indicated the potential production capacity for terpenoids, polyketides and polysaccharides. Moreover, 16 putative gene clusters and 145 genes coding for secondary metabolites were obtained, including guadinomine and melleolides. In addition, phylogenetic and comparative genomic analyses shed light on the precise classification of F. luteovirens suggesting that it belongs to the genus Floccularia instead of Armillaria. RNA-sequencing and comparative transcriptomic analysis revealed differentially expressed genes during four developmental stages of F. luteovirens, that of which helps to identify important genes regulating fruiting body formation for strain modification. This study will provide insight into artificial cultivation and increase the production of useful metabolites.
Collapse
Affiliation(s)
- Zhengjie Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
- Correspondence: ; Tel.: +86-0571-8698-4316
| |
Collapse
|
23
|
Pu XJ, Hu QY, Li SS, Li GH, Zhao PJ. Sesquiterpenoids and their quaternary ammonium hybrids from the mycelium of mushroom Stereum hirsutum by medium optimization. PHYTOCHEMISTRY 2021; 189:112852. [PMID: 34175550 DOI: 10.1016/j.phytochem.2021.112852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The fungal genus Stereum (Stereaceae) produces a broad variety of specialised metabolites, including a wide range of terpenes. This probably relates to the presence of an extensive biosynthetic machinery for this group of compounds: genomic analysis of Stereum hirsutum has identified 16 terpene synthase gene clusters, 6 polyketide synthase gene clusters, and 1 polyketide synthase non-ribosomal polypeptide heterodimer gene cluster in S. hirsutum FP-91666. In the present study, the One Strain Many Compounds (OSMAC) approach was employed to discover undescribed metabolites from this strain. Fermentation was carried out in five media and the products of the strain cultivated on different media were analyzed by LC-MS. From cultures grow in WGB medium (30.0 g wheat bran, 20.0 g glucose, 1.5 g KH2PO4, and 1.5 g MgSO4), four previously undescribed metabolites, a sesquiterpene sterostrein X and three mixed terpenes (stereumamides I-K) were isolated, together with seven known compounds (drimene-2,11-diol, stereumamide E, stereumamide D, stereumamide B, stereumamide A, stereumamide C, and sterostrein Q). The drimane-type sesquiterpene drimene-2,11-diol was found in S. hirsutum FP-91666 for the first time. All structures were elucidated by spectroscopic data analysis. The absolute configurations of stereumamides I, J and K were assigned by comparing their experimental and calculated electronic circular dichroism (ECD) spectra. An anti-Mycobacterium tuberculosis experiment showed that stereumamides I-K and sterostrein Q had weak antibacterial activity against this pathogen.
Collapse
Affiliation(s)
- Xue-Juan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Qian-Yi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Su-Su Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
24
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
25
|
Kim W, Liu R, Woo S, Kang KB, Park H, Yu YH, Ha HH, Oh SY, Yang JH, Kim H, Yun SH, Hur JS. Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression. mBio 2021; 12:e0111121. [PMID: 34154413 PMCID: PMC8262933 DOI: 10.1128/mbio.01111-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The depside and depsidone series compounds of polyketide origin accumulate in the cortical or medullary layers of lichen thalli. Despite the taxonomic and ecological significance of lichen chemistry and its pharmaceutical potentials, there has been no single piece of genetic evidence linking biosynthetic genes to lichen substances. Thus, we systematically analyzed lichen polyketide synthases (PKSs) for categorization and identification of the biosynthetic gene cluster (BGC) involved in depside/depsidone production. Our in-depth analysis of the interspecies PKS diversity in the genus Cladonia and a related Antarctic lichen, Stereocaulon alpinum, identified 45 BGC families, linking lichen PKSs to 15 previously characterized PKSs in nonlichenized fungi. Among these, we identified highly syntenic BGCs found exclusively in lichens producing atranorin (a depside). Heterologous expression of the putative atranorin PKS gene (coined atr1) yielded 4-O-demethylbarbatic acid, found in many lichens as a precursor compound, indicating an intermolecular cross-linking activity of Atr1 for depside formation. Subsequent introductions of tailoring enzymes into the heterologous host yielded atranorin, one of the most common cortical substances of macrolichens. Phylogenetic analysis of fungal PKS revealed that the Atr1 is in a novel PKS clade that included two conserved lichen-specific PKS families likely involved in biosynthesis of depsides and depsidones. Here, we provide a comprehensive catalog of PKS families of the genus Cladonia and functionally characterize a biosynthetic gene cluster from lichens, establishing a cornerstone for studying the genetics and chemical evolution of diverse lichen substances. IMPORTANCE Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation). To date, however, no single lichen product has been linked to respective biosynthetic genes with genetic evidence. Here, we identified a gene cluster family responsible for biosynthesis of atranorin, a cortical substance found in diverse lichen species, by categorizing lichen polyketide synthase and reconstructing the atranorin biosynthetic pathway in a heterologous host. This study will help elucidate lichen secondary metabolism, harnessing the lichen's chemical diversity, hitherto obscured due to limited genetic information on lichens.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Sunmin Woo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Ji Ho Yang
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
26
|
Engels B, Heinig U, McElroy C, Meusinger R, Grothe T, Stadler M, Jennewein S. Isolation of a gene cluster from Armillaria gallica for the synthesis of armillyl orsellinate-type sesquiterpenoids. Appl Microbiol Biotechnol 2021; 105:211-224. [PMID: 33191459 PMCID: PMC7778616 DOI: 10.1007/s00253-020-11006-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 11/27/2022]
Abstract
Melleolides and armillyl orsellinates are protoilludene-type aryl esters that are synthesized exclusively by parasitic fungi of the globally distributed genus Armillaria (Agaricomycetes, Physalacriaceae). Several of these compounds show potent antimicrobial and cytotoxic activities, making them promising leads for the development of new antibiotics or drugs for the treatment of cancer. We recently cloned and characterized the Armillaria gallica gene Pro1 encoding protoilludene synthase, a sesquiterpene cyclase catalyzing the pathway-committing step to all protoilludene-type aryl esters. Fungal enzymes representing secondary metabolic pathways are sometimes encoded by gene clusters, so we hypothesized that the missing steps in the pathway to melleolides and armillyl orsellinates might be identified by cloning the genes surrounding Pro1. Here we report the isolation of an A. gallica gene cluster encoding protoilludene synthase and four cytochrome P450 monooxygenases. Heterologous expression and functional analysis resulted in the identification of protoilludene-8α-hydroxylase, which catalyzes the first committed step in the armillyl orsellinate pathway. This confirms that ∆-6-protoilludene is a precursor for the synthesis of both melleolides and armillyl orsellinates, but the two pathways already branch at the level of the first oxygenation step. Our results provide insight into the synthesis of these valuable natural products and pave the way for their production by metabolic engineering. KEY POINTS: • Protoilludene-type aryl esters are bioactive metabolites produced by Armillaria spp. • The pathway-committing step to these compounds is catalyzed by protoilludene synthase. • We characterized CYP-type enzymes in the cluster and identified novel intermediates.
Collapse
Affiliation(s)
- Benedikt Engels
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Jennewein Biotechnologie GmbH, Maarweg 32, Rheinbreitbach, Germany
| | - Uwe Heinig
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, P.O. Box 26, 7610001, Rehovot, Israel
| | - Christopher McElroy
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Reinhard Meusinger
- Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Torsten Grothe
- Mibelle Group Biochemistry, Bolimattstrasse 1, 5033, Buchs, Switzerland
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Stefan Jennewein
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| |
Collapse
|
27
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
28
|
Wang C, Wang X, Zhang L, Yue Q, Liu Q, Xu YM, Gunatilaka AAL, Wei X, Xu Y, Molnár I. Intrinsic and Extrinsic Programming of Product Chain Length and Release Mode in Fungal Collaborating Iterative Polyketide Synthases. J Am Chem Soc 2020; 142:17093-17104. [PMID: 32833442 DOI: 10.1021/jacs.0c07050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combinatorial biosynthesis with fungal polyketide synthases (PKSs) promises to produce unprecedented bioactive "unnatural" natural products (uNPs) for drug discovery. Genome mining of the dothideomycete Rhytidhysteron rufulum uncovered a collaborating highly reducing PKS (hrPKS)-nonreducing PKS (nrPKS) pair. These enzymes produce trace amounts of rare S-type benzenediol macrolactone congeners with a phenylacetate core in a heterologous host. However, subunit shuffling and domain swaps with voucher enzymes demonstrated that all PKS domains are highly productive. This contradiction led us to reveal novel programming layers exerted by the starter unit acyltransferase (SAT) and the thioesterase (TE) domains on the PKS system. First, macrocyclic vs linear product formation is dictated by the intrinsic biosynthetic program of the TE domain. Next, the chain length of the hrPKS product is strongly influenced in trans by the off-loading preferences of the nrPKS SAT domain. Last, TE domains are size-selective filters that facilitate or obstruct product formation from certain priming units. Thus, the intrinsic programs of the SAT and TE domains are both part of the extrinsic program of the hrPKS subunit and modulate the observable metaprogram of the whole PKS system. Reconstruction of SAT and TE phylogenies suggests that these domains travel different evolutionary trajectories, with the resulting divergence creating potential conflicts in the PKS metaprogram. Such conflicts often emerge in chimeric PKSs created by combinatorial biosynthesis, reducing biosynthetic efficiency or even incapacitating the system. Understanding the points of failure for such engineered biocatalysts is pivotal to advance the biosynthetic production of uNPs.
Collapse
Affiliation(s)
- Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.,Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Xiaojing Wang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai 201318, P. R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Qingpei Liu
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States.,School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan 430074, P. R. China
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
29
|
Presley GN, Zhang J, Purvine SO, Schilling JS. Functional Genomics, Transcriptomics, and Proteomics Reveal Distinct Combat Strategies Between Lineages of Wood-Degrading Fungi With Redundant Wood Decay Mechanisms. Front Microbiol 2020; 11:1646. [PMID: 32849338 PMCID: PMC7399148 DOI: 10.3389/fmicb.2020.01646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Wood-degrading fungi vary in their strategies for deconstructing wood, and their competitive successes shape the rate and fate of carbon released from wood, Earth’s largest pool of aboveground terrestrial carbon. In this study, one-on-one interspecific interactions between two model brown rot (carbohydrate-selective) fungi, Gloeophyllum trabeum and Rhodonia (Postia) placenta, were studied on wood wafers where a clearly resolved interaction zone (IZ) could be generated, reproducibly. Comparative RNAseq and proteomics between the IZ and non-interacting hyphae of each species identified combative strategies for each fungus. Glycoside hydrolases were a relatively smaller portion of the interaction secretome compared to non-interacting hyphae. The interaction zone showed higher pectinase specific activity than all other sampling locations, and higher laminarinase specific activity (branched β-glucan proxy) was seen in the IZ secretome relative to equivalent hyphae in single-species cultures. Our efforts also identified two distinct competitive strategies in these two fungi with a shared nutritional mode (brown rot) but polyphyletic ancestral lineages. Gloeophyllum trabeum (Gloeophyllum clade) upregulated more secondary metabolite (SM) synthesis genes in response to a competitor than did R. placenta. R. placenta (Antrodia clade) upregulated a larger variety of uncharacterized oxidoreductases in interacting hyphae, suggesting that these may play a role in mediating competitor response in this fungus. Both species produced several hypothetical proteins exclusively in the interaction zone, leaving questions as to the function of these proteins. This work supports the existence of multiple interaction strategies among brown rot fungi and highlights the functional diversity among wood decay fungi.
Collapse
Affiliation(s)
- Gerald N Presley
- Department of Wood Science and Engineering, Oregon State University, Corvallis, OR, United States
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
30
|
In Depth Natural Product Discovery from the Basidiomycetes Stereum Species. Microorganisms 2020; 8:microorganisms8071049. [PMID: 32679785 PMCID: PMC7409058 DOI: 10.3390/microorganisms8071049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Natural metabolites from microorganisms play significant roles in the discovery of drugs, both for disease treatments in humans, and applications in agriculture. The Basidiomycetes Stereum genus has been a source of such bioactive compounds. Here we report on the structures and activities of secondary metabolites from Stereum. Their structural types include sesquiterpenoids, polyketides, vibralactones, triterpenoids, sterols, carboxylic acids and saccharides. Most of them showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, radical scavenging activity, autophagy inducing activity, inhibiting pancreatic lipase against malarial parasite, nematocidal and so on. The syntheses of some metabolites have been studied. In this review, 238 secondary metabolites from 10 known species and various unidentified species of Stereum were summarized over the last seven decades.
Collapse
|
31
|
Hu QY, Duan YC, Pu XJ, Li SS, Li GH, Zhao PJ. Stereumamides E-H, four new minor quaternary ammonium hybrids from Stereum hirsutum. Nat Prod Res 2020; 36:271-278. [DOI: 10.1080/14786419.2020.1779266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qian-Yi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuan-Chang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xue-Juan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Su-Su Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
32
|
|
33
|
Zhelifonova VP, Antipova TV, Litvinova EA, Baskunov BP, Litovka YA, Pavlov IN, Kozlovsky AG. Biosynthesis of Protoilludene Sesquiterpene Aryl Esters by Siberian Strains of the Genus Armillaria Fungi. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 2019; 37:107344. [PMID: 30738916 DOI: 10.1016/j.biotechadv.2019.01.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
Collapse
|
35
|
|
36
|
Braga RM, Padilla G, Araújo WL. The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol 2018; 44:759-778. [PMID: 30369284 DOI: 10.1080/1040841x.2018.1514364] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epicoccum is a genus of ubiquitous fungi typically found in air, in soil, and on decaying vegetation. They also commonly display an endophytic lifestyle and are isolated from diverse plant tissues. The fungi from the genus Epicoccum are mainly known for their use as biocontrol agents against phytopathogens and for their ability to produce many secondary metabolites with potential biotechnological applications, such as antioxidant, anticancer,r and antimicrobial compounds. Among the bioactive compounds produced by Epicoccum spp., epicocconone is a commercially available fluorophore, D8646-2-6 is a patented telomerase inhibitor, and taxol is an anticancer drug originally isolated from Taxus brevifolia. Epicoccum spp. also produces epicolactone, an antimicrobial compound with a unique and complex structure that has aroused considerable interest in the chemical-synthesis community. The main goal of the present review is to discuss the diversity of secondary metabolites produced by Epicoccum spp., their biotechnological applications, and proposed hypothetical biosynthesis. In addition, the use of Epicoccum spp. as biocontrol agents and the pigments produced by these fungi are also discussed.
Collapse
Affiliation(s)
- Raíssa Mesquita Braga
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Gabriel Padilla
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Welington Luiz Araújo
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
37
|
Xu JY, Xu Y, Xu Z, Zhai LH, Ye Y, Zhao Y, Chu X, Tan M, Ye BC. Protein Acylation is a General Regulatory Mechanism in Biosynthetic Pathway of Acyl-CoA-Derived Natural Products. Cell Chem Biol 2018; 25:984-995.e6. [PMID: 29887264 DOI: 10.1016/j.chembiol.2018.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/25/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022]
Abstract
Coenzyme A (CoA) esters of short fatty acids (acyl-CoAs) function as key precursors for the biosynthesis of various natural products and the dominant donors for lysine acylation. Herein, we investigated the functional interplay between beneficial and adverse effects of acyl-CoA supplements on the production of acyl-CoA-derived natural products in microorganisms by using erythromycin-biosynthesized Saccharopolyspora erythraea as a model: accumulation of propionyl-CoA benefited erythromycin biosynthesis, but lysine propionylation inhibited the activities of important enzymes involved in biosynthetic pathways of erythromycin. The results showed that the overexpression of NAD+-dependent deacylase could circumvent the inhibitory effects of high acyl-CoA concentrations. In addition, we demonstrated the similar lysine acylation mechanism in other acyl-CoA-derived natural product biosynthesis, such as malonyl-CoA-derived alkaloid and butyryl-CoA-derived bioalcohol. These observations systematically uncovered the important role of protein acylation on interaction between the accumulation of high concentrations of acyl-CoAs and the efficiency of their use in metabolic pathways.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ya Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yingming Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
38
|
Zhang BB, Hu PF, Huang J, Hu YD, Chen L, Xu GR. Current Advances on the Structure, Bioactivity, Synthesis, and Metabolic Regulation of Novel Ubiquinone Derivatives in the Edible and Medicinal Mushroom Antrodia cinnamomea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10395-10405. [PMID: 29125753 DOI: 10.1021/acs.jafc.7b04206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, Antrodia cinnamomea has attracted great attention around the world as an extremely precious edible and medicinal mushroom. Ubiquinone derivatives, which are characteristic metabolites of A. cinnamomea, have shown great bioactivities. Some of them have been regarded as promising therapeutic agents and approved into clinical trial by the U.S. Food and Drug Administration. Although some excellent reviews have been published covering different aspects of A. cinnamomea, this review brings, for the first time, complete information about the structure, bioactivity, chemical synthesis, biosynthesis, and metabolic regulation of ubiquinone derivatives in A. cinnamomea. It not only advances our knowledge on the bioactive metabolites, especially the ubiquinone derivatives, in A. cinnamomea but also provides valuable information for the investigation on other edible and medicinal mushrooms.
Collapse
Affiliation(s)
- Bo-Bo Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Peng-Fei Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Yong-Dan Hu
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , Kunming, Yunnan 650500, People's Republic of China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Gan-Rong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
39
|
Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles. Microorganisms 2017; 5:microorganisms5030060. [PMID: 28926970 PMCID: PMC5620651 DOI: 10.3390/microorganisms5030060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein), indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM) enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.
Collapse
|
40
|
Liu L, Zhang Z, Shao CL, Wang CY. Analysis of the Sequences, Structures, and Functions of Product-Releasing Enzyme Domains in Fungal Polyketide Synthases. Front Microbiol 2017; 8:1685. [PMID: 28928723 PMCID: PMC5591372 DOI: 10.3389/fmicb.2017.01685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/21/2017] [Indexed: 11/14/2022] Open
Abstract
Product-releasing enzyme (PRE) domains in fungal non-reducing polyketide synthases (NR-PKSs) play a crucial role in catalysis and editing during polyketide biosynthesis, especially accelerating final biosynthetic reactions accompanied with product offloading. However, up to date, the systematic knowledge about PRE domains is deficient. In the present study, the relationships between sequences, structures, and functions of PRE domains were analyzed with 574 NR-PKSs of eight groups (I–VIII). It was found that the PRE domains in NR-PKSs could be mainly classified into three types, thioesterase (TE), reductase (R), and metallo-β-lactamase-type TE (MβL-TE). The widely distributed TE or TE-like domains were involved in NR-PKSs of groups I–IV, VI, and VIII. The R domains appeared in NR-PKSs of groups IV and VII, while the physically discrete MβL-TE domains were employed by most NR-PKSs of group V. The changes of catalytic sites and structural characteristics resulted in PRE functional differentiations. The phylogeny revealed that the evolution of TE domains was accompanied by complex functional divergence. The diverse sequence lengths of TE lid-loops affected substrate specificity with different chain lengths. The volume diversification of TE catalytic pockets contributed to catalytic mechanisms with functional differentiations. The above findings may help to understand the crucial catalysis of fungal aromatic polyketide biosyntheses and govern recombination of NR-PKSs to obtain unnatural target products.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of ChinaQingdao, China
| |
Collapse
|
41
|
Chisuga T, Miyanaga A, Kudo F, Eguchi T. Structural analysis of the dual-function thioesterase SAV606 unravels the mechanism of Michael addition of glycine to an α,β-unsaturated thioester. J Biol Chem 2017; 292:10926-10937. [PMID: 28522606 PMCID: PMC5491777 DOI: 10.1074/jbc.m117.792549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/11/2017] [Indexed: 01/14/2023] Open
Abstract
Thioesterases catalyze hydrolysis of acyl thioesters to release carboxylic acid or macrocyclization to produce the corresponding macrocycle in the biosynthesis of fatty acids, polyketides, or nonribosomal peptides. Recently, we reported that the thioesterase CmiS1 from Streptomyces sp. MJ635-86F5 catalyzes the Michael addition of glycine to an α,β-unsaturated fatty acyl thioester followed by thioester hydrolysis in the biosynthesis of the macrolactam antibiotic cremimycin. However, the molecular mechanisms of CmiS1-catalyzed reactions are unclear. Here, we report on the functional and structural characterization of the CmiS1 homolog SAV606 from Streptomyces avermitilis MA-4680. In vitro analysis indicated that SAV606 catalyzes the Michael addition of glycine to crotonic acid thioester and subsequent hydrolysis yielding (R)-N-carboxymethyl-3-aminobutyric acid. We also determined the crystal structures of SAV606 both in ligand-free form at 2.4 Å resolution and in complex with (R)-N-carboxymethyl-3-aminobutyric acid at 2.0 Å resolution. We found that SAV606 adopts an α/β hotdog fold and has an active site at the dimeric interface. Examining the complexed structure, we noted that the substrate-binding loop comprising Tyr-53-Asn-61 recognizes the glycine moiety of (R)-N-carboxymethyl-3-aminobutyric acid. Moreover, we found that SAV606 does not contain an acidic residue at the active site, which is distinct from canonical hotdog thioesterases. Site-directed mutagenesis experiments revealed that His-59 plays a crucial role in both the Michael addition and hydrolysis via a water molecule. These results allow us to propose the reaction mechanism of the SAV606-catalyzed Michael addition and thioester hydrolysis and provide new insight into the multiple functions of a thioesterase family enzyme.
Collapse
Affiliation(s)
- Taichi Chisuga
- From the Department of Chemistry and Materials Science and
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- From the Department of Chemistry and Materials Science and
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
42
|
Brandt P, García-Altares M, Nett M, Hertweck C, Hoffmeister D. Induced Chemical Defense of a Mushroom by a Double-Bond-Shifting Polyene Synthase. Angew Chem Int Ed Engl 2017; 56:5937-5941. [DOI: 10.1002/anie.201700767] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Philip Brandt
- Department Pharmaceutical Microbiology at the Hans Knöll Institute; Friedrich-Schiller-Universität; Winzerlaer Strasse 2 07745 Jena Germany
| | - María García-Altares
- Department Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology; Beutenbergstrasse 11a 07745 Jena Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering; Technical University Dortmund; Emil-Figge-Strasse 66 44227 Dortmund Germany
| | - Christian Hertweck
- Department Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology; Beutenbergstrasse 11a 07745 Jena Germany
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans Knöll Institute; Friedrich-Schiller-Universität; Winzerlaer Strasse 2 07745 Jena Germany
| |
Collapse
|
43
|
Brandt P, García-Altares M, Nett M, Hertweck C, Hoffmeister D. Induzierte chemische Verteidigung eines Ständerpilzes durch eine doppelbindungsverschiebende Polyensynthase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Brandt
- Department Pharmazeutische Mikrobiologie am Hans-Knöll-Institut; Friedrich-Schiller-Universität; Winzerlaer Str. 2 07745 Jena Deutschland
| | - María García-Altares
- Department Biomolekulare Chemie; Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie; Beutenbergstr. 11a 07745 Jena Deutschland
| | - Markus Nett
- Fakultät Bio- und Chemieingenieurwesen; Technische Universität Dortmund; Emil-Figge-Straße 66 44227 Dortmund Deutschland
| | - Christian Hertweck
- Department Biomolekulare Chemie; Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie; Beutenbergstr. 11a 07745 Jena Deutschland
| | - Dirk Hoffmeister
- Department Pharmazeutische Mikrobiologie am Hans-Knöll-Institut; Friedrich-Schiller-Universität; Winzerlaer Str. 2 07745 Jena Deutschland
| |
Collapse
|
44
|
Yu PW, Cho TY, Liou RF, Tzean SS, Lee TH. Identification of the orsellinic acid synthase PKS63787 for the biosynthesis of antroquinonols in Antrodia cinnamomea. Appl Microbiol Biotechnol 2017; 101:4701-4711. [DOI: 10.1007/s00253-017-8196-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
|
45
|
Biochemical and genetic basis of orsellinic acid biosynthesis and prenylation in a stereaceous basidiomycete. Fungal Genet Biol 2017; 98:12-19. [DOI: 10.1016/j.fgb.2016.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/25/2022]
|
46
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Yao L, Zhu LP, Xu XY, Tan LL, Sadilek M, Fan H, Hu B, Shen XT, Yang J, Qiao B, Yang S. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics. Sci Rep 2016; 6:33237. [PMID: 27616058 PMCID: PMC5018966 DOI: 10.1038/srep33237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
Transcriptomic analysis of cultured fungi suggests that many genes for secondary metabolite synthesis are presumably silent under standard laboratory condition. In order to investigate the expression of silent genes in symbiotic systems, 136 fungi-fungi symbiotic systems were built up by co-culturing seventeen basidiomycetes, among which the co-culture of Trametes versicolor and Ganoderma applanatum demonstrated the strongest coloration of confrontation zones. Metabolomics study of this co-culture discovered that sixty-two features were either newly synthesized or highly produced in the co-culture compared with individual cultures. Molecular network analysis highlighted a subnetwork including two novel xylosides (compounds 2 and 3). Compound 2 was further identified as N-(4-methoxyphenyl)formamide 2-O-β-D-xyloside and was revealed to have the potential to enhance the cell viability of human immortalized bronchial epithelial cell line of Beas-2B. Moreover, bioinformatics and transcriptional analysis of T. versicolor revealed a potential candidate gene (GI: 636605689) encoding xylosyltransferases for xylosylation. Additionally, 3-phenyllactic acid and orsellinic acid were detected for the first time in G. applanatum, which may be ascribed to response against T.versicolor stress. In general, the described co-culture platform provides a powerful tool to discover novel metabolites and help gain insights into the mechanism of silent gene activation in fungal defense.
Collapse
Affiliation(s)
- Lu Yao
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Li-Ping Zhu
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Xiao-Yan Xu
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Ling-Ling Tan
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States of America
| | - Huan Fan
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Hu
- Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080, United States of America
| | - Xiao-Ting Shen
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300070, China
| | - Song Yang
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
49
|
Yu PW, Chang YC, Liou RF, Lee TH, Tzean SS. pks63787, a Polyketide Synthase Gene Responsible for the Biosynthesis of Benzenoids in the Medicinal Mushroom Antrodia cinnamomea. JOURNAL OF NATURAL PRODUCTS 2016; 79:1485-1491. [PMID: 27227778 DOI: 10.1021/acs.jnatprod.5b00798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antrodia cinnamomea, a unique resupinate basidiomycete endemic to Taiwan, has potent medicinal activities. The reddish basidiocarps and mycelia generally exhibit abundant metabolites and higher biological activity. To investigate the pigments of A. cinnamomea, polyketide synthase (PKS) genes were characterized based on its partially deciphered genome and the construction of a fosmid library. Furthermore, a gene disruption platform was established via protoplast transformation and homologous recombination. Of four putative polyketide synthase genes, pks63787 was selected and disrupted in the monokaryotic wild-type (wt) strain f101. Transformant Δpks63787 was deficient in the synthesis of several aromatic metabolites, including five benzenoids and two benzoquinone derivatives. Based on these results, a biosynthetic pathway for benzenoid derivatives was proposed. The pks63787 deletion mutant not only displayed a reduced red phenotype compared to the wt strain but also displayed less 1,1-biphenyl-2-picrylhydrazyl free radical scavenging activity. This finding suggests that PKS63787 is responsible for the biosynthesis of pigments and metabolites related to the antioxidant activity of A. cinnamomea. The present study focuses on the functional characterization of the PKS gene, the fluctuations of its profile of secondary metabolites, and interpretation of the biosynthesis of benzenoids.
Collapse
Affiliation(s)
| | - Ya-Chih Chang
- College of Pharmacy, Taipei Medical University , Taipei, Taiwan 110
| | | | | | | |
Collapse
|
50
|
Yang Y, Zhou H, Du G, Feng K, Feng T, Fu X, Liu J, Zeng Y. A Monooxygenase from
Boreostereum vibrans
Catalyzes Oxidative Decarboxylation in a Divergent Vibralactone Biosynthesis Pathway. Angew Chem Int Ed Engl 2016; 55:5463-6. [PMID: 27007916 DOI: 10.1002/anie.201510928] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/09/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Gang Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Xiao‐Li Fu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|