1
|
Nakagawa Y, Fujii M, Ito N, Ojika M, Akase D, Aida M, Kinoshita T, Sakurai Y, Yasuda J, Igarashi Y, Ito Y. Molecular basis of N-glycan recognition by pradimicin a and its potential as a SARS-CoV-2 entry inhibitor. Bioorg Med Chem 2024; 105:117732. [PMID: 38643719 DOI: 10.1016/j.bmc.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Masato Fujii
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nanaka Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Milanesi F, Roelens S, Francesconi O. Towards Biomimetic Recognition of Glycans by Synthetic Receptors. Chempluschem 2024; 89:e202300598. [PMID: 37942862 DOI: 10.1002/cplu.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Carbohydrates are abundant in Nature, where they are mostly assembled within glycans as free polysaccharides or conjugated to a variety of biological molecules such as proteins and lipids. Glycans exert several functions, including protein folding, stability, solubility, resistance to proteolysis, intracellular traffic, antigenicity, and recognition by carbohydrate-binding proteins. Interestingly, misregulation of their biosynthesis that leads to changes in glycan structures is frequently recognized as a mark of a disease state. Because of glycan ubiquity, carbohydrate binding agents (CBAs) targeting glycans can lead to a deeper understanding of their function and to the development of new diagnostic and prognostic strategies. Synthetic receptors selectively recognizing specific carbohydrates of biological interest have been developed over the past three decades. In addition to the success obtained in the effective recognition of monosaccharides, synthetic receptors recognizing more complex guests have also been developed, including di- and oligosaccharide fragments of glycans, shedding light on the structural and functional requirements necessary for an effective receptor. In this review, the most relevant achievements in molecular recognition of glycans and their fragments will be summarized, highlighting potentials and future perspectives of glycan-targeting synthetic receptors.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
3
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
4
|
Nakagawa Y, Oya Y, Ojika M, Igarashi Y, Ito Y. Chemical modification of pradimicin A to suppress aggregation without impairing D-mannose-binding and antifungal activities. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Miyanishi W, Ojika M, Akase D, Aida M, Igarashi Y, Ito Y, Nakagawa Y. d-Mannose binding, aggregation property, and antifungal activity of amide derivatives of pradimicin A. Bioorg Med Chem 2022; 55:116590. [PMID: 34973516 DOI: 10.1016/j.bmc.2021.116590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Pradimicin A (PRM-A) and its derivatives comprise a unique family of antibiotics that show antifungal, antiviral, and antiparasitic activities through binding to d-mannose (Man)-containing glycans of pathogenic species. Despite their great potential as drug leads with an exceptional antipathogenic action, therapeutic application of PRMs has been severely limited by their tendency to form water-insoluble aggregates. Recently, we found that attachment of 2-aminoethanol to the carboxy group of PRM-A via amide linkage significantly suppressed the aggregation. Here, we prepared additional amide derivatives (2-8) of PRM-A to examine the possibility that the amide formation of PRM-A could suppress its aggregation propensity. Sedimentation assay and isothermal titration calorimetry experiment confirmed that all amide derivatives can bind Man without significant aggregation. Among them, hydroxamic acid derivative (4) showed the most potent Man-binding activity, which was suggested to be derived from the anion formation of the hydroxamic acid moiety by molecular modeling. Derivative 4 also exhibited significant antifungal activity comparable to that of PRM-A. These results collectively indicate that amide formation of PRM-A is the promising strategy to develop less aggregative derivatives, and 4 could serve as a lead compound for exploring the therapeutic application of PRM-A.
Collapse
Affiliation(s)
- Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
6
|
NAKAGAWA Y, ITO Y. Mannose-binding analysis and biological application of pradimicins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:15-29. [PMID: 35013028 PMCID: PMC8795531 DOI: 10.2183/pjab.98.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Pradimicins (PRMs) are an exceptional family of natural products that specifically bind d-mannose (Man). In the past decade, their scientific significance has increased greatly, with the emergence of biological roles of Man-containing glycans. However, research into the use of PRMs has been severely limited by their inherent tendency to form water-insoluble aggregates. Recently, we have established a derivatization strategy to suppress PRM aggregation, providing an opportunity for practical application of PRMs in glycobiological research. This article first outlines the challenges in studying Man-binding mechanisms and structural modifications of PRMs, and then describes our approach to address them. We also present our recent attempts toward the development of PRM-based research tools.
Collapse
Affiliation(s)
- Yu NAKAGAWA
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yukishige ITO
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
7
|
Ito Y. If I Look Back at Myself. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Nakagawa Y, Kakihara S, Tsuzuki K, Ojika M, Igarashi Y, Ito Y. A Pradimicin-Based Staining Dye for Glycoprotein Detection. JOURNAL OF NATURAL PRODUCTS 2021; 84:2496-2501. [PMID: 34524799 DOI: 10.1021/acs.jnatprod.1c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pradimicin A (PRM-A) and related compounds constitute an exceptional family of natural pigments that show Ca2+-dependent recognition of d-mannose (Man). Although these compounds hold great promise as research tools in glycobiology, their practical application has been severely limited by their inherent tendency to form water-insoluble aggregates. Here, we demonstrate that the 2-hydroxyethylamide derivative (PRM-EA) of PRM-A shows little aggregation in neutral aqueous media and retains binding specificity for Man. We also show that PRM-EA stains glycoproteins in dot blot assays, whereas PRM-A fails to do so, owing to severe aggregation. Significantly, PRM-EA is sensitive to glycoproteins carrying high mannose-type and hybrid-type N-linked glycans, but not to those carrying complex-type N-linked glycans. Such staining selectivity has never been observed in conventional dyes, suggesting that PRM-EA could serve as a unique staining agent for the selective detection of glycoproteins with terminal Man residues.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Kakihara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazue Tsuzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Nakagawa Y, Yamaji F, Miyanishi W, Ojika M, Igarashi Y, Ito Y. Binding Evaluation of Pradimicins for Oligomannose Motifs from Fungal Mannans. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Fumiya Yamaji
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
11
|
Nakagawa Y. Paving the Way for Practical Use of Sugar-Binding Natural Products as Lectin Mimics in Glycobiological Research. Chembiochem 2020; 21:1567-1572. [PMID: 32012428 DOI: 10.1002/cbic.201900781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Pradimicins (PRMs) constitute an exceptional class of natural products that show Ca2+ -dependent recognition of d-mannose (Man). In addition to therapeutic uses as antifungal drugs, the application of PRMs as lectin mimics for glycobiological research has been attracting considerable interest, since the emerging biological roles of Man-containing glycans have been highlighted. However, only a few attempts have been made to use PRMs for glycobiological purposes. The limited use of PRMs is primarily due to the early assumption that the readily modifiable carboxyl group of PRMs is involved in Ca2+ binding, and thus, not available to prepare research tools. Recently, this assumption has been disproved by structural elucidation of the Ca2+ complex of PRMs, which paves the way for designing carboxyl group modified derivatives of PRMs for research use. This article outlines studies related to Ca2+ -mediated Man binding of PRMs and discusses their application for glycobiology.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|