1
|
Visockis M, Ruzgys P, Gelažunaitė S, Vykertas S, Šatkauskas S. Application of pulsed electric field (PEF) as a strategy to enhance aminoglycosides efficacy against Gram-negative bacteria. Bioelectrochemistry 2025; 164:108935. [PMID: 39933400 DOI: 10.1016/j.bioelechem.2025.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
In this study, two aminoglycosides (AGs), Kanamycin and Gentamicin, with similar modes of action and molecular weights, were combined with PEF treatment to enhance the inactivation of E. coli cells. Various PEF strengths were applied to assess the combined effect. To compare the inactivation efficacy of different AGs, bacterial growth measurements in suspension were performed at 3 and 10 h intervals over a 10-h period after PEF treatment. Interestingly, it was found that the additive effect of PEF treatment on E. coli growth inhibition was significantly greater with Kanamycin (IC50) than with Gentamicin (IC50). Further analysis revealed that the combined treatment with Kanamycin (IC50) was most effective within a timeframe of around 3 h. Our findings suggest that PEF treatment can significantly enhance the efficacy of AGs against Gram-negative bacteria; however, the extent of the additive effect varies depending on the specific antibiotic and the intensity of the applied PEF treatment.
Collapse
Affiliation(s)
- Mindaugas Visockis
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Simona Gelažunaitė
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Salvijus Vykertas
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania.
| |
Collapse
|
2
|
Ma G, Cheng K, Wang X, Zeng Y, Hu C, He L, Shi Z, Lin H, Zhang T, Sun S, Huang P. Dual oxygen supply system of carbon dot-loaded microbubbles with acoustic cavitation for enhanced sonodynamic therapy in diabetic wound healing. Biomaterials 2025; 318:123145. [PMID: 39874643 DOI: 10.1016/j.biomaterials.2025.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Diabetic wounds present significant treatment challenges due to their complex microenvironment, marked by persistent inflammation from bacterial infections, hypoxia caused by diabetic microangiopathy, and biofilm colonization. Sonodynamic therapy (SDT) offers potential for treating such wounds by targeting deep tissues with antibacterial effects, but its efficacy is limited by hypoxic conditions and biofilm barriers. To overcome these obstacles, we developed a novel approach using oxygen-carrying microbubbles loaded with Mn2+-doped carbon dots (MnCDs@O2MBs) to enhance SDT and disrupt biofilms. Through precursor screening and design, MnCDs are engineered to exhibit tailored properties of sonodynamic activity and enzyme-like catalytic capabilities. This system provides a dual oxygen supply for amplifying the SDT effects: MnCDs, serving as a sonosensitizer, also chemically convert excess H2O2 at infection sites into oxygen, while the O2MBs physically release oxygen through ultrasound-induced cavitation. The cavitation effect also disrupts biofilms, improving the delivery of sonosensitizers and boosting SDT efficacy. In a diabetic wound model, this strategy downregulated TLR, NF-κB, and TNF inflammatory pathways, reduced pro-inflammatory factor secretion, promoted angiogenesis, and accelerated wound healing, thereby acting as a promising treatment approach for diabetic wound healing.
Collapse
Affiliation(s)
- Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Ke Cheng
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Chenlu Hu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Luying He
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Hengwei Lin
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China.
| | - Shan Sun
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, No. 66 Dongxin Avenue, Binjiang District, Hangzhou, 310053, PR China.
| |
Collapse
|
3
|
Choi V, Carugo D, Stride E. Repurposing antimicrobials with ultrasound-triggered nanoscale systems for targeted biofilm drug delivery. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:22. [PMID: 40169915 PMCID: PMC11962098 DOI: 10.1038/s44259-025-00086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025]
Abstract
Chronic infections represent a major clinical challenge due to the enhanced antimicrobial tolerance of biofilm-dwelling bacteria. To address this challenge, an ultrasound-responsive nanoscale drug delivery platform (nanodroplets) is presented in this work, loaded with four different antimicrobial agents, capable of simultaneous biofilm disruption and targeted antimicrobial delivery. When loaded, a robust protective effect against clinically-derived MRSA and ESBL Gram-positive and Gram-negative planktonic isolates was shown in vitro. Upon application of therapeutic ultrasound, an average 7.6-fold, 44.4-fold, and 25.5-fold reduction was observed in the antibiotic concentrations compared to free drug required to reach the MBC, MBEC and complete persister eradication levels, respectively. Nanodroplets substantially altered subcellular distribution of encapsulated antimicrobials, enhancing accumulation of antimicrobials by 11.1-fold within the biofilm-residing bacteria's cytoplasm compared to treatment with unencapsulated drugs. These findings illustrate the potential of this multifunctional platform to overcome the critical penetration and localization limitations of antimicrobials within biofilms, opening potential new avenues in the treatment of chronic clinical infections.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Huang H, Wang C, Chang S, Cui T, Xu Y, Huang M, Zhang H, Zhou C, Zhang X, Feng Y. Structure and catalytic mechanism of exogenous fatty acid recycling by AasS, a versatile acyl-ACP synthetase. Nat Struct Mol Biol 2025:10.1038/s41594-024-01464-7. [PMID: 39794554 DOI: 10.1038/s41594-024-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2024] [Indexed: 01/13/2025]
Abstract
Fatty acids (FAs) are essential building blocks for all the domains of life, of which bacterial de novo synthesis, called type II FA synthesis (FAS II), is energetically expensive. The recycling of exogenous FAs (eFAs) partially relieves the FAS II demand and, therefore, compromises the efficacy of FAS II-directed antimicrobials. The versatile acyl-acyl carrier protein (ACP) synthetase, AasS, enables bacterial channeling of diverse eFA nutrients through holo-ACP, an activated form of ACP. However, the molecular mechanism for AasS catalysis is not fully understood. Here we report a series of cryo-electron microscopy structures of AasS from the bioluminescent bacterium Vibrio harveyi to provide insights into the catalytic cycle. AasS forms a ring-shaped hexamer, with each protomer folding into two distinct domains. Biochemical and structural analysis suggests that AasS accommodates distinct eFA substrates and the conserved W230 residue has a gating role. Adenosine triphosphate and Mg2+ binding converts the AasS hexamer to a tetramer, which is likely needed for the acyl adenylate intermediate formation. Afterward, AasS reverts to the hexamer conformation in adaption to acyl-ACP production. The complete landscape for eFA scavenging lays a foundation for exploiting the versatility of AasS in biopharmaceuticals.
Collapse
Affiliation(s)
- Haomin Huang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yongchang Xu
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China.
| | - Youjun Feng
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Tabashsum Z, Angeles-Solano M, Sidders AE, Parsons JB, Rowe SE. Palmitoleic acid sensitizes vancomycin-resistant Staphylococcus aureus to vancomycin by outpacing the expression of resistance genes. Microbiol Spectr 2025; 13:e0199624. [PMID: 39656010 PMCID: PMC11705785 DOI: 10.1128/spectrum.01996-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
The rise in antibiotic resistance limits the availability of antibiotics to treat bacterial infections. Despite this, antibiotic development pipelines remain sparse which makes using adjuvants to reverse antibiotic resistance a promising therapeutic strategy. The use of vancomycin, a frontline antibiotic used to treat hospitalized patients with methicillin-resistant Staphylococcus aureus (MRSA) infections, is complicated by high rates of treatment failure. Vancomycin binds to the D-ala-D-ala terminus of the nascent peptidoglycan precursor lipid II, preventing cell wall biosynthesis. Vancomycin-resistant strains of S. aureus and Enterococci typically express a van gene cluster that is induced in response to vancomycin and results in the synthesis of an alternative lipid precursor with a peptide chain ending in D-ala-D-lac. Vancomycin has low affinity for the D-ala-D-lac terminus, and the bacteria can resume growth even in the presence of an otherwise lethal dose of vancomycin. We previously showed that palmitoleic acid, a host-produced monounsaturated fatty acid, combined with vancomycin led to an accumulation of large fluid patches in the bacterial membrane, resulting in membrane destabilization and cell death. In this study, we observed that palmitoleic acid increases the rate of vancomycin killing by more than 50-fold, compared to vancomycin alone. This rapid bactericidal activity by the combined treatment sensitized vancomycin-resistant S. aureus (VRSA) and vancomycin-resistant Enterococcus (VRE) to vancomycin, likely by outpacing the expression of vancomycin resistance genes. This study represents an important step in the ongoing effort to mitigate antibiotic resistance.IMPORTANCEThe development of antibiotics has transformed medicine, reducing the incidence and severity of bacterial infections and allowing for advancements in healthcare, including invasive surgeries and organ transplants. However, the rise of antibiotic resistance poses a significant threat to these medical advancements, leading to treatment failures that result in increased patient morbidity and mortality, as well as substantial healthcare costs. Vancomycin-resistant Enterococcus (VRE) species are prevalent in hospital settings and chronic infections. Although high-level vancomycin resistance in S. aureus is rare, S. aureus can acquire plasmids expressing vancomycin resistance genes from resistant Enterococcal species during infection, further complicating treatment. In this study, we find that palmitoleic acid increases the rate of vancomycin killing and restores sensitivity to vancomycin-resistant S. aureus (VRSA) and VRE isolates.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle Angeles-Solano
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashelyn E. Sidders
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua B. Parsons
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Zhou W, Xiong P, Ge Y, He Y, Sun Y, Zhang G, Chen Y, Wu C, Zhang W, Liu Y, Yang H. Amoeba-Inspired Soft Robot for Integrated Tumor/Infection Therapy and Painless Postoperative Drainage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407148. [PMID: 39494576 DOI: 10.1002/advs.202407148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Indexed: 11/05/2024]
Abstract
Tumor recurrence and wound infection are devastating complications of wide excision surgery for melanoma, and deep postoperative wound drainage typically increases pain. An amoeba-inspired magnetic soft robot (ASR) with switchable dormant and active phases is developed to address the aforementioned challenges. The dormant ASR supports wounds through its solid-like elasticity and regulates reactive oxygen species (ROS) levels bidirectionally, promoting healing in infected wounds and eliminating residual tumors. It solves the challenge caused by the contradictory need for ROS scavenging in wound healing and ROS amplification in tumor/infection management. The active ASR removes absorbed wound exudate by crawling out from irregular wounds; interestingly, this crawling motion prevents damage to fragile tissues and alleviates wound pain via "non-direct friction." More importantly, ASR switches different states in response to an alternating magnetic field owing to its magnetothermal properties, and this process also exerts synergistic antitumor and bacteriostatic effects. Due to the appropriate mechanical structure (cohesive force) of ASR, the content of magnetic nanoparticles required to drive the ASR is ten-fold lower than that of conventional magnetic soft robots, enabling in vivo degradation. These outcomes highlight the vantage of the ASR for treating post-tumor excision wounds and underscore their potential for clinical application.
Collapse
Affiliation(s)
- Wanyi Zhou
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Yiman Ge
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Yuhan He
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yue Sun
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China
| | - Gang Zhang
- Department of Oncology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610072, P. R. China
| | - Yifan Chen
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Urology, Deyang People's Hospital, Deyang, Sichuan, 618099, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Hong Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
7
|
Anuradha U, Bhavana V, Chary PS, Rajana N, Parida KK, Kalia NP, Khatri DK, Mehra NK. Thymoquinone loaded nanoemulgel in streptozotocin induced diabetic wound. Nanomedicine (Lond) 2024; 19:2577-2604. [PMID: 39569618 DOI: 10.1080/17435889.2024.2422805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: To treat diabetic wound healing with a novel Thymoquinone (TQ) loaded nanoformulation by using combination of essentials oils.Methods: TQ nanoemulsion (NE) was developed with seabuckthorn & lavender essential oils by phase inversion method and mixture design. Further, DIAGEL is obtained by incorporating NE into 1% carbopol®934. Furthermore, particle size, polydispersity index, thermodynamic stability studies, rheology, spreadability, drug content, in-vitro drug release, ex-vivo permeation, anti-oxidant assay, antimicrobial studies, angioirritance, HAT-CAM assay, in-vitro and in-vivo studies were determined.Results: NE has a particle size of 17.79 ± 0.61 nm, 0.206 ± 0.012 PDI & found to be thermodynamically stable. DIAGEL exhibited pseudoplastic behavior, sustained drug release, better permeation of TQ and a drug content of 98.54 ± 0.08%. DIAGEL stored for 6 months at room temperature and 2-8°C showed no degradation. Further, an improved angiogenesis, absence of angio-irritancy, remarkable antioxidant and antimicrobial activities against Candida albicans & S. aureus were observed. Cytotoxicity analysis revealed nearly 2.28 -folds higher IC50 value than drug solution. Furthermore, inflammatory mediators were reduced in DIAGEL treated animal groups. The histopathological studies confirmed skin healing with regeneration and granulation of tissue.Conclusion: The novel formulation has strong anti-inflammatory, angiogenesis, antioxidant and appreciable diabetic wound healing properties.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kishan Kumar Parida
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
8
|
Liu JD, VanTreeck KE, Marston WA, Papadopoulou V, Rowe SE. Ultrasound-Mediated Antibiotic Delivery to In Vivo Biofilm Infections: A Review. Chembiochem 2024; 25:e202400181. [PMID: 38924307 PMCID: PMC11483220 DOI: 10.1002/cbic.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Bacterial biofilms are a significant concern in various medical contexts due to their resilience to our immune system as well as antibiotic therapy. Biofilms often require surgical removal and frequently lead to recurrent or chronic infections. Therefore, there is an urgent need for improved strategies to treat biofilm infections. Ultrasound-mediated drug delivery is a technique that combines ultrasound application, often with the administration of acoustically-active agents, to enhance drug delivery to specific target tissues or cells within the body. This method involves using ultrasound waves to assist in the transportation or activation of medications, improving their penetration, distribution, and efficacy at the desired site. The advantages of ultrasound-mediated drug delivery include targeted and localized delivery, reduced systemic side effects, and improved efficacy of the drug at lower doses. This review scrutinizes recent advances in the application of ultrasound-mediated drug delivery for treating biofilm infections, focusing on in vivo studies. We examine the strengths and limitations of this technology in the context of wound infections, device-associated infections, lung infections and abscesses, and discuss current gaps in knowledge and clinical translation considerations.
Collapse
Affiliation(s)
- Jamie D. Liu
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kelly E. VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William A. Marston
- Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Pazhouhnia Z, Farzin A, Rastgar H, Dadgarnezhad M, Jannat B. Smart wireless flexible bandage containing drug loaded polycaprolactone microparticles for real-time monitoring and treatment of chronic wounds. J Biomed Mater Res B Appl Biomater 2024; 112:e35454. [PMID: 39073224 DOI: 10.1002/jbm.b.35454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased. On-demand drug release in a closed-loop system will aid us in reaching our goal. In this study, we have developed a platform capable of real-time diagnosis of bacterial infection by wirelessly reading wound pH, as well as slow and on-demand local administration of antibiotics. The drug carrier microparticles, an electrical patch, a thermoresponsive hydrogel with an integrated microheater, and a flexible pH sensor comprised the closed-loop patch. Here it is reported that slow and smart release of cefazolin can be addressed by incorporation of drug encapsulated hydrophobic microparticles embedded into a thermo-responsive hydrogel. The utilization of a programmable bandage to provide antibiotic medication highlights the need of not only choosing appropriate therapeutic substances but also the controlled release of the medicine and its rate of release within the wound area. The results of our study indicate that the use of cefazolin encapsulated polycaprolactone (PCL) microparticles can effectively regulate the application of antibiotic treatment for chronic skin wounds. The results also showed a substantial gradual release of cefazolin from the thermo-responsive Pnipam hydrogel when the wound dressing was subjected to a temperature of 37°C. We believe that the developed flexible smart bandage can have a significant impact on chronic wound healing.
Collapse
Affiliation(s)
- Zahra Pazhouhnia
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farzin
- Material Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Rastgar
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Manoochehr Dadgarnezhad
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
10
|
Iversen JN, Fröhlich J, Tai YK, Franco-Obregón A. Synergistic Cellular Responses Conferred by Concurrent Optical and Magnetic Stimulation Are Attenuated by Simultaneous Exposure to Streptomycin: An Antibiotic Dilemma. Bioengineering (Basel) 2024; 11:637. [PMID: 39061719 PMCID: PMC11274164 DOI: 10.3390/bioengineering11070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Concurrent optical and magnetic stimulation (COMS) combines extremely low-frequency electromagnetic and light exposure for enhanced wound healing. We investigated the potential mechanistic synergism between the magnetic and light components of COMS by comparing their individual and combined cellular responses. Lone magnetic field exposure produced greater enhancements in cell proliferation than light alone, yet the combined effects of magnetic fields and light were supra-additive of the individual responses. Reactive oxygen species were incrementally reduced by exposure to light, magnetics fields, and their combination, wherein statistical significance was only achieved by the combined COMS modality. By contrast, ATP production was most greatly enhanced by magnetic exposure in combination with light, indicating that mitochondrial respiratory efficiency was improved by the combination of magnetic fields plus light. Protein expression pertaining to cell proliferation was preferentially enhanced by the COMS modality, as were the protein levels of the TRPC1 cation channel that had been previously implicated as part of a calcium-mitochondrial signaling axis invoked by electromagnetic exposure and necessary for proliferation. These results indicate that light facilitates functional synergism with magnetic fields that ultimately impinge on mitochondria-dependent developmental responses. Aminoglycoside antibiotics (AGAs) have been previously shown to inhibit TRPC1-mediated magnetotransduction, whereas their influence over photomodulation has not been explored. Streptomycin applied during exposure to light, magnetic fields, or COMS reduced their respective proliferation enhancements, whereas streptomycin added after the exposure did not. Magnetic field exposure and the COMS modality were capable of partially overcoming the antagonism of proliferation produced by streptomycin treatment, whereas light alone was not. The antagonism of photon-electromagnetic effects by streptomycin implicates TRPC1-mediated calcium entry in both magnetotransduction and photomodulation. Avoiding the prophylactic use of AGAs during COMS therapy will be crucial for maintaining clinical efficacy and is a common concern in most other electromagnetic regenerative paradigms.
Collapse
Affiliation(s)
- Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
| | - Jürg Fröhlich
- Fields at Work GmbH, Hegibachstrasse 41, 8032 Zurich, Switzerland;
- Piomic Medical AG, Reitergasse 6, 8004 Zürich, Switzerland
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
11
|
Hassan MA, Abd El-Aziz S, Nabil-Adam A, Tamer TM. Formulation of novel bioactive gelatin inspired by cinnamaldehyde for combating multi-drug resistant bacteria: Characterization, molecular docking, pharmacokinetic analyses, and in vitro assessments. Int J Pharm 2024; 652:123827. [PMID: 38253268 DOI: 10.1016/j.ijpharm.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
This study set out to formulate antibacterial and antioxidant gelatin boosted by cinnamaldehyde for combating multi-drug resistant bacteria previously obtained from chronic wounds. Towards this end, gelatin amine groups were conjugated with carbonyl groups of cinnamaldehyde, producing cinnamyl-gelatin Schiff bases. The physicochemical attributes of cinnamyl-gelatin Schiff bases were probed concerning alterations in chemical structures and microstructures compared to native gelatin. Besides, cinnamyl-gelatin Schiff bases exhibited higher thermal stability than gelatin, with a diminishing in solubility due to increases in hydrophobicity features. Interestingly, cinnamyl-gelatin derivatives exerted antibacterial activities versus multi-drug resistant Gram-negative and Gram-positive bacteria, showing maximum growth inhibition at the highest concentration of cinnamaldehyde incorporated into gelatin. The scavenging activities of gelatin against DPPH and ABTS•+ were promoted in cinnamyl-gelatin derivatives from 11.93 ± 0.6 % to 49.9 ± 2.5 % and 12.54 ± 0.63 % to 49.9 ± 3.12 %, respectively. Remarkably, cinnamyl-gelatin derivatives induced the proliferation of fibroblast cells, implying their prospective applications in tissue engineering. Molecular docking and pharmacokinetic investigations disclosed the potential antibacterial mechanisms of cinnamyl-gelatin derivatives alongside their biopharmaceutical applications. Altogether, these findings suggest that cinnamyl-gelatin derivatives could be utilized to tailor antibacterial-free antibiotics and antioxidant wound dressings against virulent bacteria to promote chronic wound recovery.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Sarah Abd El-Aziz
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
12
|
Kang X, Yang X, He Y, Guo C, Li Y, Ji H, Qin Y, Wu L. Strategies and materials for the prevention and treatment of biofilms. Mater Today Bio 2023; 23:100827. [PMID: 37859998 PMCID: PMC10582481 DOI: 10.1016/j.mtbio.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Biofilms are aggregates of organized microbial growth that function as barriers and create a stable internal environment for cell survival. The bacteria in the biofilms exhibit characteristics that are quite different from the planktonic bacteria, such as strong resistance to antibiotics and other bactericides, getting out of host immunity, and developing in harsh environments, which all contribute to the persistent and intractable treatment. Hence, there is an urgent need to develop novel materials and strategies to combat biofilms. However, most of the reviews on anti-biofilms published in recent years are based on specific fields or materials. Microorganisms are ubiquitous, except in the context of medical and health issues; however, biofilms exert detrimental effects on the advancement and progress of various fields. Therefore, this review aims to provide a comprehensive summary of effective strategies and methodologies applicable across all industries. Firstly, the process of biofilms formation was introduced to enhance our comprehension of the "enemy". Secondly, strategies to intervene in the important links of biofilms formation were discussed, taking timely action during the early weak stages of the "enemy". Thirdly, treatment strategies for mature biofilms were summarized to deal with biofilms that break through the defense line. Finally, several substances with antibacterial properties were presented. The review concludes with the standpoint of the author about potential developments of anti-biofilms strategies. This review may help researchers quickly understand the research progress and challenges in the field of anti-biofilms to design more efficient methods and strategies to combat biofilms.
Collapse
Affiliation(s)
- Xiaoxia Kang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Xiaoxiao Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yue He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Conglin Guo
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuechen Li
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| |
Collapse
|