1
|
Du Y, Thanapipatsiri A, Yokoyama K. Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products. Chembiochem 2023; 24:e202300342. [PMID: 37357819 PMCID: PMC10530009 DOI: 10.1002/cbic.202300342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Nucleoside natural products show diverse biological activities and serve as leads for various application purposes, including human and veterinary medicine and agriculture. Studies in the past decade revealed that these nucleosides are biosynthesized through divergent mechanisms, in which early steps of the pathways can be classified into two types (C5' oxidation and C5' radical extension), while the structural diversity is created by downstream tailoring enzymes. Based on this biosynthetic logic, we investigated the genome mining discovery potentials of these nucleosides using the two enzymes representing the two types of C5' modifications: LipL-type α-ketoglutarate (α-KG) and Fe-dependent oxygenases and NikJ-type radical S-adenosyl-L-methionine (SAM) enzymes. The results suggest that this approach allows discovery of putative nucleoside biosynthetic gene clusters (BGCs) and the prediction of the core nucleoside structures. The results also revealed the distribution of these pathways in nature and implied the possibility of future genome mining discovery of novel nucleoside natural products.
Collapse
Affiliation(s)
- Yanan Du
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Anyarat Thanapipatsiri
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 307 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
2
|
Pfeiffer M, Ribar A, Nidetzky B. A selective and atom-economic rearrangement of uridine by cascade biocatalysis for production of pseudouridine. Nat Commun 2023; 14:2261. [PMID: 37081027 PMCID: PMC10116470 DOI: 10.1038/s41467-023-37942-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
As a crucial factor of their therapeutic efficacy, the currently marketed mRNA vaccines feature uniform substitution of uridine (U) by the corresponding C-nucleoside, pseudouridine (Ψ), in 1-N-methylated form. Synthetic supply of the mRNA building block (1-N-Me-Ψ-5'-triphosphate) involves expedient access to Ψ as the principal challenge. Here, we show selective and atom-economic 1N-5C rearrangement of β-D-ribosyl on uracil to obtain Ψ from unprotected U in quantitative yield. One-pot cascade transformation of U in four enzyme-catalyzed steps, via D-ribose (Rib)-1-phosphate, Rib-5-phosphate (Rib5P) and Ψ-5'-phosphate (ΨMP), gives Ψ. Coordinated function of the coupled enzymes in the overall rearrangement necessitates specific release of phosphate from the ΨMP, but not from the intermediary ribose phosphates. Discovery of Yjjg as ΨMP-specific phosphatase enables internally controlled regeneration of phosphate as catalytic reagent. With driving force provided from the net N-C rearrangement, the optimized U reaction yields a supersaturated product solution (∼250 g/L) from which the pure Ψ crystallizes (90% recovery). Scale up to 25 g isolated product at enzyme turnovers of ∼105 mol/mol demonstrates a robust process technology, promising for Ψ production. Our study identifies a multistep rearrangement reaction, realized by cascade biocatalysis, for C-nucleoside synthesis in high efficiency.
Collapse
Affiliation(s)
- Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Andrej Ribar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria.
| |
Collapse
|
3
|
Biocatalytic cascade transformations for the synthesis of C-nucleosides and N-nucleoside analogs. Curr Opin Biotechnol 2023; 79:102873. [PMID: 36630750 DOI: 10.1016/j.copbio.2022.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Nucleosides and their analogs, including those that feature substitution of the canonical N-glycosidic by a C-glycosidic linkage, provide access to potent antiviral, antibacterial, and antitumor drugs. Furthermore, they are key building blocks of m-RNA vaccines and play a crucial role for vaccine therapeutic effectiveness. As the medicinal applications of nucleosides increase in number and importance, there is a growing need for efficiency-enhanced routes of nucleoside synthesis. Cascade biocatalysis, that is, the application of natural or evolved enzymes promoting complex transformations in multiple steps in one pot and without the need of intermediate purification, emerges as a powerful tool to obtain nucleosides from readily available starting materials. Recent efforts in enzyme discovery and protein engineering expand the toolbox of catalysts active toward nucleosides or nucleotides. In this review, we highlight recent applications, and discuss challenges, of cascade biocatalysis for nucleoside synthesis. We focus on C-nucleosides and important analogs of the canonical N-nucleosides.
Collapse
|
4
|
Li W, Girt GC, Radadiya A, Stewart JJP, Richards NGJ, Naismith JH. Experimental and computational snapshots of C-C bond formation in a C-nucleoside synthase. Open Biol 2023; 13:220287. [PMID: 36629016 PMCID: PMC9832568 DOI: 10.1098/rsob.220287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
The biosynthetic enzyme, ForT, catalyses the formation of a C-C bond between 4-amino-1H-pyrazoledicarboxylic acid and MgPRPP to produce a C-nucleoside precursor of formycin A. The transformation catalysed by ForT is of chemical interest because it is one of only a few examples in which C-C bond formation takes place via an electrophilic substitution of a small, aromatic heterocycle. In addition, ForT is capable of discriminating between the aminopyrazoledicarboxylic acid and an analogue in which the amine is replaced by a hydroxyl group; a remarkable feat given the steric and electronic similarities of the two molecules. Here we report biophysical measurements, structural biology and quantum chemical calculations that provide a detailed molecular picture of ForT-catalysed C-C bond formation and the conformational changes that are coupled to catalysis. Our findings set the scene for employing engineered ForT variants in the biocatalytic production of novel, anti-viral C-nucleoside and C-nucleotide analogues.
Collapse
Affiliation(s)
- Wenbo Li
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Georgina C. Girt
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
5
|
Draelos MM, Thanapipatsiri A, Du Y, Yokoyama K. Cryptic Phosphorylation-Mediated Divergent Biosynthesis of High-Carbon Sugar Nucleoside Antifungals. ACS Chem Biol 2022; 17:898-907. [PMID: 35348322 DOI: 10.1021/acschembio.1c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Establishing a general biosynthetic scheme for natural products is critical for a broader understanding of natural product biosynthesis and the structural prediction of metabolites based on genome sequence information. High-carbon sugar nucleoside antimicrobials are an underexplored class of natural products with unique structures and important biological activities. Recent studies on C6 sugar nucleoside antifungal natural products, such as nikkomycins and polyoxins, revealed a novel biosynthetic mechanism involving cryptic phosphorylation. However, the generality of this biosynthetic mechanism remained unexplored. We here report in vitro characterization of the biosynthesis of a C7 sugar nucleoside antifungal, malayamycin A. Our results demonstrate that the malayamycin biosynthetic enzymes specifically accept 2'-phosphorylated biosynthetic intermediates, suggesting that cryptic phosphorylation-mediated biosynthesis is conserved beyond C6 sugar nucleosides. Furthermore, the results suggest a generalizable divergent biosynthetic mechanism for high-carbon sugar nucleoside antifungals. In this model, C6 and C7 sugar nucleoside biosyntheses proceed via a common C8 sugar nucleoside precursor, and the sugar size is determined using the functions of α-ketoglutarate (α-KG)-dependent dioxygenases (NikI/PolD for C6 sugar nucleosides and MalI for C7 sugar nucleosides). These results provide an important guidance for the future genome-mining discovery of high-carbon sugar nucleoside antimicrobials.
Collapse
Affiliation(s)
- Matthew M. Draelos
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Anyarat Thanapipatsiri
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Yanan Du
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Kenichi Yokoyama
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
6
|
Zhang M, Kong L, Gong R, Iorio M, Donadio S, Deng Z, Sosio M, Chen W. Biosynthesis of C-nucleoside antibiotics in actinobacteria: recent advances and future developments. Microb Cell Fact 2022; 21:2. [PMID: 34983520 PMCID: PMC8724604 DOI: 10.1186/s12934-021-01722-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemic diseases and antibiotic resistance are urgent threats to global health, and human is confronted with an unprecedented dilemma to conquer them by expediting development of new natural product related drugs. C-nucleoside antibiotics, a remarkable group of microbial natural products with diverse biological activities, feature a heterocycle base linked with a ribosyl moiety via an unusual C-glycosidic bond, and have played significant roles in healthcare and for plant protection. Elucidating how nature biosynthesizes such a group of antibiotics has provided the basis for engineered biosynthesis as well as targeted genome mining of more C-nucleoside antibiotics towards improved properties. In this review, we mainly summarize the recent advances on the biosynthesis of C-nucleoside antibiotics, and we also tentatively discuss the future developments on rationally accessing C-nucleoside diversities in a more efficient and economical way via synthetic biology strategies.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liyuan Kong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | | | | | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
8
|
Blocks in the pseudouridimycin pathway unlock hidden metabolites in the Streptomyces producer strain. Sci Rep 2021; 11:5827. [PMID: 33712632 PMCID: PMC7955054 DOI: 10.1038/s41598-021-84833-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
We report a metabolomic analysis of Streptomyces sp. ID38640, a soil isolate that produces the bacterial RNA polymerase inhibitor pseudouridimycin. The analysis was performed on the wild type, on three newly constructed and seven previously reported mutant strains disabled in different genes required for pseudouridimycin biosynthesis. The results indicate that Streptomyces sp. ID38640 is able to produce, in addition to lydicamycins and deferroxiamines, as previously reported, also the lassopeptide ulleungdin, the non-ribosomal peptide antipain and the osmoprotectant ectoine. The corresponding biosynthetic gene clusters were readily identified in the strain genome. We also detected the known compound pyridindolol, for which we propose a previously unreported biosynthetic gene cluster, as well as three families of unknown metabolites. Remarkably, the levels of most metabolites varied strongly in the different mutant strains, an observation that enabled detection of metabolites unnoticed in the wild type. Systematic investigation of the accumulated metabolites in the ten different pum mutants identified shed further light on pseudouridimycin biosynthesis. We also show that several Streptomyces strains, able to produce pseudouridimycin, have distinct genetic relationship and metabolic profile with ID38640.
Collapse
|
9
|
Gong R, Yu L, Qin Y, Price NPJ, He X, Deng Z, Chen W. Harnessing synthetic biology-based strategies for engineered biosynthesis of nucleoside natural products in actinobacteria. Biotechnol Adv 2020; 46:107673. [PMID: 33276073 DOI: 10.1016/j.biotechadv.2020.107673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance poses an increasing threat to global health, and it is urgent to reverse the present trend by accelerating development of new natural product derived drugs. Nucleoside antibiotics, a valuable family of promising natural products with remarkable structural features and diverse biological activities, have played significant roles in healthcare and for plant protection. Understanding the biosynthesis of these intricate molecules has provided a foundation for bioengineering the microbial cell factory towards yield enhancement and structural diversification. In this review, we summarize the recent progresses in employing synthetic biology-based strategies to improve the production of target nucleoside antibiotics. Moreover, we delineate the advances on rationally accessing the chemical diversities of natural nucleoside antibiotics.
Collapse
Affiliation(s)
- Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Le Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yini Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Neil P J Price
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Draelos MM, Thanapipatsiri A, Sucipto H, Yokoyama K. Cryptic phosphorylation in nucleoside natural product biosynthesis. Nat Chem Biol 2020; 17:213-221. [PMID: 33257873 PMCID: PMC7855722 DOI: 10.1038/s41589-020-00656-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/20/2020] [Indexed: 11/11/2022]
Abstract
Kinases are annotated in many nucleoside biosynthetic gene clusters (BGCs) but generally are considered responsible only for self-resistance. Here, we report an unexpected 2’-phosphorylation of nucleoside biosynthetic intermediates in the nikkomycin and polyoxin pathways. This phosphorylation is a unique cryptic modification as it is introduced in the third of seven steps during aminohexuronic acid (AHA) nucleoside biosynthesis, retained throughout the pathway’s duration, and is removed in the last step of the pathway. Bioinformatic analysis of reported nucleoside BGCs suggests the presence of cryptic phosphorylation in other pathways and the importance of functional characterization of kinases in nucleoside biosynthetic pathways in general. This study also functionally characterized all of the enzymes responsible for AHA biosynthesis and revealed that AHA is constructed via a unique oxidative C-C bond cleavage reaction. The results suggest a divergent biosynthetic mechanism for three classes of antifungal nucleoside natural products.
Collapse
Affiliation(s)
| | | | - Hilda Sucipto
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Kenichi Yokoyama
- Department of Chemistry, Duke University, Durham, NC, USA. .,Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Comparative Investigation into Formycin A and Pyrazofurin A Biosynthesis Reveals Branch Pathways for the Construction of C-Nucleoside Scaffolds. Appl Environ Microbiol 2020; 86:AEM.01971-19. [PMID: 31676476 DOI: 10.1128/aem.01971-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Formycin A (FOR-A) and pyrazofurin A (PRF-A) are purine-related C-nucleoside antibiotics in which ribose and a pyrazole-derived base are linked by a C-glycosidic bond. However, the logic underlying the biosynthesis of these molecules has remained largely unexplored. Here, we report the discovery of the pathways for FOR-A and PRF-A biosynthesis from diverse actinobacteria and propose that their biosynthesis is likely initiated by a lysine N 6-monooxygenase. Moreover, we show that forT and prfT (involved in FOR-A and PRF-A biosynthesis, respectively) mutants are correspondingly capable of accumulating the unexpected pyrazole-related intermediates 4-amino-3,5-dicarboxypyrazole and 3,5-dicarboxy-4-oxo-4,5-dihydropyrazole. We also decipher the enzymatic mechanism of ForT/PrfT for C-glycosidic bond formation in FOR-A/PRF-A biosynthesis. To our knowledge, ForT/PrfT represents an example of β-RFA-P (β-ribofuranosyl-aminobenzene 5'-phosphate) synthase-like enzymes governing C-nucleoside scaffold construction in natural product biosynthesis. These data establish a foundation for combinatorial biosynthesis of related purine nucleoside antibiotics and also open the way for target-directed genome mining of PRF-A/FOR-A-related antibiotics.IMPORTANCE FOR-A and PRF-A are C-nucleoside antibiotics known for their unusual chemical structures and remarkable biological activities. Deciphering the enzymatic mechanism for the construction of a C-nucleoside scaffold during FOR-A/PRF-A biosynthesis will not only expand the biochemical repertoire for novel enzymatic reactions but also permit target-oriented genome mining of FOR-A/PRF-A-related C-nucleoside antibiotics. Moreover, the availability of FOR-A/PRF-A biosynthetic gene clusters will pave the way for the rational generation of designer FOR-A/PRF-A derivatives with enhanced/selective bioactivity via synthetic biology strategies.
Collapse
|
12
|
Prajapati RK, Rosenqvist P, Palmu K, Mäkinen JJ, Malinen AM, Virta P, Metsä-Ketelä M, Belogurov GA. Oxazinomycin arrests RNA polymerase at the polythymidine sequences. Nucleic Acids Res 2019; 47:10296-10312. [PMID: 31495891 PMCID: PMC6821320 DOI: 10.1093/nar/gkz782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023] Open
Abstract
Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.
Collapse
Affiliation(s)
- Ranjit K Prajapati
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Petja Rosenqvist
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Kaisa Palmu
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Janne J Mäkinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Anssi M Malinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
13
|
Kong L, Xu G, Liu X, Wang J, Tang Z, Cai YS, Shen K, Tao W, Zheng Y, Deng Z, Price NPJ, Chen W. Divergent Biosynthesis of C-Nucleoside Minimycin and Indigoidine in Bacteria. iScience 2019; 22:430-440. [PMID: 31816530 PMCID: PMC6908994 DOI: 10.1016/j.isci.2019.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/12/2022] Open
Abstract
Minimycin (MIN) is a C-nucleoside antibiotic structurally related to pseudouridine, and indigoidine is a naturally occurring blue pigment produced by diverse bacteria. Although MIN and indigoidine have been known for decades, the logic underlying the divergent biosynthesis of these interesting molecules has been obscure. Here, we report the identification of a minimal 5-gene cluster (min) essential for MIN biosynthesis. We demonstrated that a non-ribosomal peptide synthetase (MinA) governs “the switch” for the divergent biosynthesis of MIN and the cryptic indigoidine. We also demonstrated that MinCN (the N-terminal phosphatase domain of MinC), MinD (uracil phosphoribosyltransferase), and MinT (transporter) function together as the safeguard enzymes, which collaboratively constitute an unusual self-resistance system. Finally, we provided evidence that MinD, utilizing an unprecedented substrate-competition strategy for self-resistance of the producer cell, maintains competition advantage over the active molecule MIN-5′-monophosphate by increasing the UMP pool in vivo. These findings greatly expand our knowledge regarding natural product biosynthesis. A minimal 5-gene cluster (min) is essential for minimycin biosynthesis Divergent biosynthesis of minimycin and indigoidine is mediated by an NRPS enzyme A cascade of three safeguard enzymes constitutes the unusual self-resistance system MinD functions as the key safeguard enzyme by increasing the UMP pool in vivo
Collapse
Affiliation(s)
- Liyuan Kong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Gudan Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoqin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jingwen Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zenglin Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Weixin Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, and College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Neil P J Price
- Agricultural Research Service, US Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
14
|
Ren D, Wang S, Ko Y, Geng Y, Ogasawara Y, Liu H. Identification of the
C
‐Glycoside Synthases during Biosynthesis of the Pyrazole‐
C
‐Nucleosides Formycin and Pyrazofurin. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daan Ren
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry College of Pharmacy University of Texas at Austin Austin TX 78712 USA
| | - Shao‐An Wang
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry College of Pharmacy University of Texas at Austin Austin TX 78712 USA
| | - Yeonjin Ko
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry College of Pharmacy University of Texas at Austin Austin TX 78712 USA
| | - Yujie Geng
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry College of Pharmacy University of Texas at Austin Austin TX 78712 USA
| | - Yasushi Ogasawara
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry College of Pharmacy University of Texas at Austin Austin TX 78712 USA
- Current address: Graduate School of Engineering Sapporo Hokkaido 060-8628 Japan
| | - Hung‐wen Liu
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry College of Pharmacy University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
15
|
Ren D, Wang SA, Ko Y, Geng Y, Ogasawara Y, Liu HW. Identification of the C-Glycoside Synthases during Biosynthesis of the Pyrazole-C-Nucleosides Formycin and Pyrazofurin. Angew Chem Int Ed Engl 2019; 58:16512-16516. [PMID: 31518483 PMCID: PMC6911263 DOI: 10.1002/anie.201910356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/18/2022]
Abstract
C-Nucleosides are characterized by a C-C rather than a C-N linkage between the heterocyclic base and the ribofuranose ring. While the biosynthesis of pseudouridine-C-nucleosides has been studied, less is known about the pyrazole-C-nucleosides such as the formycins and pyrazofurin. Herein, genome screening of Streptomyces candidus NRRL 3601 led to the discovery of the pyrazofurin biosynthetic gene cluster pyf. In vitro characterization of gene product PyfQ demonstrated that it is able to catalyze formation of the C-glycoside carboxyhydroxypyrazole ribonucleotide (CHPR) from 4-hydroxy-1H-pyrazole-3,5-dicarboxylic acid and phosphoribosyl pyrophosphate (PRPP). Similarly, ForT, the PyfQ homologue in the formycin pathway, can catalyze the coupling of 4-amino-1H-pyrazole-3,5-dicarboxylic acid and PRPP to form carboxyaminopyrazole ribonucleotide. Finally, PyfP and PyfT are shown to catalyze amidation of CHPR to pyrazofurin 5'-phosphate thereby establishing the latter stages of both pyrazofurin and formycin biosynthesis.
Collapse
Affiliation(s)
| | | | - Yeonjin Ko
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712 (USA)
| | - Yujie Geng
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712 (USA)
| | | | - Hung-wen Liu
- Department of Chemistry and Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712 (USA)
| |
Collapse
|
16
|
Recent advances in the biosynthesis of nucleoside antibiotics. J Antibiot (Tokyo) 2019; 72:913-923. [PMID: 31554958 DOI: 10.1038/s41429-019-0236-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/07/2019] [Indexed: 01/27/2023]
Abstract
Nucleoside antibiotics are a diverse class of natural products with promising biomedical activities. These compounds contain a saccharide core and a nucleobase. Despite the large number of nucleoside antibiotics that have been reported, biosynthetic studies on these compounds have been limited compared with those on other types of natural products such as polyketides, peptides, and terpenoids. Due to recent advances in genome sequencing technology, the biosynthesis of nucleoside antibiotics has rapidly been clarified. This review covering 2009-2019 focuses on recent advances in the biosynthesis of nucleoside antibiotics.
Collapse
|
17
|
Osada H. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo) 2019; 72:855-864. [PMID: 31554959 DOI: 10.1038/s41429-019-0237-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/28/2023]
Abstract
Nucleoside antibiotics possess various biological activities such as antibacterial, antifungal, anticancer, and herbicidal activities. RIKEN scientists contributed to this area of research with two representative antifungal nucleoside antibiotics, blasticidin S and polyoxin. Blasticidin S was the first antibiotic exploited in agriculture worldwide. Meanwhile, the polyoxins discovered by Isono and Suzuki are still used globally as an agricultural antibiotic. In this review article, the research on nucleoside antibiotics mainly done by Isono and his collaborators is summarized from the discovery of polyoxin to subsequent investigations.
Collapse
Affiliation(s)
- Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|