1
|
Wang H, Xiang Z. Structural insights into type III polyketide synthase CylI from cylindrocyclophane biosynthesis. Protein Sci 2024; 33:e5130. [PMID: 39302095 PMCID: PMC11413912 DOI: 10.1002/pro.5130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 09/22/2024]
Abstract
Type III polyketide synthases (PKSs) catalyze the formation of a variety of polyketide natural products with remarkable structural diversity and biological activities. Despite significant progress in structural and mechanistic studies of type III PKSs in bacteria, fungi, and plants, research on type III PKSs in cyanobacteria is lacking. Here, we report structural and mechanistic insights into CylI, a type III PKS that catalyzes the formation of the alkylresorcinol intermediate in cylindrocyclophane biosynthesis. The crystal structure of apo-CylI reveals a distinct arrangement of structural elements that are proximal to the active site. We further solved the crystal structures of CylI in complexes with two substrate analogues at resolutions of 1.9 Å. The complex structures indicate that N259 is the key residue that determines the substrate preference of CylI. We also solved the crystal structure of CylI complexed with the alkylresorcinol product at a resolution of 2.0 Å. Structural analysis and mutagenesis experiments suggested that S170 functions as a key residue that determines cyclization specificity. On the basis of this result, a double mutant was engineered to completely switch the cyclization of CylI from aldol condensation to lactonization. This work elucidates the molecular basis of type III PKS in cyanobacteria and lays the foundation for engineering CylI-like enzymes to generate new products.
Collapse
Affiliation(s)
- Hua‐Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
- Institute of Chemical Biology, Shenzhen Bay LaboratoryGaoke Innovation CenterShenzhenPR China
| |
Collapse
|
2
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|
3
|
Kavakli S, Grammbitter GL, Bode HB. Biosynthesis of the multifunctional isopropylstilbene in Photorhabdus laumondii involves cross-talk between specialized and primary metabolism. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Villalobos-Flores LE, Espinosa-Torres SD, Hernández-Quiroz F, Piña-Escobedo A, Cruz-Narváez Y, Velázquez-Escobar F, Süssmuth R, García-Mena J. The Bacterial and Fungal Microbiota of the Mexican Rubiaceae Family Medicinal Plant Bouvardia ternifolia. MICROBIAL ECOLOGY 2022; 84:510-526. [PMID: 34553243 DOI: 10.1007/s00248-021-01871-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Bouvardia ternifolia is a medicinal plant considered a source of therapeutic compounds, like the antitumoral cyclohexapeptide bouvardin. It is known that large number of secondary metabolites produced by plants results from the interaction of the host and adjacent or embedded microorganisms. Using high-throughput DNA sequencing of V3-16S and V5-18S ribosomal gene libraries, we characterized the endophytic, endophytic + epiphyte bacterial, and fungal communities associated to flowers, leaves, stems, and roots, as well as the rhizosphere. The Proteobacteria (average 80.7%) and Actinobacteria (average 14.7%) were the most abundant bacterial phyla, while Leotiomycetes (average 54.8%) and Dothideomycetes (average 27.4%) were the most abundant fungal classes. Differential abundance for the bacterial endophyte group showed a predominance of Erwinia, Propionibacterium, and Microbacterium genera, while Sclerotinia, Coccomyces, and Calycina genera predominated for fungi. The predictive metagenome analysis for bacteria showed significative abundance of pathways for secondary metabolite production, while a FUNguild analysis revealed the presence of pathotroph, symbiotroph, and saprotrophs in the fungal community. Intra and inter copresence and mutual exclusion interactions were identified for bacterial and fungal kingdoms in the endophyte communities. This work provides a description of the diversity and composition of bacterial and fungal microorganisms living in flowers, leaves, stems, roots, and the rhizosphere of this medicinal plant; thus, it paves the way towards an integral understanding in the production of therapeutic metabolites.
Collapse
Affiliation(s)
- Loan Edel Villalobos-Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Samuel David Espinosa-Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química E Industrias Extractivas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, 07738, Ciudad de México, Mexico
| | - Francisco Velázquez-Escobar
- Max Volmer Laboratorium Für Biophysikalische Chemie Technische Universität Berlin, Technische Universität Berlin, Str. des 17. Juni 135/Sekr. PC-14, 10623, Berlin, Germany
| | - Roderich Süssmuth
- Department of Chemistry, Institut Für Chemie, Technische Universität Berlin, Sekr. TC 2, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Shukla A, Shukla G, Parmar P, Patel B, Goswami D, Saraf M. Exemplifying the next generation of antibiotic susceptibility intensifiers of phytochemicals by LasR-mediated quorum sensing inhibition. Sci Rep 2021; 11:22421. [PMID: 34789810 PMCID: PMC8599845 DOI: 10.1038/s41598-021-01845-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 01/27/2023] Open
Abstract
There persists a constant threat from multidrug resistance being acquired by all human pathogens that challenges the well-being of humans. This phenomenon is predominantly led by Pseudomonas aeruginosa which is already resistant to the current generations of antibiotic by altering its metabolic pathways to survive. Specifically for this microbe the phenomenon of quorum sensing (QS) plays a crucial role in acquiring virulence and pathogenicity. QS is simply the cross talk between the bacterial community driven by signals that bind to receptors, enabling the entire bacterial microcosm to function as a single unit which has led to control P. aeruginosa cumbersome even in presence of antibiotics. Inhibition of QS can, therefore, be of a significant importance to curb such virulent and pathogenic strains of P. aeruginosa. Natural compounds are well known for their antimicrobial properties, of which, information on their mode of action is scarce. There can be many antimicrobial phytochemicals that act by hindering QS-pathways. The rationale of the current study is to identify such natural compounds that can inhibit QS in P. aeruginosa driven by LasR, PhzR, and RhlR dependent pathways. To achieve this rationale, in silico studies were first performed to identify such natural compounds which were then validated by in vitro experiments. Gingerol and Curcumin were identified as QS-antagonists (QSA) which could further suppress the production of biofilm, EPS, pyocyanin, and rhamnolipid along with improving the susceptibility to antibiotics.
Collapse
Affiliation(s)
- Arpit Shukla
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- Department of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Gaurav Shukla
- Pandit Deendayal Energy University, Raysan, Gandhinagar, Gujarat, 382426, India
| | - Paritosh Parmar
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Baldev Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
6
|
Yao T, Hui J, Liu T, Li T. Palladium-Catalyzed Three-Component Carbocarbonation of Arynes: Expeditious Synthesis of o-Alkylated Arylacrylates and Stilbenes. J Org Chem 2021; 86:5477-5488. [PMID: 33821656 DOI: 10.1021/acs.joc.0c02994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed multicomponent reaction involving olefin-tethered aryl iodides, arynes, and electrophilic alkenes has been developed for straightforward synthesis of o-alkylated arylacrylates and stilbenes through tandem intramolecular Heck cyclization/aryne dicarbofunctionalization.
Collapse
Affiliation(s)
- Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiazhe Hui
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tao Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue RD, Minhang District, Shanghai 200241, China
| |
Collapse
|
7
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020; 59:7871-7880. [PMID: 32097515 PMCID: PMC7200298 DOI: 10.1002/anie.201916204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/01/2023]
Abstract
Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane-bridge-containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Tyler N. Goddard
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin Patel
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zheng Wei
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Corey E. Perez
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical and Biophysical Instrumentation Center, Yale University, New Haven, CT 06520, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
8
|
Wang WG, Wang H, Du LQ, Li M, Chen L, Yu J, Cheng GG, Zhan MT, Hu QF, Zhang L, Yao M, Matsuda Y. Molecular Basis for the Biosynthesis of an Unusual Chain-Fused Polyketide, Gregatin A. J Am Chem Soc 2020; 142:8464-8472. [PMID: 32275405 DOI: 10.1021/jacs.0c02337] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gregatin A (1) is a fungal polyketide featuring an alkylated furanone core, but the biosynthetic mechanism to furnish the intriguing molecular skeleton has yet to be elucidated. Herein, we have identified the biosynthetic gene cluster of gregatin A (1) in Penicillium sp. sh18 and investigated the mechanism that produces the intriguing structure of 1 by in vivo and in vitro reconstitution of its biosynthesis. Our study established the biosynthetic route leading to 1 and illuminated that 1 is generated by the fusion of two different polyketide chains, which are, amazingly, synthesized by a single polyketide synthase GrgA with the aid of a trans-acting enoylreductase GrgB. Chain fusion, as well as chain hydrolysis, is catalyzed by an α/β hydrolase, GrgF, hybridizing the C11 and C4 carbon chains by Claisen condensation. Finally, structural analysis and mutational experiments using GrgF provided insight into how the enzyme facilitates the unusual chain-fusing reaction. In unraveling a new biosynthetic strategy involving a bifunctional PKS and a polyketide fusing enzyme, our study expands our knowledge concerning fungal polyketide biosynthesis.
Collapse
Affiliation(s)
- Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Hang Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Lian-Qiong Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Min Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jian Yu
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Gui-Guang Cheng
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Meng-Tao Zhan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Lihan Zhang
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Tyler N. Goddard
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Jaymin Patel
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Molecular, Cellular, and Developmental Biology Yale University New Haven CT 06520 USA
| | - Zheng Wei
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
| | - Corey E. Perez
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical and Biophysical Instrumentation Center Yale University New Haven CT 06520 USA
| | - Rurun Wang
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Thomas P. Wyche
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Grazia Piizzi
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Richard A. Flavell
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
- Howard Hughes Medical Institute Yale University School of Medicine New Haven CT 06520 USA
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale School of Medicine New Haven CT 06536 USA
| |
Collapse
|
10
|
Abstract
In this review, we present the recent advances in unusual novel ketosynthases catalyzing
the non-decarboxylative Claisen condensations, including CsyB, MxnB/CorB, Ppys and StlD. The
differences are summarized between these non-decarboxylative ketosynthases and the typical decarboxylative
ketosynthases. Furthermore, the detailed enzymatic characteristics, structural basis, and
catalytic mechanismof these novel ketosynthasesare described. Finally, the prospect of these kind of
ketosynthases is discussed.
Collapse
Affiliation(s)
- Lixia Pan
- Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
11
|
Urmey AR, Zondlo NJ. Structural preferences of cysteine sulfinic acid: The sulfinate engages in multiple local interactions with the peptide backbone. Free Radic Biol Med 2020; 148:96-107. [PMID: 31883974 DOI: 10.1016/j.freeradbiomed.2019.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cysteine sulfinic acid (Cys-SO2-) is a non-enzymatic oxidative post-translational modification (PTM) that has been identified in hundreds of proteins. However, the effects of cysteine sulfination are in most cases poorly understood. Cys-SO2- is structurally distinctive, with long sulfur-carbon and sulfur-oxygen bonds, and with tetrahedral geometry around sulfur due to its lone pair. Cys-SO2- thus has a unique range of potential interactions with the protein backbone which could facilitate protein structural changes. Herein, the structural effects of cysteine oxidation to the sulfinic acid were investigated in model peptides and folded proteins using NMR spectroscopy, circular dichroism, bioinformatics, and computational studies. In the PDB, Cys-SO2- shows a greater preference for α-helix than Cys. In addition, Cys-SO2- is more commonly found in structures with φ > 0, including in multiple types of β-turn. Sulfinate oxygens engage in hydrogen bonds with adjacent (i or i + 1) amide hydrogens. Over half of sulfinates have at least one hydrogen bond with an adjacent amide, and several structures have hydrogen bonds with both adjacent amides. Alternately, sulfur or either oxygen can act as an electron donor for n→π* interactions with the backbone carbonyl of the same residue, as indicated by frequent S⋯CO or O⋯CO distances below the sums of their van der Waals radii in protein structures. In peptides, Cys-SO2- favored α-helical structure at the N-terminus, consistent with helix dipole effects and backbone hydrogen bonds with the sulfinate promoting α-helix. Cys-SO2- has only modestly greater polyproline II helix propensity than Cys-SH, likely due to competition from multiple side chain-backbone interactions. Cys-SO2- stabilizes the i+1 position of a β-turn relative to Cys-SH. Within proteins, the range of side chain-main chain interactions available to Cys-SO2- compared to Cys-SH provides a basis for potential changes in protein structure and function due to cysteine oxidation to the sulfinic acid.
Collapse
Affiliation(s)
- Andrew R Urmey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States.
| |
Collapse
|
12
|
Martins TP, Rouger C, Glasser NR, Freitas S, de Fraissinette NB, Balskus EP, Tasdemir D, Leão PN. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat Prod Rep 2019; 36:1437-1461. [PMID: 30702733 PMCID: PMC6836626 DOI: 10.1039/c8np00080h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/18/2022]
Abstract
Covering: up to 2019 Alkylresorcinols are amphiphilic metabolites, well-known for their diverse biological activities, produced by both prokaryotes and eukaryotes. A few classes of alkylresorcinol scaffolds have been reported from the photoautotrophic cyanobacteria, ranging from the relatively simple hierridins to the more intricate cylindrocyclophanes. Recently, it has emerged that cyanobacteria employ two different biosynthetic pathways to produce unique alkylresorcinol scaffolds. However, these convergent pathways intersect by sharing biosynthetic elements which lead to common structural motifs. To obtain a broader view of the biochemical diversity of these compounds in cyanobacteria, we comprehensively cover the isolation, structure, biological activity and biosynthesis of their mono- and dialkylresorcinols. Moreover, we provide an overview of the diversity and distribution of alkylresorcinol-generating biosynthetic gene clusters in this phylum and highlight opportunities for discovery of novel alkylresorcinol scaffolds. Because some of these molecules have inspired notable syntheses, different approaches used to build these molecules in the laboratory are showcased.
Collapse
Affiliation(s)
- Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Caroline Rouger
- Research Unit Marine Natural Products Chemistry
, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech)
, GEOMAR Helmholtz Centre for Ocean Research Kiel
,
Germany
| | - Nathaniel R. Glasser
- Department of Chemistry & Chemical Biology
, Harvard University
,
Cambridge
, MA
, USA
| | - Sara Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Nelly B. de Fraissinette
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Emily P. Balskus
- Department of Chemistry & Chemical Biology
, Harvard University
,
Cambridge
, MA
, USA
| | - Deniz Tasdemir
- Research Unit Marine Natural Products Chemistry
, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech)
, GEOMAR Helmholtz Centre for Ocean Research Kiel
,
Germany
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| |
Collapse
|
13
|
Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 2019; 35:309-335. [PMID: 29359226 DOI: 10.1039/c7np00054e] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to November 2017 Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
14
|
Shi YM, Brachmann AO, Westphalen MA, Neubacher N, Tobias NJ, Bode HB. Dual phenazine gene clusters enable diversification during biosynthesis. Nat Chem Biol 2019; 15:331-339. [PMID: 30886436 DOI: 10.1038/s41589-019-0246-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/13/2019] [Indexed: 11/10/2022]
Abstract
Biosynthetic gene clusters (BGCs) bridging genotype and phenotype continuously evolve through gene mutations and recombinations to generate chemical diversity. Phenazine BGCs are widespread in bacteria, and the biosynthetic mechanisms of the formation of the phenazine structural core have been illuminated in the last decade. However, little is known about the complex phenazine core-modification machinery. Here, we report the diversity-oriented modifications of the phenazine core through two distinct BGCs in the entomopathogenic bacterium Xenorhabdus szentirmaii, which lives in symbiosis with nematodes. A previously unidentified aldehyde intermediate, which can be modified by multiple enzymatic and non-enzymatic reactions, is a common intermediate bridging the pathways encoded by these BGCs. Evaluation of the antibiotic activity of the resulting phenazine derivatives suggests a highly effective strategy to convert Gram-positive specific phenazines into broad-spectrum antibiotics, which might help the bacteria-nematode complex to maintain its special environmental niche.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Alexander O Brachmann
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany.,Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Margaretha A Westphalen
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Nick Neubacher
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Nicholas J Tobias
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Zhang D, Zhang F, Liu W. A KAS-III Heterodimer in Lipstatin Biosynthesis Nondecarboxylatively Condenses C 8 and C 14 Fatty Acyl-CoA Substrates by a Variable Mechanism during the Establishment of a C 22 Aliphatic Skeleton. J Am Chem Soc 2019; 141:3993-4001. [PMID: 30763089 DOI: 10.1021/jacs.8b12843] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Ketoacyl-acyl carrier protein synthase-III (KAS-III) and its homologues are thiolase-fold proteins that typically behave as homodimers functioning in diverse thioester-based reactions for C-C, C-O, or C-N bond formation. Here, we report an exception observed in the biosynthesis of lipstatin. During the establishment of the C22 aliphatic skeleton of this β-lactone lipase inhibitor, LstA and LstB, which both are KAS-III homologues but phylogenetically distinct from each other, function together by forming an unusual heterodimer to catalyze a nondecarboxylating Claisen condensation of C8 and C14 fatty acyl-CoA substrates. The resulting C22 α-alkyl β-ketoacid, which is unstable and tends to be spontaneously decarboxylated to a shunt C21 hydrocarbon product, is transformed by the stereoselective β-ketoreductase LstD into a relatively stable C22 α-alkyl β-hydroxyacid for further transformation. LstAB activity tolerates changes in the stereochemistry, saturation degree, and thioester form of both long-chain fatty acyl-CoA substrates. This flexibility, along with the characterization of catalytic residues, benefits our investigations into the individual roles of the two KAS-III homologues in the heterodimer-catalyzed reactions. The large subunit LstA contains a characteristic Cys-His-Asn triad and likely reacts with C8 acyl-CoA to form an acyl-Cys enzyme intermediate. In contrast, the small subunit LstB lacks this triad but possesses a catalytic Glu residue, which can act on the C8 acyl-Cys enzyme intermediate in a substrate-dependent manner, either as a base for Cα deprotonation or as a nucleophile for a Michael-type addition-initiated cascade reaction, to produce an enolate anion for head-to-head assembly with C14 acyl-CoA through a unidirectional nucleophilic substitution. Uncovering LstAB catalysis draws attention to thiolase-fold proteins that are noncanonical in both active form and catalytic reaction/mechanism. LstAB homologues are widespread in bacteria and remain to be functionally assigned, generating great interest in their corresponding products and associated biological functions.
Collapse
Affiliation(s)
- Daozhong Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Fang Zhang
- Innovation Research Institute of Traditional Chinese Medicine , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.,Huzhou Center of Bio-Synthetic Innovation , 1366 Hongfeng Road , Huzhou 313000 , China
| |
Collapse
|
16
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
17
|
Wong DCJ, Amarasinghe R, Pichersky E, Peakall R. Evidence for the Involvement of Fatty Acid Biosynthesis and Degradation in the Formation of Insect Sex Pheromone-Mimicking Chiloglottones in Sexually Deceptive Chiloglottis Orchids. FRONTIERS IN PLANT SCIENCE 2018; 9:839. [PMID: 29971087 PMCID: PMC6018206 DOI: 10.3389/fpls.2018.00839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
Hundreds of orchid species secure pollination by sexually luring specific male insects as pollinators by chemical and morphological mimicry. Yet, the biochemical pathways involved in the synthesis of the insect sex pheromone-mimicking volatiles in these sexually deceptive plants remain poorly understood. Here, we explore the biochemical pathways linked to the chemical mimicry of female sex pheromones (chiloglottones) employed by the Australian sexually deceptive Chiloglottis orchids to lure their male pollinator. By strategically exploiting the transcriptomes of chiloglottone 1-producing Chiloglottis trapeziformis at distinct floral tissues and at key floral developmental stages, we identified two key transcriptional trends linked to the stage- and tissue-dependent distribution profiles of chiloglottone in the flower: (i) developmental upregulation of fatty acid biosynthesis and β-oxidation genes such as KETOACYL-ACP SYNTHASE, FATTY ACYL-ACP THIOESTERASE, and ACYL-COA OXIDASE during the transition from young to mature buds and flowers and (ii) the tissue-specific induction of fatty acid pathway genes in the callus (the insectiform odor-producing structure on the labellum of the flower) compared to the labellum remains (non-odor-producing) regardless of development stage of the flower. Enzyme inhibition experiments targeting KETOACYL-ACP SYNTHASE activity alone in three chiloglottone-producing species (C. trapeziformis, C. valida, and C. aff. valida) significantly inhibited chiloglottone biosynthesis up to 88.4% compared to the controls. These findings highlight the role of coordinated (developmental stage- and tissue-dependent) fatty acid gene expression and enzyme activities for chiloglottone production in Chiloglottis orchids.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ranamalie Amarasinghe
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
18
|
Dubrovina AS, Kiselev KV. Regulation of stilbene biosynthesis in plants. PLANTA 2017; 246:597-623. [PMID: 28685295 DOI: 10.1007/s00425-017-2730-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 05/18/2023]
Abstract
This review analyzes the advances in understanding the natural signaling pathways and environmental factors regulating stilbene biosynthesis. We also discuss the studies reporting on stilbene content and repertoire in plants. Stilbenes, including the most-studied stilbene resveratrol, are a family of phenolic plant secondary metabolites that have been the subject of intensive research due to their valuable pharmaceutical effects and contribution to plant disease resistance. Understanding the natural mechanisms regulating stilbene biosynthesis in plants could be useful for both the development of new plant protection strategies and for commercial stilbene production. In this review, we focus on the environmental factors and cell signaling pathways regulating stilbene biosynthesis in plants and make a comparison with the regulation of flavonoid biosynthesis. This review also analyzes the recent data on stilbene biosynthetic genes and summarizes the available studies reporting on both stilbene content and stilbene composition in different plant families.
Collapse
Affiliation(s)
- A S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - K V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
- Department of Biotechnology and Microbiology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok, 690090, Russia.
| |
Collapse
|
19
|
Wong DCJ, Amarasinghe R, Rodriguez-Delgado C, Eyles R, Pichersky E, Peakall R. Tissue-Specific Floral Transcriptome Analysis of the Sexually Deceptive Orchid Chiloglottis trapeziformis Provides Insights into the Biosynthesis and Regulation of Its Unique UV-B Dependent Floral Volatile, Chiloglottone 1. FRONTIERS IN PLANT SCIENCE 2017; 8:1260. [PMID: 28769963 PMCID: PMC5515871 DOI: 10.3389/fpls.2017.01260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/04/2017] [Indexed: 05/29/2023]
Abstract
The Australian sexually deceptive orchid, Chiloglottis trapeziformis, employs a unique UV-B-dependent floral volatile, chiloglottone 1, for specific male wasp pollinator attraction. Chiloglottone 1 and related variants (2,5-dialkylcyclohexane-1,3-diones), represent a unique class of specialized metabolites presumed to be the product of cyclization between two fatty acid (FA) precursors. However, the genes involved in the biosynthesis of precursors, intermediates, and transcriptional regulation remains to be discovered. Chiloglottone 1 production occurs in the aggregation of calli (callus) on the labellum under continuous UV-B light. Therefore, deep sequencing, transcriptome assembly, and differential expression (DE) analysis were performed across different tissue types and UV-B treatments. Transcripts expressed in the callus and labellum (∼23,000 transcripts) were highly specialized and enriched for a diversity of known and novel metabolic pathways. DE analysis between chiloglottone-emitting callus versus the remainder of the labellum showed strong coordinated induction of entire FA biosynthesis and β-oxidation pathways including genes encoding Ketoacyl-ACP Synthase, Acyl-CoA Oxidase, and Multifunctional Protein. Phylogenetic analysis revealed potential gene duplicates with tissue-specific differential regulation including two Acyl-ACP Thioesterase B and a Ketoacyl-ACP Synthase genes. UV-B treatment induced the activation of UVR8-mediated signaling and large-scale transcriptome changes in both tissues, however, neither FA biosynthesis/β-oxidation nor other lipid metabolic pathways showed clear indications of concerted DE. Gene co-expression network analysis identified three callus-specific modules enriched with various lipid metabolism categories. These networks also highlight promising candidates involved in the cyclization of chiloglottone 1 intermediates (e.g., Bet v I and dimeric α,β barrel proteins) and orchestrating regulation of precursor pathways (e.g., AP2/ERF) given a strong co-regulation with FA biosynthesis/β-oxidation genes. Possible alternative biosynthetic routes for precursors (e.g., aldehyde dehydrogenases) were also indicated. Our comprehensive study constitutes the first step toward understanding the biosynthetic pathways involved in chiloglottone 1 production in Chiloglottis trapeziformis - supporting the roles of FA metabolism in planta, gene duplication as a potential source of new genes, and co-regulation of novel pathway genes in a tissue-specific manner. This study also provides a new and valuable resource for future discovery and comparative studies in plant specialized metabolism of other orchids and non-model plants.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Ranamalie Amarasinghe
- Ecology and Evolution, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Claudia Rodriguez-Delgado
- Ecology and Evolution, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Rodney Eyles
- Ecology and Evolution, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann ArborMI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, CanberraACT, Australia
| |
Collapse
|
20
|
Holland CK, Cascella B, Jez JM. Dissonance Strikes a Chord in Stilbene Synthesizers. Cell Chem Biol 2016; 23:1440-1441. [PMID: 28009974 DOI: 10.1016/j.chembiol.2016.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this issue of Cell Chemical Biology, Mori et al. (2016) combine X-ray crystallography and biochemistry to discover a new mechanism for stilbene synthesis in bacteria. The dialkyl-condensing enzyme StlD catalyzes formation of cyclohexanediones using a non-canonical β-ketosynthase active site. Aromatization by StlC completes production of the stilbene product.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Washington University in St. Louis, One Brookings Drive, CB1137, St. Louis, MO 63130, USA
| | - Barbara Cascella
- Department of Biology, Washington University in St. Louis, One Brookings Drive, CB1137, St. Louis, MO 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, CB1137, St. Louis, MO 63130, USA.
| |
Collapse
|