1
|
Cao S, Garcia SF, Shi H, James EI, Kito Y, Shi H, Mao H, Kaisari S, Rona G, Deng S, Goldberg HV, Ponce J, Ueberheide B, Lignitto L, Guttman M, Pagano M, Zheng N. Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress. Cell 2024; 187:7568-7584.e22. [PMID: 39504958 DOI: 10.1016/j.cell.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/25/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Ubiquitin-dependent proteolysis regulates diverse cellular functions with high substrate specificity, which hinges on the ability of ubiquitin E3 ligases to decode the targets' degradation signals, i.e., degrons. Here, we show that BACH1, a transcription repressor of antioxidant response genes, features two distinct unconventional degrons encrypted in the quaternary structure of its homodimeric BTB domain. These two degrons are both functionalized by oxidative stress and are deciphered by two complementary E3s. FBXO22 recognizes a degron constructed by the BACH1 BTB domain dimer interface, which is unmasked from transcriptional co-repressors after oxidative stress releases BACH1 from chromatin. When this degron is impaired by oxidation, a second BACH1 degron manifested by its destabilized BTB dimer is probed by a pair of FBXL17 proteins that remodels the substrate into E3-bound monomers for ubiquitination. Our findings highlight the multidimensionality of protein degradation signals and the functional complementarity of different ubiquitin ligases targeting the same substrate.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sheena Faye Garcia
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Huigang Shi
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA
| | - Yuki Kito
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Haibin Mao
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sophia Deng
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Bond AG, Muñoz i Ordoño M, Bisbach CM, Craigon C, Makukhin N, Caine EA, Nagala M, Urh M, Winter GE, Riching KM, Ciulli A. Leveraging Dual-Ligase Recruitment to Enhance Protein Degradation via a Heterotrivalent Proteolysis Targeting Chimera. J Am Chem Soc 2024; 146:33675-33711. [PMID: 39606859 PMCID: PMC11638965 DOI: 10.1021/jacs.4c11556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Proteolysis targeting chimera (PROTAC) degraders are typically bifunctional with one E3 ligase ligand connected to one target protein ligand via a linker. While augmented valency has been shown with trivalent PROTACs targeting two binding sites within a given target protein, or used to recruit two different targets, the possibility of recruiting two different E3 ligases within the same compound has not been demonstrated. Here we present dual-ligase recruitment as a strategy to enhance targeted protein degradation. We designed heterotrivalent PROTACs composed of CRBN, VHL and BET targeting ligands, separately tethered via a branched trifunctional linker. Structure-activity relationships of 12 analogues qualifies AB3067 as the most potent and fastest degrader of BET proteins, with minimal E3 ligase cross-degradation. Comparative kinetic analyses in wild-type and ligase single and double knockout cell lines revealed that protein ubiquitination and degradation induced by AB3067 was contributed to by both CRBN and VHL in an additive fashion. We further expand the scope of the dual-ligase approach by developing a heterotrivalent CRBN/VHL-based BromoTag degrader and a tetravalent PROTAC comprising of two BET ligand moieties. In summary, we provide proof-of-concept for dual-E3 ligase recruitment as a strategy to boost degradation fitness by recruiting two E3 ligases with a single degrader molecule. This approach could potentially delay the outset of resistance mechanisms involving loss of E3 ligase functionality.
Collapse
Affiliation(s)
- Adam G. Bond
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Miquel Muñoz i Ordoño
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences Vienna 1090, Austria
| | - Celia M. Bisbach
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Conner Craigon
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Nikolai Makukhin
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Elizabeth A. Caine
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Manjula Nagala
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Marjeta Urh
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences Vienna 1090, Austria
| | - Kristin M. Riching
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Alessio Ciulli
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| |
Collapse
|
3
|
Sakamoto KM. Can PROTACs cure Leukemia? Leukemia 2024; 38:2552-2553. [PMID: 39327464 PMCID: PMC11588658 DOI: 10.1038/s41375-024-02427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
|
4
|
Chen H, Gridnev A, Schlamowitz N, Hu W, Dey K, Zheng G, Misra JR. Targeted degradation of specific TEAD paralogs by small molecule degraders. Heliyon 2024; 10:e37829. [PMID: 39328531 PMCID: PMC11425103 DOI: 10.1016/j.heliyon.2024.e37829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The transcription factors, TEAD1-4 together with their co-activator YAP/TAZ function as key downstream effectors of the Hippo pathway. Hyperactivation of TEAD-YAP/TAZ activity is observed in many human cancers. TEAD1-4 possess distinct physiological and pathological functions, with conserved sequences and structures. Targeting specific isoforms within TEAD1-4 can serve as valuable chemical probes for investigating TEAD-related functions in both development and diseases. We report the TEAD-targeting proteolysis targeting chimera (PROTAC), HC278, which achieves effective and specific targeting of TEAD1 and TEAD3 at low nanomolar doses while weakly degrading TEAD2 and TEAD4 at higher doses. Proteomic analysis of >6000 proteins confirmed their highly selective TEAD1 and TEAD3 degradation. Consistently, HC278 can suppress the proliferation of YAP-dependent NCI-H226 mesothelioma cells. Mechanistic exploration revealed that both CRBN and proteasome systems are involved in the TEAD degradation induced by HC278. Moreover, RNA-seq and Gene Set Enrichment Analysis (GSEA) revealed that the YAP signature genes such as CTGF, CYR61, and ANKRD1 are significantly downregulated by HC278 treatment. Overall, HC278 serves as a valuable chemical tool for unraveling the intricate biological roles of TEAD1 and TEAD3 and holds the potential as a lead compound for developing targeted therapy for TEAD1/3-driven pathologies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Artem Gridnev
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, Oregon Health & Sciences University, Portland, OR, USA
| | - Netanya Schlamowitz
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Kuntala Dey
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti R. Misra
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
| |
Collapse
|
5
|
Tsai JM, Nowak RP, Ebert BL, Fischer ES. Targeted protein degradation: from mechanisms to clinic. Nat Rev Mol Cell Biol 2024; 25:740-757. [PMID: 38684868 DOI: 10.1038/s41580-024-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 PMCID: PMC11534152 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Haid RTU, Reichel A. Transforming the Discovery of Targeted Protein Degraders: The Translational Power of Predictive PK/PD Modeling. Clin Pharmacol Ther 2024; 116:770-781. [PMID: 38708948 DOI: 10.1002/cpt.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024]
Abstract
Targeted protein degraders (TPDs), an emerging therapeutic modality, are attracting considerable interest with the promise to address disease-related proteins that are not druggable with conventional small molecule inhibitors. Despite their novel mechanism of action, the PK/PD relationship of degraders is still approached with a mindset deeply rooted in inhibitor drugs. Here, we establish how predictive mechanistic modeling specifically tailored to TPDs can significantly enhance the value of the available information during lead generation and optimization. By integrating the results from in vitro assays with routinely collected PK data, modeling accurately predicts degradation in vivo. These predictions transform the prioritization of compounds for in vivo studies as well as the selection of optimal dose schedules and most informative measurement time points with the least number of animals. Moreover, the comprehensive modeling framework (1) identifies the PK/PD driver of targeted protein degradation and subsequent downstream pharmacodynamic effects, and (2) uncovers the fundamental difference between degrader and inhibitor PK/PD relationships. The practical utility of our predictive modeling is demonstrated with relevant use cases. This framework will allow researchers to transition from current, mostly serendipity-based approaches to more sound model-informed decision making. Going forward, the presented predictive PK/PD modeling framework lays out a rational path to incorporate inter-species differences in the pharmacology and thus promises to help with getting the dose right in clinical trials.
Collapse
Affiliation(s)
- Robin Thomas Ulrich Haid
- Preclinical Modeling & Simulation, Drug Metabolism & Pharmacokinetics, Preclinical Development, Bayer AG, Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Reichel
- Preclinical Modeling & Simulation, Drug Metabolism & Pharmacokinetics, Preclinical Development, Bayer AG, Berlin, Germany
| |
Collapse
|
8
|
Rynn C, Duevel HM. Meeting report: DMPK optimisation strategies and quantitative translational PKPD frameworks to predict human PK and efficacious dose of targeted protein degraders. Xenobiotica 2024; 54:776-780. [PMID: 38934475 DOI: 10.1080/00498254.2024.2369787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Caroline Rynn
- Department of Pharmaceutical Sciences, Roche Products Ltd, Welwyn, UK
| | | |
Collapse
|
9
|
Shishikura K, Matthews ML. Chemoproteomic Covalent Ligand Discovery as the PROTAC-gonist: The Future of Targeted Degradation Medicines. ACS CENTRAL SCIENCE 2024; 10:1314-1317. [PMID: 39071057 PMCID: PMC11273452 DOI: 10.1021/acscentsci.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Affiliation(s)
- Kyosuke Shishikura
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Megan L. Matthews
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
10
|
Verma SK, Witkin KL, Sharman A, Smith MA. Targeting fusion oncoproteins in childhood cancers: challenges and future opportunities for developing therapeutics. J Natl Cancer Inst 2024; 116:1012-1018. [PMID: 38574391 PMCID: PMC11223828 DOI: 10.1093/jnci/djae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Fusion oncoproteins are associated with childhood cancers and have proven challenging to target, aside from those that include kinases. As part of its efforts for targeting childhood cancers, the National Cancer Institute recently conducted a series on Novel Chemical Approaches for Targeting Fusion Oncoproteins. Key learnings on leading platforms and technologies that can be used to advance the development of molecular therapeutics that target fusion oncoproteins in childhood cancers are described. Recent breakthroughs in medicinal chemistry and chemical biology provide new ground and creative strategies to exploit for the development of targeted agents for improving outcomes against these recalcitrant cancers.
Collapse
Affiliation(s)
- Sharad K Verma
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keren L Witkin
- Division of Cancer Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anu Sharman
- Division of Cancer Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Smith
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Rej RK, Allu SR, Roy J, Acharyya RK, Kiran INC, Addepalli Y, Dhamodharan V. Orally Bioavailable Proteolysis-Targeting Chimeras: An Innovative Approach in the Golden Era of Discovering Small-Molecule Cancer Drugs. Pharmaceuticals (Basel) 2024; 17:494. [PMID: 38675453 PMCID: PMC11054475 DOI: 10.3390/ph17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging therapeutic modality that show promise to open a target space not accessible to conventional small molecules via a degradation-based mechanism. PROTAC degraders, due to their bifunctional nature, which is categorized as 'beyond the Rule of Five', have gained attention as a distinctive therapeutic approach for oral administration in clinical settings. However, the development of PROTACs with adequate oral bioavailability remains a significant hurdle, largely due to their large size and less than ideal physical and chemical properties. This review encapsulates the latest advancements in orally delivered PROTACs that have entered clinical evaluation as well as developments highlighted in recent scholarly articles. The insights and methodologies elaborated upon in this review could be instrumental in supporting the discovery and refinement of novel PROTAC degraders aimed at the treatment of various human cancers.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Srinivasa Rao Allu
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Joyeeta Roy
- Rogel Cancer Center, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - I. N. Chaithanya Kiran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA;
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - V. Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
12
|
Chen Z, Wang M, Wu D, Bai L, Xu T, Metwally H, Wang Y, McEachern D, Zhao L, Li R, Takyi-Williams J, Wang M, Wang L, Li Q, Wen B, Sun D, Wang S. Discovery of CBPD-268 as an Exceptionally Potent and Orally Efficacious CBP/p300 PROTAC Degrader Capable of Achieving Tumor Regression. J Med Chem 2024; 67:5275-5304. [PMID: 38477974 DOI: 10.1021/acs.jmedchem.3c02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
CBP/p300 proteins are key epigenetic regulators and promising targets for the treatment of castration-resistant prostate cancer and other types of human cancers. Herein, we report the discovery and characterization of CBPD-268 as an exceptionally potent, effective, and orally efficacious PROTAC degrader of CBP/p300 proteins. CBPD-268 induces CBP/p300 degradation in three androgen receptor-positive prostate cancer cell lines, with DC50 ≤ 0.03 nM and Dmax > 95%, leading to potent cell growth inhibition. It has an excellent oral bioavailability in mice and rats. Oral administration of CBPD-268 at 0.3-3 mg/kg resulted in profound and persistent CBP/p300 depletion in tumor tissues and achieved strong antitumor activity in the VCaP and 22Rv1 xenograft tumor models in mice, including tumor regression in the VCaP tumor model. CBPD-268 was well tolerated in mice and rats and displayed a therapeutic index of >10. Taking these results together, CBPD-268 is a highly promising CBP/p300 degrader as a potential new cancer therapy.
Collapse
Affiliation(s)
- Zhixiang Chen
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruiting Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John Takyi-Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Li J, Purser N, Liwocha J, Scott DC, Byers HA, Steigenberger B, Hill S, Tripathi-Giesgen I, Hinkle T, Hansen FM, Prabu JR, Radhakrishnan SK, Kirkpatrick DS, Reichermeier KM, Schulman BA, Kleiger G. Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Mol Cell 2024; 84:1304-1320.e16. [PMID: 38382526 PMCID: PMC10997478 DOI: 10.1016/j.molcel.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.
Collapse
Affiliation(s)
- Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Holly A Byers
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Trent Hinkle
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
14
|
Hernández-Morán BA, Taylor G, Lorente-Macías Á, Wood AJ. Degron tagging for rapid protein degradation in mice. Dis Model Mech 2024; 17:dmm050613. [PMID: 38666498 PMCID: PMC11073515 DOI: 10.1242/dmm.050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Degron tagging allows proteins of interest to be rapidly degraded, in a reversible and tuneable manner, in response to a chemical stimulus. This provides numerous opportunities for understanding disease mechanisms, modelling therapeutic interventions and constructing synthetic gene networks. In recent years, many laboratories have applied degron tagging successfully in cultured mammalian cells, spurred by rapid advances in the fields of genome editing and targeted protein degradation. In this At a Glance article, we focus on recent efforts to apply degron tagging in mouse models, discussing the distinct set of challenges and opportunities posed by the in vivo environment.
Collapse
Affiliation(s)
- Brianda A. Hernández-Morán
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4, 2XR, UK
| | - Gillian Taylor
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4, 2XR, UK
| | - Álvaro Lorente-Macías
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Andrew J. Wood
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4, 2XR, UK
| |
Collapse
|
15
|
Liwocha J, Li J, Purser N, Rattanasopa C, Maiwald S, Krist DT, Scott DC, Steigenberger B, Prabu JR, Schulman BA, Kleiger G. Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by cullin-RING ligases. Nat Struct Mol Biol 2024; 31:378-389. [PMID: 38326650 PMCID: PMC10873206 DOI: 10.1038/s41594-023-01206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
E3 ubiquitin ligases, in collaboration with E2 ubiquitin-conjugating enzymes, modify proteins with poly-ubiquitin chains. Cullin-RING ligase (CRL) E3s use Cdc34/UBE2R-family E2s to build Lys48-linked poly-ubiquitin chains to control an enormous swath of eukaryotic biology. Yet the molecular mechanisms underlying this exceptional linkage specificity and millisecond kinetics of poly-ubiquitylation remain unclear. Here we obtain cryogenic-electron microscopy (cryo-EM) structures that provide pertinent insight into how such poly-ubiquitin chains are forged. The CRL RING domain not only activates the E2-bound ubiquitin but also shapes the conformation of a distinctive UBE2R2 loop, positioning both the ubiquitin to be transferred and the substrate-linked acceptor ubiquitin within the active site. The structures also reveal how the ubiquitin-like protein NEDD8 uniquely activates CRLs during chain formation. NEDD8 releases the RING domain from the CRL, but unlike previous CRL-E2 structures, does not contact UBE2R2. These findings suggest how poly-ubiquitylation may be accomplished by many E2s and E3s.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Chutima Rattanasopa
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Samuel Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Gary Kleiger
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
16
|
Meyers M, Cismoski S, Panidapu A, Chie-Leon B, Nomura DK. Targeted Protein Degradation through Recruitment of the CUL4 Complex Adaptor Protein DDB1. ACS Chem Biol 2024; 19:58-68. [PMID: 38192078 PMCID: PMC11003717 DOI: 10.1021/acschembio.3c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional proteolysis targeting chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4 adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.
Collapse
Affiliation(s)
- Margot Meyers
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Sabine Cismoski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Anoohya Panidapu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Barbara Chie-Leon
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
17
|
Khurshid R, Schulz JM, Hu J, Snowden TS, Reynolds RC, Schürer SC. Targeted degrader technologies as prospective SARS-CoV-2 therapies. Drug Discov Today 2024; 29:103847. [PMID: 38029836 PMCID: PMC10836335 DOI: 10.1016/j.drudis.2023.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
COVID-19 remains a severe public health threat despite the WHO declaring an end to the public health emergency in May 2023. Continual development of SARS-CoV-2 variants with resistance to vaccine-induced or natural immunity necessitates constant vigilance as well as new vaccines and therapeutics. Targeted protein degradation (TPD) remains relatively untapped in antiviral drug discovery and holds the promise of attenuating viral resistance development. From a unique structural design perspective, this review covers antiviral degrader merits and challenges by highlighting key coronavirus protein targets and their co-crystal structures, specifically illustrating how TPD strategies can refine existing SARS-CoV-2 3CL protease inhibitors to potentially produce superior protease-degrading agents.
Collapse
Affiliation(s)
- Rabia Khurshid
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joseph M Schulz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jiaming Hu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Timothy S Snowden
- The University of Alabama, Department of Chemistry and Biochemistry and Center for Convergent Bioscience and Medicine, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA
| | - Robert C Reynolds
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
18
|
Bolding JE, Nielsen AL, Jensen I, Hansen TN, Ryberg LA, Jameson ST, Harris P, Peters GHJ, Denu JM, Rogers JM, Olsen CA. Substrates and Cyclic Peptide Inhibitors of the Oligonucleotide-Activated Sirtuin 7. Angew Chem Int Ed Engl 2023; 62:e202314597. [PMID: 37873919 DOI: 10.1002/anie.202314597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
The sirtuins are NAD+ -dependent lysine deacylases, comprising seven isoforms (SIRT1-7) in humans, which are involved in the regulation of a plethora of biological processes, including gene expression and metabolism. The sirtuins share a common hydrolytic mechanism but display preferences for different ϵ-N-acyllysine substrates. SIRT7 deacetylates targets in nuclei and nucleoli but remains one of the lesser studied of the seven isoforms, in part due to a lack of chemical tools to specifically probe SIRT7 activity. Here we expressed SIRT7 and, using small-angle X-ray scattering, reveal SIRT7 to be a monomeric enzyme with a low degree of globular flexibility in solution. We developed a fluorogenic assay for investigation of the substrate preferences of SIRT7 and to evaluate compounds that modulate its activity. We report several mechanism-based SIRT7 inhibitors as well as de novo cyclic peptide inhibitors selected from mRNA-display library screening that exhibit selectivity for SIRT7 over other sirtuin isoforms, stabilize SIRT7 in cells, and cause an increase in the acetylation of H3 K18.
Collapse
Affiliation(s)
- Julie E Bolding
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
- Current address: Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Iben Jensen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Tobias N Hansen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Line A Ryberg
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Current address: Department of Immunology and Microbiology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Samuel T Jameson
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Current address: Department of Chemistry, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joseph M Rogers
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| |
Collapse
|
19
|
Ciulli A, O'Connor S, Chung CW, Hartung IV, Testa A, Daniels DL, Heitman LH. The 17 th EFMC Short Course on Medicinal Chemistry on Small Molecule Protein Degraders. ChemMedChem 2023; 18:e202300464. [PMID: 37817354 DOI: 10.1002/cmdc.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/10/2023] [Indexed: 10/12/2023]
Abstract
The 17th EFMC Short Course on Medicinal Chemistry took place April 23-26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.
Collapse
Affiliation(s)
- Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ Scotland, UK
| | - Suzanne O'Connor
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ Scotland, UK
| | | | - Ingo V Hartung
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Andrea Testa
- Amphista Therapeutics Ltd., Cori Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, UK
| | - Danette L Daniels
- Foghorn Therapeutics, 500 Technology Square, Cambridge, MA 02139, USA
| | - Laura H Heitman
- Oncode Institute & Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), P. O. Box 9502, 2300RA, Leiden, The Netherlands
| |
Collapse
|
20
|
Pasieka A, Diamanti E, Uliassi E, Laura Bolognesi M. Click Chemistry and Targeted Degradation: A Winning Combination for Medicinal Chemists? ChemMedChem 2023; 18:e202300422. [PMID: 37706617 DOI: 10.1002/cmdc.202300422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Click chemistry is universally recognized as a powerful strategy for the fast and precise assembly of diverse building blocks. Targeted Protein Degradation (TPD) is a new therapeutic modality based on heterobifunctional small-molecule degraders that provides new opportunities to medicinal chemists dealing with undruggable targets and incurable diseases. Here, we highlight how very recently the TPD field and that of click chemistry have merged, opening up the possibility for fine-tuning the properties of a degrader, chemically assembled through a "click" synthesis. By reviewing concrete examples, we want to provide the reader with the insight that the application of click and bioorthogonal chemistry in the TDP field may be a winning combination.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
21
|
Miao Q, Kadam VD, Mukherjee A, Tan Z, Teng M. Unlocking DCAFs To Catalyze Degrader Development: An Arena for Innovative Approaches. J Med Chem 2023; 66:13369-13383. [PMID: 37738232 DOI: 10.1021/acs.jmedchem.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Chemically induced proximity-based targeted protein degradation (TPD) has become a prominent paradigm in drug discovery. With the clinical benefit demonstrated by certain small-molecule protein degraders that target the cullin-RING E3 ubiquitin ligases (CRLs), the field has proactively strategized to tackle anticipated drug resistance by harnessing additional E3 ubiquitin ligases to enrich the arsenal of this therapeutic approach. Here, we endeavor to explore the collaborative efforts involved in unlocking a broad range of CRL4DCAF for degrader drug development. Throughout the discussion, we also highlight how both conventional and innovative approaches in drug discovery can be taken to realize this objective. Moving ahead, we expect a greater allocation of resources in TPD to pursue these high-hanging fruits.
Collapse
Affiliation(s)
- Qi Miao
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Vilas D Kadam
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ayan Mukherjee
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
22
|
Meyers M, Cismoski S, Panidapu A, Chie-Leon B, Nomura DK. Targeted Protein Degradation through Recruitment of the CUL4A Complex Adaptor Protein DDB1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553046. [PMID: 37614621 PMCID: PMC10443223 DOI: 10.1101/2023.08.11.553046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional Proteolysis Targeting Chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4A adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.
Collapse
Affiliation(s)
- Margot Meyers
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Sabine Cismoski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Anoohya Panidapu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Barbara Chie-Leon
- Novartis-Berkeley Translational Chemical Biology Institute
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|