1
|
Shetty MG, Pai P, Dey B, Satyamoorthy K, Shil S, Nayak UY, T A, Sundara BK. Evaluation of 1,10-phenanthroline-based hydroxamate derivative as dual histone deacetylases/ribonucleotide reductase inhibitor with antitumor activities. Daru 2024; 32:263-278. [PMID: 38683491 PMCID: PMC11087398 DOI: 10.1007/s40199-024-00514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 μM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 μM and 9.34 μM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.
Collapse
Affiliation(s)
- Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bipasa Dey
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| | - Suranjan Shil
- Department of Chemistry, Manipal Centre for Natural Sciences (Centre of Excellence), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashwini T
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Li X, Zhao D, Li W, Sun J, Zhang X. Enzyme Inhibitors: The Best Strategy to Tackle Superbug NDM-1 and Its Variants. Int J Mol Sci 2021; 23:197. [PMID: 35008622 PMCID: PMC8745225 DOI: 10.3390/ijms23010197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Multidrug bacterial resistance endangers clinically effective antimicrobial therapy and continues to cause major public health problems, which have been upgraded to unprecedented levels in recent years, worldwide. β-Lactam antibiotics have become an important weapon to fight against pathogen infections due to their broad spectrum. Unfortunately, the emergence of antibiotic resistance genes (ARGs) has severely astricted the application of β-lactam antibiotics. Of these, New Delhi metallo-β-lactamase-1 (NDM-1) represents the most disturbing development due to its substrate promiscuity, the appearance of variants, and transferability. Given the clinical correlation of β-lactam antibiotics and NDM-1-mediated resistance, the discovery, and development of combination drugs, including NDM-1 inhibitors, for NDM-1 bacterial infections, seems particularly attractive and urgent. This review summarizes the research related to the development and optimization of effective NDM-1 inhibitors. The detailed generalization of crystal structure, enzyme activity center and catalytic mechanism, variants and global distribution, mechanism of action of existing inhibitors, and the development of scaffolds provides a reference for finding potential clinically effective NDM-1 inhibitors against drug-resistant bacteria.
Collapse
Affiliation(s)
- Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Dongmei Zhao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Weina Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Jichao Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
3
|
Wang T, Xu K, Zhao L, Tong R, Xiong L, Shi J. Recent research and development of NDM-1 inhibitors. Eur J Med Chem 2021; 223:113667. [PMID: 34225181 DOI: 10.1016/j.ejmech.2021.113667] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Bacteria carrying New Delhi metallo-β-lactamase-1 (New Delhi metallo-β-lactamase, NDM-1) resistance gene is a new type of "superbug", which can hydrolyze almost all β-lactam antibiotics, rapidly spread among the same species and even spread among different species. NDM-1 belongs to the class B1 broad-spectrum enzyme of β-lactamase. The two positively charged zinc ions in the active center have electrostatic interaction with the hydroxyl ions in them to seize the hydrogen atom near the water molecule to form a bridging ring water molecule, which strengthens its nucleophilicity and attacks the carbonyl group on the lactam ring; thus, catalyzing the hydrolysis of β-lactam antibiotics. Since NDM-1 has an open active site and unique electrostatic structure, it essentially provides a wider range of substrate specificity. Due to its flexible hydrolysis mechanism and more and more variants also aggravate the threat of drug-resistant bacteria infection, there is still no effective inhibitor in clinic, which is a serious threat to human health and public health safety. The electron-rich substituents of NDM-1 inhibitors coordinate with two positively charged zinc ions in the active center of the enzyme through ion-dipole interaction to produce NDM-1 inhibitory activity. In this review, the research progress of NDM-1 enzyme and its inhibitors in the past 5 years was reviewed. The crystal structure, active center structure, surrounding important amino acid residues, newly discovered inhibitors and their action mechanism are classified and summarized in detail, which can be used as a reference for the development of effective drugs against drug-resistant bacteria targeting NDM-1.
Collapse
Affiliation(s)
- Ting Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Kaiju Xu
- Department of Infectious Diseases, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Liyun Zhao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Liu X, Qi Y, Pu S, Wang Y, Gao Z. Sensing mechanism of a new fluorescent probe for hydrogen sulfide: photoinduced electron transfer and invalidity of excited-state intramolecular proton transfer. RSC Adv 2021; 11:22214-22220. [PMID: 35480821 PMCID: PMC9034181 DOI: 10.1039/d1ra02511b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
It is of great significance for biological research to develop efficient detection methods of hydrogen sulfide (H2S). When DFAN reacts with H2S, 2,4-dinitrophenyl ether group acting as an electron acceptor generates a hydroxyl-substituted 2,4-dinitrophenyl ether group, resulting in the disappearance of photoinduced electron transfer (PET), and the new formed DFAH can be observed, while being accompanied by a significant fluorescence. In the present study, the PET sensing mechanism of probe DFAN and the excited state intramolecular proton transfer (ESIPT) process of DFAH have been explored in detail based on the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. Our theoretical results show that the fluorescence quenching of DFAN is caused by the PET mechanism, and the result of ESIPT mechanism is not due to the large Stokes shift fluorescence emission of DFAH. We also optimized the geometric structure of the transition state of DFAH. The frontier molecular orbitals and potential barrier show that the ESIPT process does not easy occur easily for DFAH. The enol structure of DFAH is more stable than that of the keto structure. The absence of the PET process resulted in the enol structure emitting strong fluorescence, which is consistent with the single fluorescence in the experiment. Above all, our calculations are sufficient to verify the sensing mechanism of H2S using DFAN.
Collapse
Affiliation(s)
- Xiumin Liu
- School of Biological Engineering, Dalian Polytechnic University Dalian 116034 P. R. China +86-0411-86323646
| | - Yutai Qi
- Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Shenhan Pu
- HeZe Homemaking Professional College Heze 274300 P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University Dalian 116034 P. R. China +86-0411-86323646
| | - Ziqing Gao
- School of Biological Engineering, Dalian Polytechnic University Dalian 116034 P. R. China +86-0411-86323646
| |
Collapse
|
5
|
Farha MA, French S, Brown ED. Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery. Acc Chem Res 2021; 54:1909-1920. [PMID: 33787225 DOI: 10.1021/acs.accounts.1c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-resistant bacterial infections pose an imminent and growing threat to public health. The discovery and development of new antibiotics of novel chemical class and mode of action that are unsusceptible to existing resistance mechanisms is imperative for tackling this threat. Modern industrial drug discovery, however, has failed to provide new drugs of this description, as it is dependent largely on a reductionist genes-to-drugs research paradigm. We posit that the lack of success in new antibiotic drug discovery is due in part to a lack of understanding of the bacterial cell system as whole. A fundamental understanding of the architecture and function of bacterial systems has been elusive but is of critical importance to design strategies to tackle drug-resistant bacterial pathogens.Increasingly, systems-level approaches are rewriting our understanding of the cell, defining a dense network of redundant and interacting components that resist perturbations of all kinds, including by antibiotics. Understanding the network properties of bacterial cells requires integrative, systematic, and genome-scale approaches. These methods strive to understand how the phenotypic behavior of bacteria emerges from the many interactions of individual molecular components that constitute the system. With the ability to examine genomic, transcriptomic, proteomic, and metabolomic consequences of, for example, genetic or chemical perturbations, researchers are increasingly moving away from one-gene-at-a-time studies to consider the system-wide response of the cell. Such measurements are demonstrating promise as quantitative tools, powerful discovery engines, and robust hypothesis generators with great value to antibiotic drug discovery.In this Account, we describe our thinking and findings using systems-level studies aimed at understanding bacterial physiology broadly and in uncovering new antibacterial chemical matter of novel mechanism. We share our systems-level toolkit and detail recent technological developments that have enabled unprecedented acquisition of genome-wide interaction data. We focus on three types of interactions: gene-gene, chemical-gene, and chemical-chemical. We provide examples of their use in understanding cell networks and how these insights might be harnessed for new antibiotic discovery. By example, we show the application of these principles in mapping genetic networks that underpin phenotypes of interest, characterizing genes of unknown function, validating small-molecule screening platforms, uncovering novel chemical probes and antibacterial leads, and delineating the mode of action of antibacterial chemicals. We also discuss the importance of computation to these approaches and its probable dominance as a tool for systems approaches in the future. In all, we advocate for the use of systems-based approaches as discovery engines in antibacterial research, both as powerful tools and to stimulate innovation.
Collapse
Affiliation(s)
- Maya A. Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
6
|
Weber BS, De Jong AM, Guo AB, Dharavath S, French S, Fiebig-Comyn AA, Coombes BK, Magolan J, Brown ED. Genetic and Chemical Screening in Human Blood Serum Reveals Unique Antibacterial Targets and Compounds against Klebsiella pneumoniae. Cell Rep 2020; 32:107927. [DOI: 10.1016/j.celrep.2020.107927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
|
7
|
Forging New Antibiotic Combinations under Iron-Limiting Conditions. Antimicrob Agents Chemother 2020; 64:AAC.01909-19. [PMID: 31907180 DOI: 10.1128/aac.01909-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant nosocomial pathogen. We showed previously that thiostrepton (TS), a Gram-positive thiopeptide antibiotic, is imported via pyoverdine receptors and synergizes with iron chelator deferasirox (DSX) to inhibit the growth of P. aeruginosa and Acinetobacter baumannii clinical isolates. A small number of P. aeruginosa and A. baumannii isolates were resistant to the combination, prompting us to search for other compounds that could synergize with TS against those strains. From literature surveys, we selected 14 compounds reported to have iron-chelating activity, plus one iron analogue, and tested them for synergy with TS. Doxycycline (DOXY), ciclopirox olamine (CO), tropolone (TRO), clioquinol (CLI), and gallium nitrate (GN) synergized with TS. Individual compounds were bacteriostatic, but the combinations were bactericidal. Our spectrophotometric data and chrome azurol S agar assay confirmed that the chelators potentiate TS activity through iron sequestration rather than through their innate antimicrobial activities. A triple combination of TS plus DSX plus DOXY had the most potent activity against P. aeruginosa and A. baumannii isolates. One P. aeruginosa clinical isolate was resistant to the triple combination but susceptible to a triple combination containing higher concentrations of CLI, CO, or DOXY. All A. baumannii isolates were susceptible to the triple combinations. Our data reveal a diverse set of compounds with dual activity as antibacterial agents and TS adjuvants, allowing combinations to be tailored for resistant clinical isolates.
Collapse
|
8
|
Linciano P, Cendron L, Gianquinto E, Spyrakis F, Tondi D. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infect Dis 2019; 5:9-34. [PMID: 30421910 DOI: 10.1021/acsinfecdis.8b00247] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The worldwide emergence of New Delhi metallo-β-lactamase-1 (NDM-1) as a carbapenemase able to hydrolyze nearly all available β-lactam antibiotics has characterized the past decade, endangering efficacious antibacterial treatments. No inhibitors for NDM-1 are available in therapy, nor are promising compounds in the pipeline for future NDM-1 inhibitors. We report the studies dedicated to the design and development of effective NDM-1 inhibitors. The discussion for each agent moves from the employed design strategy to the ability of the identified inhibitor to synergize β-lactam antibiotics. A structural analysis of NDM-1 mechanism of action based on selected X-ray complexes is also reported: the intrinsic flexibility of the binding site and the comparison between penicillin/cephalosporin and carbapenem mechanisms of hydrolysis are evaluated. Despite the valuable progress in terms of structural and mechanistic information, the design of a potent NDM-1 inhibitor to be introduced in therapy remains challenging. Certainly, only the deep knowledge of NDM-1 architecture and of the variable mechanism of action that NDM-1 employs against different classes of substrates could orient a successful drug discovery campaign.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
9
|
Zaengle-Barone JM, Jackson AC, Besse DM, Becken B, Arshad M, Seed PC, Franz KJ. Copper Influences the Antibacterial Outcomes of a β-Lactamase-Activated Prochelator against Drug-Resistant Bacteria. ACS Infect Dis 2018; 4:1019-1029. [PMID: 29557647 PMCID: PMC6252259 DOI: 10.1021/acsinfecdis.8b00037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unabated rise in bacterial resistance to conventional antibiotics, coupled with collateral damage to normal flora incurred by overuse of broad-spectrum antibiotics, necessitates the development of new antimicrobials targeted against pathogenic organisms. Here, we explore the antibacterial outcomes and mode of action of a prochelator that exploits the production of β-lactamase enzymes by drug-resistant bacteria to convert a nontoxic compound into a metal-binding antimicrobial agent directly within the microenvironment of pathogenic organisms. Compound PcephPT (phenylacetamido-cephem-pyrithione) contains a cephalosporin core linked to 2-mercaptopyridine N-oxide (pyrithione) via one of its metal-chelating atoms, which minimizes its preactivation interaction with metal ions and its cytotoxicity. Spectroscopic and chromatographic assays indicate that PcephPT releases pyrithione in the presence of β-lactamase-producing bacteria. The prochelator shows enhanced antibacterial activity against strains expressing β-lactamases, with bactericidal efficacy improved by the presence of low-micromolar copper in the growth medium. Metal analysis shows that cell-associated copper accumulation by the prochelator is significantly lower than that induced by pyrithione itself, suggesting that the location of pyrithione release influences biological outcomes. Low-micromolar (4-8 μg/mL) minimum inhibitory concentration (MIC) values of PcephPT in ceftriaxone-resistant bacteria compared with median lethal dose (LD50) values greater than 250 μM in mammalian cells suggests favorable selectivity. Further investigation into the mechanisms of prochelators will provide insight for the design of new antibacterial agents that manipulate cellular metallobiology as a strategy against infection.
Collapse
Affiliation(s)
| | - Abigail C. Jackson
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| | - David M. Besse
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| | - Bradford Becken
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, United States
| | - Mehreen Arshad
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, United States
| | - Patrick C. Seed
- Ann and Robert H. Lurie Children’s Hospital and Stanley Manne Children’s Research Institute, 225 E. Chicago Ave. Chicago, Illinois 60611, United States
- Department of Microbiology and Immunology, Northwestern University, 300 E. Superior St. Chicago, Illinois 60611, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Duval JFL, Présent RM, Rotureau E. Kinetic and thermodynamic determinants of trace metal partitioning at biointerphases: the role of intracellular speciation dynamics. Phys Chem Chem Phys 2016; 18:30415-30435. [DOI: 10.1039/c6cp05717a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theory is elaborated for rationalizing the impacts of intracellular metal speciation dynamics on metal uptake in suspension of charged microorganisms beyond the classical thermodynamic representation.
Collapse
Affiliation(s)
- Jérôme F. L. Duval
- CNRS
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)
- UMR 7360
- Vandoeuvre-lès-Nancy F-54501
- France
| | - Romain M. Présent
- CNRS
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)
- UMR 7360
- Vandoeuvre-lès-Nancy F-54501
- France
| | - Elise Rotureau
- CNRS
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)
- UMR 7360
- Vandoeuvre-lès-Nancy F-54501
- France
| |
Collapse
|
11
|
Falconer SB, Reid-Yu SA, King AM, Gehrke SS, Wang W, Britten JF, Coombes BK, Wright GD, Brown ED. Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem Activity in Vivo against NDM-1-Producing Klebsiella pneumoniae. ACS Infect Dis 2015; 1:533-43. [PMID: 27623408 DOI: 10.1021/acsinfecdis.5b00033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The widespread emergence of antibiotic drug resistance has resulted in a worldwide healthcare crisis. In particular, the extensive use of β-lactams, a highly effective class of antibiotics, has been a driver for pervasive β-lactam resistance. Among the most important resistance determinants are the metallo-β-lactamases (MBL), which are zinc-requiring enzymes that inactivate nearly all classes of β-lactams, including the last-resort carbapenem antibiotics. The urgent need for new compounds targeting MBL resistance mechanisms has been widely acknowledged; however, the development of certain types of compounds-namely metal chelators-is actively avoided due to host toxicity concerns. The work herein reports the identification of a series of zinc-selective spiro-indoline-thiadiazole analogues that, in vitro, potentiate β-lactam antibiotics against an MBL-carrying pathogen by withholding zinc availability. This study demonstrates the ability of one such analogue to inhibit NDM-1 in vitro and, using a mouse model of infection, shows that combination treatment of the respective analogue with meropenem results in a significant decrease in bacterial burden in contrast to animals that received antibiotic treatment alone. These results support the therapeutic potential of these chelators in overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Shannon B. Falconer
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Sarah A. Reid-Yu
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Andrew M. King
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Sebastian S. Gehrke
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Wenliang Wang
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - James F. Britten
- Department
of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Brian K. Coombes
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Gerard D. Wright
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D. Brown
- M.
G. DeGroote Institute for Infectious Disease Research and Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
12
|
Abstract
The dramatic rise in microbial drug resistance in recent years has led to ongoing searches for novel drugs to add to the armory against infectious disease. Nevertheless, a paucity of new antibacterial drugs in discovery and development pipelines using traditional approaches has prompted a variety of unconventional and disruptive strategies for antibacterial drug discovery. Herein, we review recent nontraditional approaches that have been piloted for early drug discovery efforts. These unique methodologies open new avenues for finding the next generation of antimicrobials.
Collapse
Affiliation(s)
- Maya A Farha
- M.G. DeGroote Institute for Infectious Disease Research, and Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Eric D Brown
- M.G. DeGroote Institute for Infectious Disease Research, and Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| |
Collapse
|
13
|
Lamb AL. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1054-70. [PMID: 25970810 DOI: 10.1016/j.bbapap.2015.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials.
Collapse
Affiliation(s)
- Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|