1
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2024. [PMID: 39287197 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Soor HS, Diaz DB, Burton KI, Yudin AK. Synthesis of Fluorinated Aminoalkylboronic Acids from Amphoteric α‐Boryl Aldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Harjeet S. Soor
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Diego B. Diaz
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Katherine I. Burton
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
3
|
Soor HS, Diaz DB, Burton KI, Yudin AK. Synthesis of Fluorinated Aminoalkylboronic Acids from Amphoteric α-Boryl Aldehydes. Angew Chem Int Ed Engl 2021; 60:16366-16371. [PMID: 33977627 DOI: 10.1002/anie.202104133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Our ongoing search for underdeveloped functional group combinations has brought to light α-fluorinated aminoalkylboronic acids, a new class of molecules featuring the B-CF linkage. These compounds can now be generated from secondary amines and α-boryl aldehydes through electrophilic fluorination of boryl enamines or enamides. Fluorinated β-aminoalkylboronic acids show no signs of degradation under ambient conditions. We present evidence for the involvement of chair-like motifs, favored over the acyclic forms by up to 1.7±0.1 kcal mol-1 in water and held together by an amine-boronate hydrogen bond. Fluorinated β-aminoalkylboronic acids are stable over a wide pH range and are characterized by a pKa of 3.4, which is the lowest of any alkylboronic acid.
Collapse
Affiliation(s)
- Harjeet S Soor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Diego B Diaz
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Katherine I Burton
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
4
|
Liu R, Markley L, Miller PA, Franzblau S, Shetye G, Ma R, Savková K, Mikušová K, Lee BS, Pethe K, Moraski GC, Miller MJ. Hydride-induced Meisenheimer complex formation reflects activity of nitro aromatic anti-tuberculosis compounds. RSC Med Chem 2021; 12:62-72. [PMID: 34046598 PMCID: PMC8130608 DOI: 10.1039/d0md00390e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 11/21/2022] Open
Abstract
The formation efficiency of hydride-induced Meisenheimer complexes of nitroaromatic compounds is consistent with their anti-TB activities exemplied by MDL860 and benzothiazol N-oxide (BTO) analogs. Herein we report that nitro cyano phenoxybenzenes (MDL860 and analogs) reacted slowly and incompletely which reflected their moderate anti-TB activity, in contrast to the instantaneous reaction of BTO derivatives to quantitatively generate Meisenheimer complexes which corresponded to their enhanced anti-TB activity. These results were corroborated by mycobacterial and radiolabelling studies that confirmed inhibition of the DprE1 enzyme by BTO derivatives but not MDL860 analogs.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| | - Lowell Markley
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| | - Patricia A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| | - Scott Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago 833 South Wood Street Chicago Il 60612 USA
| | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago 833 South Wood Street Chicago Il 60612 USA
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago 833 South Wood Street Chicago Il 60612 USA
| | - Karin Savková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava Ilkovičova 6 84215 Bratislava Slovakia
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava Ilkovičova 6 84215 Bratislava Slovakia
| | - Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University Singapore 637551
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| |
Collapse
|
5
|
Liang H, Liu H, Kuang Y, Chen L, Ye M, Lai L. Discovery of Targeted Covalent Natural Products against PLK1 by Herb-Based Screening. J Chem Inf Model 2020; 60:4350-4358. [PMID: 32407091 DOI: 10.1021/acs.jcim.0c00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural products (NPs) are a rich source of drug discovery, and some of them act by covalently binding to the targets. Recently, targeted covalent natural product (TCNP) design has gained considerable attention since this approach offers significant benefits in improving biological efficacy and decreasing the off-target side effects. However, most of the known TCNPs were discovered by chance. Rational approaches for a systematic screen of TCNPs are much needed. Here, we developed a combined computational and experimental approach to carry out herb-based screening to identify TCNPs against proper cysteine residues in the target proteins. The herb-based TCNP screening approach (HB-TCNP) starts from a druggable pocket and cysteine residue prediction, followed by virtual screening of a covalent NP database and herb-based mapping to identify candidate herbs for experimental validation. Herbs with time-dependent activity are selected, and their NPs are experimentally tested to further screen covalent NPs. We have successfully applied HB-TCNP to screen anti-PLK1 herbs and NPs with high efficacy. Cys67 and Cys133 in the ATP binding pocket of PLK1 were used in the search. Five herbs were tested and exhibited PLK1 inhibition activity to some extent, among which Scutellaria baicalensis showed the most potent activity with time dependency. Further experimental studies showed that the main active compounds in Scutellaria baicalensis, baicalein and baicalin, covalently bind PLK1 through Cys133. Our study provided an efficient way to rationally design TCNPs and to make better use of herb medicines. The Cys133 residue in PLK1 serves as a novel covalent site for further drug discovery against PLK1.
Collapse
Affiliation(s)
- Hao Liang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hongbo Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Limin Chen
- Peking-Tsinghua Center for Life Sciences at Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences at Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
7
|
Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF. The Proteome‐Wide Potential for Reversible Covalency at Cysteine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kristine Senkane
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | | | - Radu M. Suciu
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | - Vincent M. Crowley
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | - Balyn W. Zaro
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | | | - Ken A. Brameld
- Principia Biopharma 220 E. Grand Avenue South San Francisco CA 94080 USA
| | | |
Collapse
|
8
|
Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF. The Proteome-Wide Potential for Reversible Covalency at Cysteine. Angew Chem Int Ed Engl 2019; 58:11385-11389. [PMID: 31222866 DOI: 10.1002/anie.201905829] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 01/06/2023]
Abstract
Reversible covalency, achieved with, for instance, highly electron-deficient olefins, offers a compelling strategy to design chemical probes and drugs that benefit from the sustained target engagement afforded by irreversible compounds, while avoiding permanent protein modification. Reversible covalency has mainly been evaluated for cysteine residues in individual kinases and the broader potential for this strategy to engage cysteines across the proteome remains unexplored. Herein, we describe a mass-spectrometry-based platform that integrates gel filtration with activity-based protein profiling to assess cysteine residues across the human proteome for both irreversible and reversible interactions with small-molecule electrophiles. Using this method, we identify numerous cysteine residues from diverse protein classes that are reversibly engaged by cyanoacrylamide fragment electrophiles, revealing the broad potential for reversible covalency as a strategy for chemical-probe discovery.
Collapse
Affiliation(s)
- Kristine Senkane
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Vincent M Crowley
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Balyn W Zaro
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - J Michael Bradshaw
- Principia Biopharma, 220 E. Grand Avenue, South San Francisco, CA, 94080, USA
| | - Ken A Brameld
- Principia Biopharma, 220 E. Grand Avenue, South San Francisco, CA, 94080, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
9
|
Affiliation(s)
- Inas Elsayed
- Biomedical Informatics Research Lab, School of Basic Medicine & Clinical Pharmacy, Nanjing 211198, PR China
- Cancer Genomics Research Center, School of Basic Medicine & Clinical Pharmacy, Nanjing 211198, PR China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, PR China
- Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad Madani 20, Sudan
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine & Clinical Pharmacy, Nanjing 211198, PR China
- Cancer Genomics Research Center, School of Basic Medicine & Clinical Pharmacy, Nanjing 211198, PR China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
10
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|