1
|
Gehrmann HJ, Taylor P, Aleksandrov K, Bergdolt P, Bologa A, Blye D, Dalal P, Gunasekar P, Herremanns S, Kapoor D, Michell M, Nuredin V, Schlipf M, Stapf D. Mineralization of fluoropolymers from combustion in a pilot plant under representative european municipal and hazardous waste combustor conditions. CHEMOSPHERE 2024; 365:143403. [PMID: 39321883 DOI: 10.1016/j.chemosphere.2024.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
The goal of this study was to provide data to support mineralization of fluoropolymer waste and insignificant generation of PFAS as products of incomplete combustion (PIC) during incineration of fluoropolymer applications at their end-of-life. Destruction efficiency is not an acceptable metric to indicate mineralization and therefore we need to look for and measure products of incomplete destruction. A mixed sample of fluoropolymers representing 80% of commercial fluoropolymers was combusted at conditions representative of municipal and industrial waste incinerators operating in EU. State-of-the-art emission sampling and analytical methods (UPLC-MS/MS, GC-MS) were used for identifying and quantifying those PFAS whose standards were available. Statistical analysis of the results confirmed non-detect to negligible levels of PFAS evidencing mineralization of fluoropolymers.
Collapse
Affiliation(s)
- Hans-Joachim Gehrmann
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | | | - Krasimir Aleksandrov
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Philipp Bergdolt
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Andrei Bologa
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - David Blye
- Environmental Standards, Inc., 1140 Valley Forge Road, Valley Forge, PA, 19482, USA.
| | - Priyank Dalal
- Gujarat Fluorochemicals GmbH, Esplanade 40, 9. Stock, 20354, Hamburg, Germany.
| | - Priyanga Gunasekar
- Gujarat Fluorochemicals GmbH, Esplanade 40, 9. Stock, 20354, Hamburg, Germany.
| | - Sven Herremanns
- SGS Belgium NV, Institute for Applied Chromatography, Polderdijkweg 16, B-20230, Antwerpen, Belgium.
| | - Deepak Kapoor
- Gujarat Fluorochemicals GmbH, Esplanade 40, 9. Stock, 20354, Hamburg, Germany.
| | - Meg Michell
- Environmental Standards, Inc., 1140 Valley Forge Road, Valley Forge, PA, 19482, USA.
| | - Vanessa Nuredin
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Michael Schlipf
- Fluorocarbon Polymer Solutions (FPS) GmbH, Burgkirchen, Germany.
| | - Dieter Stapf
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
2
|
Weitz K, Kantner D, Kessler A, Key H, Larson J, Bodnar W, Parvathikar S, Davis L, Robey N, Taylor P, De la Cruz F, Tolaymat T, Weber N, Linak W, Krug J, Phelps L. Review of per- and poly-fluoroalkyl treatment in combustion-based thermal waste systems in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172658. [PMID: 38657813 DOI: 10.1016/j.scitotenv.2024.172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread presence and environmental persistence. Carbon-fluorine (C-F) bonds are major components among PFAS and among the strongest organic bonds, thus destroying PFAS may present significant challenge. Thermal treatment such as incineration is an effective and approved method for destroying many halogenated organic chemicals. Here, we present the results of existing studies and testing at combustion-based thermal treatment facilities and summarize what is known regarding PFAS destruction and mineralization at such units. Available results suggest the temperature and residence times reached by some thermal treatment systems are generally favorable to the destruction of PFAS, but the possibility for PFAS or fluorinated organic byproducts to escape destruction and adequate mineralization and be released into the air cannot be ruled out. Few studies have been conducted at full-scale operating facilities, and none to date have attempted to characterize possible fluorinated organic products of incomplete combustion (PICs). Further, the ability of existing air pollution control (APC) systems, designed primarily for particulate and acid gas control, to reduce PFAS air emissions has not been determined. These data gaps remain primarily due to the previous lack of available methods to characterize PFAS destruction and PIC concentrations in facility air emissions. However, newly developed stack testing methods offer an improved understanding of the extent to which thermal waste treatment technologies successfully destroy and mineralize PFAS in these waste streams.
Collapse
Affiliation(s)
- Keith Weitz
- RTI International, Research Triangle Park, NC, USA
| | | | | | - Haley Key
- RTI International, Research Triangle Park, NC, USA
| | - Judd Larson
- RTI International, Research Triangle Park, NC, USA
| | - Wanda Bodnar
- RTI International, Research Triangle Park, NC, USA
| | | | - Lynn Davis
- RTI International, Research Triangle Park, NC, USA
| | - Nicole Robey
- Innovative Technical Solutions, Gainesville, FL, USA
| | | | - Florentino De la Cruz
- College of Computing, Engineering and Construction, University of North Florida, Jacksonville, FL, USA
| | - Thabet Tolaymat
- Center for Environmental Solutions and Emergency Management, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Nathan Weber
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William Linak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jonathan Krug
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lara Phelps
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Abou-Khalil C, Chernysheva L, Miller A, Abarca-Perez A, Peaslee G, Herckes P, Westerhoff P, Doudrick K. Enhancing the Thermal Mineralization of Perfluorooctanesulfonate on Granular Activated Carbon Using Alkali and Alkaline-Earth Metal Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11162-11174. [PMID: 38857410 DOI: 10.1021/acs.est.3c09795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Thermal treatment has emerged as a promising approach for either the end-of-life treatment or regeneration of granular activated carbon (GAC) contaminated with per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been limited by the requirement for high temperatures, the generation of products of incomplete destruction, and the necessity to scrub HF in the flue gas. This study investigates the use of common alkali and alkaline-earth metal additives to enhance the mineralization of perfluorooctanesulfonate (PFOS) adsorbed onto GAC. When treated at 800 °C without an additive, only 49% of PFOS was mineralized to HF. All additives tested demonstrated improved mineralization, and Ca(OH)2 had the best performance, achieving a mineralization efficiency of 98% in air or N2. Its ability to increase the reaction rate and shift the byproduct selectivity suggests that its role may be catalytic. Moreover, additives reduced HF in the flue gas by instead reacting with the additive to form inorganic fluorine (e.g., CaF2) in the starting waste material. A hypothesized reaction mechanism is proposed that involves the electron transfer from O2- defect sites of CaO to intermediates formed during the thermal decomposition of PFOS. These findings advocate for the use of additives in the thermal treatment of GAC for disposal or reuse, with the potential to reduce operating costs and mitigate the environmental impact associated with incinerating PFAS-laden wastes.
Collapse
Affiliation(s)
- Charbel Abou-Khalil
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Liliya Chernysheva
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anthony Miller
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Angela Abarca-Perez
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Graham Peaslee
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Marsh RW, Kewalramani JA, Bezerra de Souza B, Meegoda JN. The use of a fluorine mass balance to demonstrate the mineralization of PFAS by high frequency and high power ultrasound. CHEMOSPHERE 2024; 352:141270. [PMID: 38280651 DOI: 10.1016/j.chemosphere.2024.141270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
High-frequency ultrasound (sonolysis) has been shown as a practical approach for mineralizing PFAS in highly concentrated PFAS waste. However, a fluorine mass balance approach showing complete mineralization for ultrasound treatment has not been elucidated. The impact of ultrasonic power density (W/L) and the presence of co-occurring PFAS on the degradation of individual PFAS are not well understood. In this research, the performance of a 10L sonochemical reactor was assessed for treating synthetic high-concentration PFAS waste with carboxylic and sulfonic perfluoroalkyl surfactants ranging in chain length from four to eight carbons at three different initial concentrations: 6, 55, 183 μM. The mass balance for fluorine was performed using three analytical techniques: triple quadrupole liquid chromatography-mass spectrometry, a fluoride ion selective electrode, and 19F nuclear magnetic resonance. The test results showed near complete mineralization of PFAS in the waste without the formation of intermediate fluorinated by-products. The PFAS mineralization efficiency of the sonolysis treatment at two different power densities for similar initial concentrations were almost identical; the G value at 145 W/L was 9.7*10-3 g/kWh, whereas the G value at 90 W/L was 9.3*10-3 g/kWh. The results of this study highlight the implications for the scalability of the sonolytic process to treat high-concentration PFAS waste.
Collapse
Affiliation(s)
- Richard W Marsh
- Dept. of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA; Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jitendra A Kewalramani
- Tetra Tech Inc., King of Prussia, PA, USA; Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bruno Bezerra de Souza
- Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jay N Meegoda
- Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
5
|
Kumar R, Dada TK, Whelan A, Cannon P, Sheehan M, Reeves L, Antunes E. Microbial and thermal treatment techniques for degradation of PFAS in biosolids: A focus on degradation mechanisms and pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131212. [PMID: 36934630 DOI: 10.1016/j.jhazmat.2023.131212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic chemicals detected in biosolids worldwide, which have become a significant concern for biosolids applications due to their increasing environmental risks. Hence, it is pivotal to understand the magnitude of PFAS contamination in biosolids and implement effective technologies to reduce their contamination and prevent hazardous aftermaths. Thermal techniques such as pyrolysis, incineration and gasification, and biodegradation have been regarded as impactful solutions to degrade PFAS and transform biosolids into value-added products like biochar. These techniques can mineralize PFAS compounds under specific operating parameters, which can lead to unique degradation mechanisms and pathways. Understanding PFAS degradation mechanisms can pave the way to design the technology and to optimize the process conditions. Therefore, in this review, we aim to review and compare PFAS degradation mechanisms in thermal treatment like pyrolysis, incineration, gasification, smouldering combustion, hydrothermal liquefaction (HTL), and biodegradation. For instance, in biodegradation of perfluorooctane sulfonic acid (PFOS), firstly C-S bond cleavage occurs which is followed by hydroxylation, decarboxylation and defluorination reactions to form perfluoroheptanoic acid. In HTL, PFOS degradation is carried through OH-catalyzed series of nucleophilic substitution and decarboxylation reactions. In contrast, thermal PFOS degradation involves a three-step random-chain scission pathway. The first step includes C-S bond cleavage, followed by defluorination of perfluoroalkyl radical, and radical chain propagation reactions. Finally, the termination of chain propagation reactions produces very short-fluorinated units. We also highlighted important policies and strategies employed worldwide to curb PFAS contamination in biosolids.
Collapse
Affiliation(s)
- Ravinder Kumar
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Tewodros Kassa Dada
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Anna Whelan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Townsville City Council, Wastewater Operations, Townsville, QLD 4810, Australia
| | | | - Madoc Sheehan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Louise Reeves
- Queensland Water Directorate, Brisbane, QLD 4009, Australia
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
6
|
Seay BA, Dasu K, MacGregor IC, Austin MP, Krile RT, Frank AJ, Fenton GA, Heiss DR, Williamson RJ, Buehler S. Per- and polyfluoroalkyl substances fate and transport at a wastewater treatment plant with a collocated sewage sludge incinerator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162357. [PMID: 36858229 DOI: 10.1016/j.scitotenv.2023.162357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This study aims to understand the fate and transport of per- and polyfluoroalkyl substances (PFAS) and inorganic fluoride (IF) at an undisclosed municipal wastewater treatment plant (WWTP) operating a sewage sludge incinerator (SSI). A robust statistical analysis characterized concentrations and mass flows at all WWTP and SSI primary influents/effluents, including thermal-treatment derived airborne emissions. WWTP-level net mass flows (NMFs) of total PFAS were not statistically different from zero. SSI-level NMFs indicate that PFAS, and specifically perfluoroalkyl acids (PFAAs), are being broken down. The NMF of perfluoroalkyl sulfonic acids (PFSAs; -274 ± 34 mg/day) was statistically significant. The observed breakdown primarily occurred in the sewage sludge. However, the total PFAS destruction and removal efficiency of 51 % indicates the SSI may inadequately remove PFAS. The statistically significant IF source (NMF = 16 ± 4.2 kg/day) compared to the sink of PFAS as fluoride (NMF = -0.00036 kg/day) suggests that other fluorine-containing substances are breaking down in the SSI. WWTP PFAS mass discharges were primarily to the aquatic environment (>99 %), with <0.5 % emitted to the atmosphere/landfill. Emission rates for formerly phased-out PFOS and PFOA were compared to previously reported levels. Given the environmental persistence of these compounds, the observed decreases in PFOS and PFOA discharge rates from prior reports implies regional/local differences in emissions or possibly their accumulation elsewhere. PFAS were observed in stack gas emissions, but modestly contributed to NMFs and showed negligible contribution to ambient air concentrations observed downwind.
Collapse
Affiliation(s)
- Brannon A Seay
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States.
| | - Kavitha Dasu
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Ian C MacGregor
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Matthew P Austin
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Robert T Krile
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Aaron J Frank
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - George A Fenton
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Derik R Heiss
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Rhett J Williamson
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Stephanie Buehler
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| |
Collapse
|
7
|
Weber NH, Delva CS, Stockenhuber SP, Grimison CC, Lucas JA, Mackie JC, Stockenhuber M, Kennedy EM. Thermal Mineralization of Perfluorooctanesulfonic Acid (PFOS) to HF, CO 2, and SO 2. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan H. Weber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales2308, Australia
| | - Cameron S. Delva
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales2308, Australia
| | | | | | - John A. Lucas
- Ventia Services Pty Ltd, North SydneyNew South Wales2060, Australia
| | - John C. Mackie
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales2308, Australia
| | - Michael Stockenhuber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales2308, Australia
| | - Eric M. Kennedy
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales2308, Australia
| |
Collapse
|
8
|
Zhang J, Gao L, Bergmann D, Bulatovic T, Surapaneni A, Gray S. Review of influence of critical operation conditions on by-product/intermediate formation during thermal destruction of PFAS in solid/biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158796. [PMID: 36115408 DOI: 10.1016/j.scitotenv.2022.158796] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a large group of synthetic organofluorine compounds. Over 4700 PFAS compounds have been produced and used in our daily life since the 1940s. PFAS have received considerable interest because of their toxicity, environmental persistence, bioaccumulation and wide existence in the environment. Various treatment methods have been developed to overcome these issues. Thermal treatment such as combustion and pyrolysis/gasification have been employed to treat PFAS contaminated solids and soils. However, short-chain PFAS and/or volatile organic fluorine is produced and emitted via exhaust gas during the thermal treatment. Combustion can achieve complete mineralisation of PFAS at large scale operation using temperatures >1000 °C. Pyrolysis has been used in treatment of biosolids and has demonstrated that it could remove PFAS completely from the generated biochar by evaporation and degradation. Although pyrolysis partially degrades PFAS to short-chain fluorine containing organics in the syngas, it could not efficiently mineralise PFAS. Combustion of PFAS containing syngas at 1000 °C can achieve complete mineralisation of PFAS. Furthermore, the by-product of mineralisation, HF, should also be monitored due to its low regulated atmospheric discharge values. Alkali scrubbing is normally required to lower the HF concentration in the exhaust gas to acceptable discharge concentrations.
Collapse
Affiliation(s)
- Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia.
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia; South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - David Bergmann
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Tamara Bulatovic
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Aravind Surapaneni
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
| |
Collapse
|
9
|
Meegoda JN, Bezerra de Souza B, Casarini MM, Kewalramani JA. A Review of PFAS Destruction Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16397. [PMID: 36554276 PMCID: PMC9778349 DOI: 10.3390/ijerph192416397] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 05/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of highly toxic emerging contaminants that have caught the attention of both the public and private sectors due to their adverse health impacts on society. The scientific community has been laboriously working on two fronts: (1) adapting already existing and effective technologies in destroying organic contaminants for PFAS remediation and (2) developing new technologies to remediate PFAS. A common characteristic in both areas is the separation/removal of PFASs from other contaminants or media, followed by destruction. The widely adopted separation technologies can remove PFASs from being in contact with humans; however, they remain in the environment and continue to pose health risks. On the other hand, the destructive technologies discussed here can effectively destroy PFAS compounds and fully address society's urgent need to remediate this harmful family of chemical compounds. This review reports and compare widely accepted as well as emerging PFAS destruction technologies. Some of the technologies presented in this review are still under development at the lab scale, while others have already been tested in the field.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
10
|
Verma S, Lee T, Sahle-Demessie E, Ateia M, Nadagouda MN. Recent advances on PFAS degradation via thermal and nonthermal methods. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022; 13:1-11. [PMID: 36923300 PMCID: PMC10013708 DOI: 10.1016/j.ceja.2022.100421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a set of synthetic chemicals which contain several carbon-fluorine (C-F) bonds and have been in production for the past eight decades. PFAS have been used in several industrial and consumer products including nonstick pans, food packaging, firefighting foams, and carpeting. PFAS require proper investigations worldwide due to their omnipresence in the biotic environment and the resulting pollution to drinking water sources. These harmful chemicals have been associated with adverse health effects such as liver damage, cancer, low fertility, hormone subjugation, and thyroid illness. In addition, these fluorinated compounds show high chemical, thermal, biological, hydrolytic, photochemical, and oxidative stability. Therefore, effective treatment processes are required for the removal and degradation of PFAS from wastewater, drinking water, and groundwater. Previous review papers have provided excellent summaries on PFAS treatment technologies, but the focus has been on the elimination efficiency without providing mechanistic understanding of removal/degradation pathways. The present review summarizes a comprehensive examination of various thermal and non-thermal PFAS destruction technologies. It includes sonochemical/ultrasound degradation, microwave hydrothermal treatment, subcritical or supercritical treatment, electrical discharge plasma technology, thermal destruction methods/incinerations, low/high-temperature thermal desorption process, vapor energy generator (VEG) technology and mechanochemical destruction. The background, degradation mechanisms/pathways, and advances of each remediation process are discussed in detail in this review.
Collapse
Affiliation(s)
- Sanny Verma
- Pegasus Technical Services, Inc., Cincinnati, Ohio 4219, USA
| | - Tae Lee
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, USA
| | - Endalkachew Sahle-Demessie
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, USA
| | - Mohamed Ateia
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, USA
| | - Mallikarjuna N. Nadagouda
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, USA
- Corresponding author. (M.N. Nadagouda)
| |
Collapse
|
11
|
Giraud RJ, Taylor PH, Diemer RB, Huang CP. Design and qualification of a bench-scale model for municipal waste-to-energy combustion. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:849-875. [PMID: 35363604 DOI: 10.1080/10962247.2022.2054879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This paper reports the design and qualification of the first purpose-built, bench-scale reactor system to model the municipal waste-to-energy combustion of fluorinated polymers. Using the principle of similarity, the gas-phase combustion zone of a typical municipal waste-to-energy plant has been scaled down to the bench with a focus on chemical similarity. Chemical similarity is achieved in large part through the use of methanol as a surrogate for municipal solid waste (MSW). Review of prior research shows that methanol is one of the major volatile products expected during MSW thermal conversion in the fuel bed of waste-to-energy plants. Like full-scale waste-energy plants, the design of the bench-scale model includes a flame zone and a post-flame zone. Maintaining steady methanol vapor flow premixed with air to the model reactor system ensures stable combustion resulting in bench-scale CO emission levels comparable to those of full-scale waste-to-energy plants. Since investigation of fluorinated polymer combustion includes trace analysis of exhaust gas for perfluorooctanoic acid (PFOA), qualification testing focused on PFOA collection efficiency. High PFOA collection efficiency (>90%) demonstrated the capability of the reactor system in transporting and absorbing PFOA that may be generated during high-temperature combustion testing of fluorinated polymers. Overall, the bench-scale system is qualified for its intended use to investigate potential generation of PFOA from combustion of fluorinated polymers under conditions representative of waste-to-energy combustion.Implications: Decision-makers depend on environmental researchers to provide reliable predictions of pollutant emissions from waste combustion of polymers at end of product life. Reliable predictions are especially important with regard to questions about potential PFOA emissions from municipal waste combustion of fluorinated polymers. Results from qualification testing confirm that the novel bench-scale model reactor system is capable of representing gas-phase municipal waste combustion behavior upstream of air pollution control and generating representative exhaust gas samples for off-line trace-level analysis of PFOA.
Collapse
Affiliation(s)
- Robert J Giraud
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware, USA
- The Chemours Company, Wilmington, Delaware, USA
| | | | - R Bertrum Diemer
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Chin-Pao Huang
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
12
|
Wang J, Lin Z, He X, Song M, Westerhoff P, Doudrick K, Hanigan D. Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5355-5370. [PMID: 35446563 DOI: 10.1021/acs.est.2c02251] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.
Collapse
Affiliation(s)
- Junli Wang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Zunhui Lin
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Xuexiang He
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Mingrui Song
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| |
Collapse
|
13
|
Mattias S, Kikuchi J, Wiberg K, Lutz A. Spatial distribution and load of per- and polyfluoroalkyl substances (PFAS) in background soils in Sweden. CHEMOSPHERE 2022; 295:133944. [PMID: 35150699 DOI: 10.1016/j.chemosphere.2022.133944] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are known to be persistent, bioaccumulative, and have adverse health effects, but very little is known about PFAS in the terrestrial environment and factors influencing their distribution. This paper presents one of the first comprehensive studies investigating PFAS (n = 28) in background forest soils (n = 27) on national scale across Sweden. The results showed that 16 of 28 target PFAS were present and all sites contained at least three PFAS compounds, with total concentrations ranging between 0.40 ng/g dry weight (dw) and 6.6 ng/g dw. Perfluorooctanesulfonic acid (PFOS) showed the highest detection frequency of 89% and a median concentration of 0.39 ng/g dw. The PFOS loads (ng/m3) showed a distinct spatial distribution, with a significant exponential increase from north to south (R2 = 0.55; p < 0.001) and west to east (R2 = 0.35; p < 0.01). In some parts of Sweden, the compound 6:2 fluorotelomer sulfonate (6:2 FTSA) had a higher median concentration (1.4 ng/g dw), but was in comparison to PFOS more impacted by local sources. Partial least squares discriminant analysis (PLS-DA) showed regional clustering of PFAS compositional profiles, indicating that PFAS soil background concentrations are functions of spatial variations at local, regional, and countrywide scale. Such spatial trends have not been observed previously and it could not be deduced whether they are indicative of trends on a global scale, or country-specific and better explained by proximity to densely populated urban areas. An interpolation and extrapolation raster map created from the results was used to calculate the average total PFAS load on Swedish soils. Estimated total load in the top 10-cm soil layer was 2.7 ± 2.4 tons for PFOS and 16 ± 14 tons for ∑PFAS, indicating that soil carries a considerable legacy of past PFAS release.
Collapse
Affiliation(s)
- Sörengård Mattias
- Department of Aquatic Science and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-75007, Sweden.
| | - Johannes Kikuchi
- Department of Aquatic Science and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-75007, Sweden; Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden
| | - Karin Wiberg
- Department of Aquatic Science and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-75007, Sweden
| | - Ahrens Lutz
- Department of Aquatic Science and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-75007, Sweden.
| |
Collapse
|
14
|
Assessment of Reed Grasses (Phragmites australis) Performance in PFAS Removal from Water: A Phytoremediation Pilot Plant Study. WATER 2022. [DOI: 10.3390/w14060946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have multiple emission sources, from industrial to domestic, and their high persistence and mobility help them to spread in all the networks of watercourses. Diffuse pollution of these compounds can be potentially mitigated by the application of green infrastructures, which are a pillar of the EU Green Deal. In this context, a phytoremediation pilot plant was realised and supplied by a contaminated well-located in Lonigo (Veneto Region, Italy) where surface and groundwaters were significantly impacted by perfluoroalkyl acids (PFAAs) discharges from a fluorochemical factory. The investigation involved the detection of perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS) and perfluorooctanesulfonic acid (PFOS) inside the inlet and outlet waters of the phytoremediation pilot plant as well as in reed grasses grown into its main tank. The obtained results demonstrate that the pilot plant is able to reduce up to 50% of considered PFAAs in terms of mass flow without an evident dependence on physico-chemical characteristics of these contaminants. Moreover, PFAAs were found in the exposed reed grasses at concentrations up to 13 ng g−1 ww. A positive correlation between PFAA concentration in plants and exposure time was also observed. In conclusion, this paper highlights the potential efficiency of phytodepuration in PFAS removal and recommends improving the knowledge about its application in constructed wetlands as a highly sustainable choice in wastewater remediation.
Collapse
|
15
|
Winchell LJ, Ross JJ, Brose DA, Pluth TB, Fonoll X, Norton JW, Bell KY. Pyrolysis and gasification at water resource recovery facilities: Status of the industry. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10701. [PMID: 35298843 PMCID: PMC9310861 DOI: 10.1002/wer.10701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 05/13/2023]
Abstract
Wastewater treatment generates solids requiring subsequent processing. Costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) are challenging widely used landfilling and land application practices. These circumstances are partly driving the re-emergence of pyrolysis and gasification technologies along with beneficial reuse prospects of the char solid residual. Previously, technologies experienced operational challenges leading to revised configurations, such as directly coupling a thermal oxidizer to the reactor to destroy tar forming compounds. This paper provides an overview of pyrolysis and gasification technologies, characteristics of the char product, air emission considerations, and potential fate of PFAS and other pollutants through the systems. Results from a survey of viable suppliers illustrate differences in commercially available options. Additional research is required to validate performance over the long-term operation and confirm contaminant fate, which will help determine whether resurging interest in pyrolysis and gasification warrants widespread adoption. PRACTITIONER POINTS: Pyrolysis and gasification systems are re-emerging in the wastewater industry. Direct coupling of thermal oxidizers and other modifications offered by contemporary systems aim to overcome past failures. Process conditions when coupled with a thermal oxidizer will likely destroy most organic contaminants, including PFAS, but requires additional research. Three full-scale facilities recently operated, several in construction or design that will provide operating experience for widespread technology adoption consideration.
Collapse
Affiliation(s)
| | | | - Dominic A. Brose
- Metropolitan Water Reclamation District of Greater ChicagoCiceroIllinoisUSA
| | - Thaís B. Pluth
- Metropolitan Water Reclamation District of Greater ChicagoCiceroIllinoisUSA
| | | | | | | |
Collapse
|
16
|
Birch QT, Birch ME, Nadagouda MN, Dionysiou DD. Nano-enhanced treatment of per-fluorinated and poly-fluorinated alkyl substances (PFAS). Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Krug JD, Lemieux PM, Lee CW, Ryan JV, Kariher PH, Shields EP, Wickersham LC, Denison MK, Davis KA, Swensen DA, Burnette RP, Wendt JOL, Linak WP. Combustion of C 1 and C 2 PFAS: Kinetic modeling and experiments. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:256-270. [PMID: 34994684 DOI: 10.1080/10962247.2021.2021317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A combustion model, originally developed to simulate the destruction of chemical warfare agents, was modified to include C1-C3 fluorinated organic reactions and kinetics compiled by the National Institute of Standards and Technology (NIST). A simplified plug flow reactor version of this model was used to predict the destruction efficiency (DE) and formation of products of incomplete combustion (PICs) for three C1 and C2 per- and poly-fluorinated alkyl substances (PFAS) (CF4, CHF3, and C2F6) and compare predicted values to Fourier Transform Infrared spectroscopy (FTIR)-based measurements made from a pilot-scale EPA research combustor (40-64 kW, natural gas-fired, 20% excess air). PFAS were introduced through the flame, and at post-flame locations along a time-temperature profile allowing for simulation of direct flame and non-flame injection, and examination of the sensitivity of PFAS destruction on temperature and free radical flame chemistry. Results indicate that CF4 is particularly difficult to destroy with DEs ranging from ~60 to 95% when introduced through the flame at increasing furnace loads. Due to the presence of lower energy C-H and C-C bonds to initiate molecular dissociation reactions, CHF3 and C2F6 were easier to destroy, exhibiting DEs >99% even when introduced post-flame. However, these lower bond energies may also lead to the formation of CF2 and CF3 radicals at thermal conditions unable to fully de-fluorinate these species and formation of fluorinated PICs. DEs determined by the model agreed well with the measurements for CHF3 and C2F6 but overpredicted DEs at high temperatures and underpredicted DEs at low temperatures for CF4. However, high DEs do not necessarily mean absence of PICs, with both model predictions and limited FTIR measurements indicating the presence of similar fluorinated PICs in the combustion emissions. The FTIR was able to provide real-time emission measurements and additional model development may improve prediction of PFAS destruction and PIC formation.Implications: The widespread use of PFAS for over 70 years has led to their presence in multiple environmental matrixes including human tissues. While the chemical and thermal stability of PFAS are related to their desirable properties, this stability means that PFAS are very slow to degrade naturally and potentially difficult to destroy completely through thermal treatment processes often used for organic waste destruction. In this applied combustion study, model PFAS compounds were introduced to a pilot-scale EPA research furnace. Real-time FTIR measurements were performed of the injected compound and trace products of incomplete combustion (PICs) at operationally relevant conditions, and the results were successfully compared to kinetic model predictions of those same PFAS destruction efficiencies and trace gas-phase PIC constituents. This study represents a significant potential enhancement in available tools to support effective management of PFAS-containing wastes.
Collapse
Affiliation(s)
- Jonathan D Krug
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, RTP, North Carolina, USA
| | - Paul M Lemieux
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Homeland Security and Materials Management Division, RTP, North Carolina, USA
| | - Chun-Wai Lee
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, RTP, North Carolina, USA
| | - Jeffrey V Ryan
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, RTP, North Carolina, USA
| | - Peter H Kariher
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, RTP, North Carolina, USA
| | - Erin P Shields
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, RTP, North Carolina, USA
| | - Lindsay C Wickersham
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, RTP, North Carolina, USA
| | | | - Kevin A Davis
- Reaction Engineering International, Salt Lake City, Utah, USA
| | - David A Swensen
- Reaction Engineering International, Salt Lake City, Utah, USA
| | - R Preston Burnette
- Jacobs Technology Inc., Research Laboratory Support Team, Cary, North Carolina, USA
| | - Jost O L Wendt
- Reaction Engineering International, Salt Lake City, Utah, USA
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - William P Linak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, RTP, North Carolina, USA
| |
Collapse
|
18
|
Longendyke GK, Katel S, Wang Y. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:196-208. [PMID: 34985474 DOI: 10.1039/d1em00465d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals and have been detected throughout the environment. Thermal treatment is the most common remediation approach for PFAS-contaminated solid wastes. Although various thermal treatment techniques have demonstrated the potential to destruct PFAS, the fate of PFAS, removal efficacy, potential emissions, and the formation of incomplete combustion products during thermal treatment are little known. This study provides a critical review on the behavior of PFAS based on different types of thermal treatment technologies with various PFAS-impacted environmental medias that include water, soil, sewage sludge, pure PFAS materials, and other PFAS-containing wastes. Different extents of PFAS thermal destruction are observed across various thermal treatment techniques and operating conditions. PFAS removal and destruction efficiencies rely heavily on PFAS structures, the complex combustion chemistry, the presence or absence of oxygen, temperature, and other operational conditions. This review also covers proposed PFAS thermal destruction mechanisms. Different thermal destruction mechanisms for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), and other PFAS are reviewed and compared. The majority of studies about PFAS thermal destruction mechanisms were focused on a specific list of PFAS and based mostly on the pyrolysis treatment. The basic pathway for PFAS destruction during pyrolysis is hydrodefluorination, which could be largely influenced by the alkaline condition. Future field-scale research that involves the characterization of PFAS destruction products and incomplete combustion products is needed to address public concerns and better emission control.
Collapse
Affiliation(s)
- Grace K Longendyke
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| | - Sebica Katel
- Biochemistry, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA
| | - Yuxin Wang
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| |
Collapse
|
19
|
Zhu J, Chen Y, Gu Y, Ma H, Hu M, Gao X, Liu T. Feasibility study on the electrochemical reductive decomposition of PFOA by a Rh/Ni cathode. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126953. [PMID: 34449337 DOI: 10.1016/j.jhazmat.2021.126953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The discharge of widely used per- and poly-fluorinated compounds (PFCs) leads to their environmental prevalence, bioaccumulation and biotoxicity; and attracts researches focusing on their treatment in wastewater. Electrochemical reductive treatment is a promising alternative due to its milder reaction conditions and easy operation. The feasibility of electrochemical reductive decomposition of PFOA using a Rh/Ni cathode was explored. The Rh/Ni cathode was fabricated by coating Rh3+ on Ni foil through electrodeposition. The Rh coating was primarily elemental and in a Rh(111) crystalline form. PFOA decomposition and defluorination were observed when using the Rh/Ni cathode where DMF was the solvent and the cathode potential was -1.25 V. A hydrodefluorination reaction was considered having occurred. Because possessing d electrons and empty d orbitals, the Rh coating enhanced PFOA adsorption onto the cathode surface and facilitated CF bond activation through Rh···F interactions. Moreover, the Rh(111) crystal helped chemisorb the generated H* and supply it participating in PFOA decomposition. With the continuous interaction of cathode-supplied electrons, CF bond would ultimately dissociate and transform to CH bond by H* substitution. Adding FeCp2* as a supporting electrolyte enhanced PFOA decomposition by working as the shuttle facilitating PFOA migration to the cathode surface.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yurong Gu
- Shenzhen Polytechnic, Shenzhen 518055, PR China.
| | - Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Mingyue Hu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xinlei Gao
- Guangdong Water Co., Ltd, Shenzhen 518021, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
20
|
Verma S, Varma RS, Nadagouda MN. Remediation and mineralization processes for per- and polyfluoroalkyl substances (PFAS) in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148987. [PMID: 34426018 DOI: 10.1016/j.scitotenv.2021.148987] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organic molecules used to manufacture various consumer and industrials products. In PFAS, the CF bond is stable, which renders these compounds chemically stable and prevents their breakdown. Several PFAS treatment processes such as adsorption, photolysis and photocatalysis, bioremediation, sonolysis, electrochemical oxidation, etc., have been explored and are being developed. The present review article has critically summarized degradative technologies and provides in-depth knowledge of photodegradation, electrochemical degradation, chemical oxidation, and reduction mineralization mechanism. Also, novel non-degradative technologies, including nano-adsorbents, natural and surface-modified clay minerals/zeolites, calixarene-based polymers, and molecularly imprinted polymers and adsorbents derived from biomaterials are discussed in detail. Of these novel approaches photocatalysis combined with membrane filtration or electrochemical oxidation via a treatment train approach shows promising results in removing PFAS in natural waters. The photocatalytic mineralization mechanism of PFOA is discussed, leading to recommendations for future research on novel remediation strategies for removing PFAS from water.
Collapse
Affiliation(s)
- Sanny Verma
- Pegasus Technical Services, Inc., 46 E. Hollister Street, Cincinnati, OH 45219, USA
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
21
|
Deng Y, Liang Z, Lu X, Chen D, Li Z, Wang F. The degradation mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) by different chemical methods: A critical review. CHEMOSPHERE 2021; 283:131168. [PMID: 34182635 DOI: 10.1016/j.chemosphere.2021.131168] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of artificial compounds comprised of a perfluoroalkyl main chain and a terminal functional group. With them being applied in a wide range of applications, PFASs have drawn increasing regulatory attention and research interests on their reductions and treatments due to their harmful effects on environment and human beings. Among numerous studies, chemical treatments (e.g., photochemical, electrochemical, and thermal technologies) have been proved to be important methods to degradation PFASs. However, the pathways and mechanisms for the degradation of PFASs through these chemical methods still have not been well documented. This article therefore provides a comprehensive review on the degradation mechanisms of two important PFASs (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) with photochemical, electrochemical and thermal methods. Different decomposition mechanisms of PFOA and PFOS are reviewed and discussed. Overall, the degradation pathways of PFASs are associated closely with their head groups and chain lengths, and H/F exchange and chain shortening were found to be predominant degradation mechanisms. The clear study on the degradation mechanisms of PFOA and PFOS should be very useful for the complete degradation or mineralization of PFASs in the future.
Collapse
Affiliation(s)
- Yun Deng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhihong Liang
- The Pearl River Water Resources Research Institute, Guangzhou, Guangdong, 510611, China
| | - Xingwen Lu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhe Li
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Aro R, Eriksson U, Kärrman A, Reber I, Yeung LWY. Combustion ion chromatography for extractable organofluorine analysis. iScience 2021; 24:102968. [PMID: 34466791 PMCID: PMC8383001 DOI: 10.1016/j.isci.2021.102968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 11/15/2022] Open
Abstract
Combustion ion chromatography (CIC) has found a role in environmental analytical chemistry for fluorine content analysis. It is used for extractable organofluorine (EOF) analysis to evaluate perfluoroalkyl and polyfluoroalkyl substances (PFASs) and other organofluorine burden. The prevailing assumption has been that all PFASs are incinerated in CIC and matrix components have no impact on this process, but this has not been experimentally evaluated. In this work, the combustion efficiencies of 13 different PFASs were determined (66–110%). A notable difference was observed between calibrating the CIC with inorganic fluorine or organofluorine. Potential interferences from cations and coextracted matrix components from whole blood and surface water samples were evaluated. These observations should be acknowledged when performing EOF analysis using CIC, overlooking either non-100% combustion efficiencies or the differences in calibrating the CIC with inorganic fluorine or organofluorine could lead to underestimating EOF content and through that to misguide policy decisions. Combustion efficiencies of PFASs were in the range of 66–110% There was difference between calibration with inorganic fluorine and organofluorine Matrix had no discernable effect on combustion efficiency
Collapse
Affiliation(s)
- Rudolf Aro
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Ulrika Eriksson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Anna Kärrman
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Iris Reber
- Metrohm AG, Ionenstrasse, 9100 Herisau, Switzerland
| | - Leo W Y Yeung
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
23
|
Boyer TH, Fang Y, Ellis A, Dietz R, Choi YJ, Schaefer CE, Higgins CP, Strathmann TJ. Anion exchange resin removal of per- and polyfluoroalkyl substances (PFAS) from impacted water: A critical review. WATER RESEARCH 2021; 200:117244. [PMID: 34089925 DOI: 10.1016/j.watres.2021.117244] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 05/27/2023]
Abstract
A key gap in the literature on the treatment of per- and polyfluoroalkyl substances (PFAS) in impacted water is the absence of a review article dedicated to anion exchange resin (AER) treatment. This gap is important because previous research has consistently shown adsorption by AER to be one of the most effective treatment processes for PFAS removal from impacted water, and AER is one of the most commonly deployed technologies in the field. Given the scope of the previous review articles on PFAS removal by various adsorbent types, the sections on AER do not explore the full depth of PFAS and AER interactions nor cover the breadth of AER testing conditions. Accordingly, the goal of this paper was to critically review the available peer-reviewed literature on PFAS removal from water by AER. The specific objectives of the review were to synthesize the previous literature results on (1) batch adsorption behavior, (2) impact of water chemistry conditions, (3) continuous-flow adsorption, (4) adsorption modeling, (5) regeneration, and (6) weak-base AER. Following from critical review of the literature, the future research priorities discussed include: (i) improving the underlying science that governs PFAS-resin interactions, (ii) improving methods for resin regeneration and management of PFAS-contaminated concentrate streams, and (iii) comparative life cycle environmental and economic analyses for ion exchange treatment systems relative to competing technologies.
Collapse
Affiliation(s)
- Treavor H Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University (ASU), Tempe, Arizona, 85287, United States
| | - Yida Fang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Anderson Ellis
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Rebecca Dietz
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University (ASU), Tempe, Arizona, 85287, United States
| | - Youn Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| |
Collapse
|
24
|
Winchell LJ, Ross JJ, Wells MJM, Fonoll X, Norton JW, Bell KY. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:826-843. [PMID: 33190313 PMCID: PMC8375574 DOI: 10.1002/wer.1483] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a recalcitrant group of chemicals and can be found throughout the environment. They often collect in wastewater systems with virtually no degradation prior to environmental discharge. Some PFAS partitions to solids captured in wastewater treatment which require further processing. Of all the commonly applied solids treatment technologies, incineration offers the only possibility to completely destroy PFAS. Little is known about the fate of PFAS through incineration, in particular, for the systems employed in water resource recovery facilities (WRRF). This review covers available research on the fate of PFAS through incineration systems with a focus on sewage sludge incinerators. This research indicates that at least some PFAS destruction will occur with incineration approaches used at WRRFs. Furthermore, PFAS in flue gas, ash, or water streams used for incinerator pollution control may be undetectable. Future research involving full-scale fate studies will provide insight on the efficacy of PFAS destruction through incineration and whether other compounds of concern are generated. PRACTITIONER POINTS: Thermal processing is the only commercial approach available to destroy PFAS. Thermal degradation conditions required for destruction of PFAS during incineration processes are discussed. Fate of PFAS through water resource recovery facility incineration technologies remains unclear. Other thermal technologies such as smoldering combustion, pyrolysis, gasification, and hydrothermal liquefaction provide promise but are in developmental phases.
Collapse
|
25
|
Hao S, Choi YJ, Wu B, Higgins CP, Deeb R, Strathmann TJ. Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3283-3295. [PMID: 33557522 DOI: 10.1021/acs.est.0c06906] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The widespread use of aqueous film-forming foam (AFFF) for firefighting activities (e.g., fire training to extinguish fuel-based fires at aircraft facilities) has led to extensive groundwater and soil contamination by per- and polyfluoroalkyl substances (PFASs) that are highly recalcitrant to destruction using conventional treatment technologies. This study reports on the hydrothermal alkaline treatment of diverse PFASs present in AFFFs. Quantitative and semiquantitative high-resolution mass spectrometry analyses of PFASs demonstrate a rapid degradation of all 109 PFASs identified in two AFFFs (sulfonate- and fluorotelomer-based formulations) in water amended with an alkali (e.g., 1-5 M NaOH) at near-critical temperature and pressure (350 °C, 16.5 MPa). This includes per- and polyfluoroalkyl acids and a range of acid precursors. Most PFASs were degraded to nondetectable levels within 15 min, and the most recalcitrant perfluoroalkyl sulfonates were degraded within 30 min when treated with 5 M NaOH. 19F NMR spectroscopic analysis and fluoride ion analysis confirm the near-complete defluorination of PFASs in both dilute and concentrated AFFF mixtures, and no stable volatile organofluorine species were detected in reactor headspace gases by the gas chromatography-mass spectrometry analysis. These findings indicate a significant potential for application of hydrothermal treatment technologies to manage PFAS waste streams, including on-site treatment of unused AFFF chemical stockpiles, investigation-derived wastes, and concentrated source zone materials.
Collapse
Affiliation(s)
- Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Youn-Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Boran Wu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rula Deeb
- Geosyntec Consultants, Oakland, California 94607, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
26
|
Shahsavari E, Rouch D, Khudur LS, Thomas D, Aburto-Medina A, Ball AS. Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Front Bioeng Biotechnol 2021; 8:602040. [PMID: 33490051 PMCID: PMC7817812 DOI: 10.3389/fbioe.2020.602040] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are Synthetic Organic Compounds (SOCs) which are of current concern as they are linked to a myriad of adverse health effects in mammals. They can be found in drinking water, rivers, groundwater, wastewater, household dust, and soils. In this review, the current challenge and status of bioremediation of PFAs in soils was examined. While several technologies to remove PFAS from soil have been developed, including adsorption, filtration, thermal treatment, chemical oxidation/reduction and soil washing, these methods are expensive, impractical for in situ treatment, use high pressures and temperatures, with most resulting in toxic waste. Biodegradation has the potential to form the basis of a cost-effective, large scale in situ remediation strategy for PFAS removal from soils. Both fungal and bacterial strains have been isolated that are capable of degrading PFAS; however, to date, information regarding the mechanisms of degradation of PFAS is limited. Through the application of new technologies in microbial ecology, such as stable isotope probing, metagenomics, transcriptomics, and metabolomics there is the potential to examine and identify the biodegradation of PFAS, a process which will underpin the development of any robust PFAS bioremediation technology.
Collapse
Affiliation(s)
| | - Duncan Rouch
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Leadin S Khudur
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Duncan Thomas
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | | - Andrew S Ball
- School of Science, RMIT University, Bundoora, VIC, Australia.,ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
27
|
Bolan N, Sarkar B, Yan Y, Li Q, Wijesekara H, Kannan K, Tsang DCW, Schauerte M, Bosch J, Noll H, Ok YS, Scheckel K, Kumpiene J, Gobindlal K, Kah M, Sperry J, Kirkham MB, Wang H, Tsang YF, Hou D, Rinklebe J. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils - To mobilize or to immobilize or to degrade? JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123892. [PMID: 33113753 PMCID: PMC8025151 DOI: 10.1016/j.jhazmat.2020.123892] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 05/19/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are synthetic chemicals, which are introduced to the environment through anthropogenic activities. Aqueous film forming foam used in firefighting, wastewater effluent, landfill leachate, and biosolids are major sources of PFAS input to soil and groundwater. Remediation of PFAS contaminated solid and aqueous media is challenging, which is attributed to the chemical and thermal stability of PFAS and the complexity of PFAS mixtures. In this review, remediation of PFAS contaminated soils through manipulation of their bioavailability and destruction is presented. While the mobilizing amendments (e.g., surfactants) enhance the mobility and bioavailability of PFAS, the immobilizing amendments (e.g., activated carbon) decrease their bioavailability and mobility. Mobilizing amendments can be applied to facilitate the removal of PFAS though soil washing, phytoremediation, and complete destruction through thermal and chemical redox reactions. Immobilizing amendments are likely to reduce the transfer of PFAS to food chain through plant and biota (e.g., earthworm) uptake, and leaching to potable water sources. Future studies should focus on quantifying the potential leaching of the mobilized PFAS in the absence of removal by plant and biota uptake or soil washing, and regular monitoring of the long-term stability of the immobilized PFAS.
Collapse
Affiliation(s)
- Nanthi Bolan
- The Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Yubo Yan
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People's Republic of China
| | - Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, 70140, Sri Lanka
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Marina Schauerte
- Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water-Management, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany
| | - Julian Bosch
- INTRAPORE GmbH, Advanced In Situ Groundwater Remediation, Essen, Leipzig, Mailand, Katernberger Str. 107, 45327 Essen, Germany
| | - Hendrik Noll
- INTRAPORE GmbH, Advanced In Situ Groundwater Remediation, Essen, Leipzig, Mailand, Katernberger Str. 107, 45327 Essen, Germany
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Kirk Scheckel
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| | - Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Kapish Gobindlal
- Centre for Green Chemical Science, University of Auckland, Auckland, New Zealand
| | - Melanie Kah
- School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- Centre for Green Chemical Science, University of Auckland, Auckland, New Zealand
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506 USA
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jörg Rinklebe
- Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water-Management, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
28
|
Stoiber T, Evans S, Naidenko OV. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. CHEMOSPHERE 2020; 260:127659. [PMID: 32698118 DOI: 10.1016/j.chemosphere.2020.127659] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), highly stable and persistent chemicals used in numerous industrial applications and consumer goods, pose an exceptionally difficult challenge for disposal. Three approaches are currently available for PFAS wastes: landfilling, wastewater treatment and incineration. Each disposal approach can return either the original PFAS or their degradation products back to the environment, illustrating that the PFAS problem is cyclical. Landfilling and wastewater treatment do not destroy PFAS and simply move PFAS loads between sites. Consumer products and various materials discarded in landfills leach PFAS over time, and landfill leachate is commonly sent to wastewater treatment plants. From wastewater treatment plants, PFAS are carried over to sludge and effluent. Sewage sludge can be landfilled, incinerated, or applied on agricultural fields, and PFAS from treated sludge (biosolids) can contaminate soil, water, and crops. Incineration of PFAS-containing wastes can emit harmful air pollutants, such as fluorinated greenhouse gases and products of incomplete combustion, and some PFAS may remain in the incinerator ash. Volatile PFAS are emitted into the air from landfills and wastewater treatment plants, and research is urgently needed on the potential presence of PFAS compounds in air emissions from commercially run incinerators. Monitoring of waste streams for PFAS, stopping PFAS discharges into water, soil and air and protecting the health of fence-line communities close to the waste disposal sites are essential to mitigate the impacts of PFAS pollution on human health.
Collapse
Affiliation(s)
- Tasha Stoiber
- Environmental Working Group, 1436 U Street NW Suite 100, Washington, DC, 20009, USA.
| | - Sydney Evans
- Environmental Working Group, 1436 U Street NW Suite 100, Washington, DC, 20009, USA.
| | - Olga V Naidenko
- Environmental Working Group, 1436 U Street NW Suite 100, Washington, DC, 20009, USA.
| |
Collapse
|
29
|
Meegoda JN, Kewalramani JA, Li B, Marsh RW. A Review of the Applications, Environmental Release, and Remediation Technologies of Per- and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8117. [PMID: 33153160 PMCID: PMC7663283 DOI: 10.3390/ijerph17218117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are pollutants that have demonstrated a high level of environmental persistence and are very difficult to remediate. As the body of literature on their environmental effects has increased, so has regulatory and research scrutiny. The widespread usage of PFAS in industrial applications and consumer products, complicated by their environmental release, mobility, fate, and transport, have resulted in multiple exposure routes for humans. Furthermore, low screening levels and stringent regulatory standards that vary by state introduce considerable uncertainty and potential costs in the environmental management of PFAS. The recalcitrant nature of PFAS render their removal difficult, but existing and emerging technologies can be leveraged to destroy or sequester PFAS in a variety of environmental matrices. Additionally, new research on PFAS remediation technologies has emerged to address the efficiency, costs, and other shortcomings of existing remediation methods. Further research on the impact of field parameters such as secondary water quality effects, the presence of co-contaminants and emerging PFAS, reaction mechanisms, defluorination yields, and the decomposition products of treatment technologies is needed to fully evaluate these emerging technologies, and industry attention should focus on treatment train approaches to improve efficiency and reduce the cost of treatment.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Jitendra A. Kewalramani
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Brian Li
- Princeton University, Princeton, NJ 08544, USA;
| | - Richard W. Marsh
- Department of Chemical and Material Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| |
Collapse
|
30
|
James Wood R, Sidnell T, Ross I, McDonough J, Lee J, Bussemaker MJ. Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation. ULTRASONICS SONOCHEMISTRY 2020; 68:105196. [PMID: 32593965 DOI: 10.1016/j.ultsonch.2020.105196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Sonolysis has been proposed as a promising treatment technology to remove per- and polyfluoroalkyl substances (PFASs) from contaminated water. The mechanism of degradation is generally accepted to be high temperature pyrolysis at the bubble surface with dependency upon surface reaction site availability. However, the parametric effects of the ultrasonic system on PFAS degradation are poorly understood, making upscale challenging and leading to less than optimal use of ultrasonic energy. Hence, a thorough understanding of these parametric effects could lead to improved efficiency and commercial viability. Here, reactor characterisation was performed at 44, 400, 500, and 1000 kHz using potassium iodide (KI) dosimetry, sonochemiluminescence (SCL), and sonoluminescence (SL) in water and a solution of potassium salt of PFOS (hereafter, K-PFOS). Then the degradation of K-PFOS (10 mg L-1 in 200 mL solution) was investigated at these four frequencies. At 44 kHz, no PFOS degradation was observed. At 400, 500, and 1000 kHz the amount of degradation was 96.9, 93.8, and 91.2%, respectively, over four hours and was accompanied by stoichiometric fluoride release, indicating mineralisation of the PFOS molecule. Close correlation of PFOS degradation trends with KI dosimetry and SCL intensity was observed, which suggested degradation occurred under similar conditions to these sonochemical processes. At 1000 kHz, where the overall intensity of collapse was significantly reduced (measured by SL), PFOS degradation was not similarly decreased. Discussion is presented that suggests a hydrated electron degradation mechanism for PFOS may occur in ultrasonic conditions. This mechanism is a novel hypothesis in the field of PFAS sonolysis.
Collapse
Affiliation(s)
- Richard James Wood
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Tim Sidnell
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Ian Ross
- ARCADIS, Global Remediation, 10th Floor, 3 Piccadilly Place, Manchester, Greater Manchester M1 3BN, United Kingdom
| | - Jeffrey McDonough
- ARCADIS US 630 Plaza Drive Suite 200 Highlands Ranch, CO 80129, United States
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Madeleine J Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
31
|
Lohmann R, Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lindstrom AB, Miller MF, Ng CA, Patton S, Scheringer M, Trier X, Wang Z. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12820-12828. [PMID: 33043667 PMCID: PMC7700770 DOI: 10.1021/acs.est.0c03244] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluoropolymers are a group of polymers within the class of per- and polyfluoroalkyl substances (PFAS). The objective of this analysis is to evaluate the evidence regarding the environmental and human health impacts of fluoropolymers throughout their life cycle(s). Production of some fluoropolymers is intimately linked to the use and emissions of legacy and novel PFAS as polymer processing aids. There are serious concerns regarding the toxicity and adverse effects of fluorinated processing aids on humans and the environment. A variety of other PFAS, including monomers and oligomers, are emitted during the production, processing, use, and end-of-life treatment of fluoropolymers. There are further concerns regarding the safe disposal of fluoropolymers and their associated products and articles at the end of their life cycle. While recycling and reuse of fluoropolymers is performed on some industrial waste, there are only limited options for their recycling from consumer articles. The evidence reviewed in this analysis does not find a scientific rationale for concluding that fluoropolymers are of low concern for environmental and human health. Given fluoropolymers' extreme persistence; emissions associated with their production, use, and disposal; and a high likelihood for human exposure to PFAS, their production and uses should be curtailed except in cases of essential uses.
Collapse
Affiliation(s)
- Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Ian T. Cousins
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jamie C. DeWitt
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Dorte Herzke
- NILU in Fram Centre, Tromsø, Norway
- Institute for Arctic and Marine Biology; The Arctic University of Norway, Tromsø, Norway
| | - Andrew B. Lindstrom
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mark F. Miller
- National Institute of Environmental Health Sciences & U.S. Public Health Service, Research Triangle Park, NC, USA
| | - Carla A. Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sharyle Patton
- Health and Environment Program Commonweal, Bolinas, CA 94924, USA
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Xenia Trier
- European Environment Agency, Kgs. Nytorv 6, DK-1050 Copenhagen K, Denmark
| | - Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Duchesne AL, Brown JK, Patch DJ, Major D, Weber KP, Gerhard JI. Remediation of PFAS-Contaminated Soil and Granular Activated Carbon by Smoldering Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12631-12640. [PMID: 32822535 DOI: 10.1021/acs.est.0c03058] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study explored smoldering combustion for remediating polyfluoroalkyl substance (PFAS)-impacted granular activated carbon (GAC) and PFAS-contaminated soil. GAC, both fresh and PFAS-loaded, was employed as the supplemental fuel supporting smoldering in mixtures with sand (≈175 mg PFAS/kg GAC-sand), with PFAS-spiked, laboratory-constructed soil (≈4 mg PFAS/kg soil), and with a PFAS-impacted field soil (≈0.2 mg PFAS/kg soil). The fate of PFAS and fluorine was quantified with soil and emission analyses, including targeted PFAS and suspect screening as well as hydrogen fluoride and total fluorine. Results demonstrated that exceeding 35 g GAC/kg soil resulted in self-sustained smoldering with temperatures exceeding 900 °C. Post-treatment PFAS concentrations of the treated soil were near (2 experiments) or below (7 experiments) detection limits (0.0004 mg/kg). Further, 44% of the initial PFAS on GAC underwent full destruction, compared to 16% of the PFAS on soil. Less than 1% of the initial PFAS contamination on GAC or soil was emitted as PFAS in the quantifiable analytical suite. Results suggest that the rest were emitted as altered, shorter-chain PFAS and volatile fluorinated compounds, which were scrubbed effectively with GAC. Total organic fluorine analysis proved useful for PFAS-loaded GAC in sand; however, analyzing soils suffered from interference from non-PFAS. Overall, this study demonstrated that smoldering has significant potential as an effective remediation technique for PFAS-impacted soils and PFAS-laden GAC.
Collapse
Affiliation(s)
- Alexandra L Duchesne
- University of Western Ontario, Spencer Engineering Building, London, Ontario N6A 5B9, Canada
| | - Joshua K Brown
- University of Western Ontario, Spencer Engineering Building, London, Ontario N6A 5B9, Canada
| | - David J Patch
- Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada
| | - David Major
- Savron, 130 Stone Rd. W, Guelph, Ontario N1G 3Z2, Canada
| | - Kela P Weber
- Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada
| | - Jason I Gerhard
- University of Western Ontario, Spencer Engineering Building, London, Ontario N6A 5B9, Canada
| |
Collapse
|
33
|
Research and Regulatory Advancements on Remediation and Degradation of Fluorinated Polymer Compounds. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals used in various commercial industries to include food packaging, non-stick repellent, and waterproof products. International environmental protection agencies are currently looking for ways to detect and safely remediate both solid and aqueous PFAS waste due to their harmful effects. Incineration is a technique that disposes of chemicals by breaking down the chemicals at high temperatures, upwards of 1400 °C. Incineration has been used on other related compounds, but PFAS presents a challenge during thermal degradation due to the molecular stability and reactivity of fluorine. Research on the efficacy of this method is currently limited, as the degradation byproducts of PFAS are not fully characterized. Current research is mostly focused on the development of benchtop methods for the safe remediation of solid PFAS waste. Aqueous fire fighting foams (AFFFs) have garnered significant attention due to extensive use since development in the 1960s. Numerous communities that are closely located near airports have been shown to have higher than average PFAS contamination from the repeated use. Detection and remediation of surface, subsurface, and wastewater have become a primary concern for environmental agencies. Use of electrochemical techniques to remove the PFAS contaminants has shown recent promise to help address this issue. Critical to the remediation efforts is development of standardized detection techniques and the implementation of local and international regulations to control the production and use of fluorinated products. No single solution has yet been developed, but much progress has been made in recent years in governmental regulation, detection, and remediation techniques.
Collapse
|
34
|
Sörengård M, Lindh AS, Ahrens L. Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS One 2020; 15:e0234476. [PMID: 32584848 PMCID: PMC7316335 DOI: 10.1371/journal.pone.0234476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
Soils contaminated with per- and polyfluoroalkyl substances (PFASs) are an important source for impacting drinking water delivery systems and surface water bodies world-wide, posing an urgent risk to human health and environmental quality. However, few treatment techniques have been tested for PFAS-contaminated soil hotspots. This study investigated the possibility of thermal desorption as a possible technique to remediate soils contaminated with multiple PFASs. Two fortified soils (∑9PFAS ≈ 4 mg kg-1) and one field-contaminated soil (∑9PFAS ≈ 0.025 mg kg-1) were subjected to a 75-min thermal treatment at temperatures ranging from 150 to 550°C. Soil concentrations of PFASs showed a significant decrease at 350°C, with the ∑9PFAS concentration decreasing by, on average, 43% and 79% in the fortified and field contaminated soils, respectively. At 450°C, >99% of PFASs were removed from the fortified soils, while at 550°C the fraction removed ranged between 71 and 99% for the field contaminated soil. In the field contaminated soil, PFAS classes with functional groups of sulfonates (PFSAs) and sulfonamides (FOSAs) showed higher removal than the perfluoroalkyl carboxylates (PFCAs). Thus thermal desorption has the potential to remove a wide variety of PFASs from soil, although more studies are needed to investigate the cost-effectiveness, creation of transformation products, and air-phase vacuum filtration techniques.
Collapse
Affiliation(s)
- M. Sörengård
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- * E-mail:
| | - A-S. Lindh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - L. Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
35
|
Solo-Gabriele HM, Jones AS, Lindstrom AB, Lang JR. Waste type, incineration, and aeration are associated with per- and polyfluoroalkyl levels in landfill leachates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:191-200. [PMID: 32304853 PMCID: PMC8335518 DOI: 10.1016/j.wasman.2020.03.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found in many consumer products which will be ultimately disposed in landfills. Limiting environmental contamination and future exposures will require managing leachates from different types of landfills, each with different PFAS levels depending upon the source of the waste. The objective of this study was to evaluate the influence of waste type and on-site treatment on PFAS levels in landfill leachates. Eleven PFAS species (7 carboxylic acids, 3 sulfonic acids, and 5:3 fluorotelomer carboxylic acid) were evaluated in leachates from municipal solid waste (MSW), construction and demolition (C&D), MSW ash (MSWA), and a mixture of MSWA and MSW with landfill gas condensate (MSWA/MSW-GC). Leachates were also analyzed before and after on-site treatment at two of these facilities. Results indicate that MSWA leachate had significantly lower PFAS levels relative to other leachate types. Lower total PFAS concentrations in MSWA leachates were correlated with an increase in incineration temperature (R2 = 0.92, p = 0.008). The levels of PFAS in untreated C&D and untreated MSW leachate were similar. The levels of targeted PFAS species in MSW leachate for one of the facilities evaluated increased after on-site landfill treatment presumably due to the conversion of PFAS precursors in the untreated leachate sample.
Collapse
Affiliation(s)
- Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630, USA.
| | - Athena S Jones
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630, USA.
| | - Andrew B Lindstrom
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | - Johnsie R Lang
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830, USA.
| |
Collapse
|
36
|
Wang B, Yao Y, Chen H, Chang S, Tian Y, Sun H. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2-C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135832. [PMID: 31831231 DOI: 10.1016/j.scitotenv.2019.135832] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 05/06/2023]
Abstract
The emission of per- and polyfluoroalkyl substances (PFASs) from municipal solid wastes (MSW) disposal raises concerns for their potential of long-term release and risks. In this study, the occurrence of PFASs was investigated in ambient air and leachate from seven MSW disposal facilities including three landfills, two incineration plants, and two MSW transfer stations in Tianjin, China. Mass loads of PFASs (≥C4) released to the atmosphere were estimated at 0.007-0.97 kg/y/site, which were much lower than those to leachate (0.04-1.3 kg/y/site), while emission to the atmosphere at landfills was more considerable. With total oxidizable precursor (TOP) assay, unknown C4-C12 perfluoroalkyl acids (PFAAs)-precursors were found contributing 10-97 mol% in leachate and accounting for additional 15%-43% mass loads. Using IC-Ba/Ag/H cartridges, trifluoroacetic acid (C2) and perfluoropropionic acid (C3) were recovered in leachate for TOP assay (62%-78%) and determined at dominant levels of 19-81 μg/L, which accounted for mass loads of 0.08-2.6 kg/y/site. Unknown C2-C3 PFAA-precursors contributed 12-93 mol% with mass loads of 0.10-3.0 kg/y/site. Overall, unknown C2-C12 PFAA-precursors remained contributing 0.35-68 mol% in biochemically treated leachate. This study emphasizes that the profiles of unknown PFAA-precursors released during MSW disposal are to be identified, which is essential for their environmental risk assessment.
Collapse
Affiliation(s)
- Bin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuai Chang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
37
|
Sarafraz MM, Arjomandi M. Filtration of per- and poly-fluoroalkyl from water and recycling of fluorine: a thermochemical equilibrium analysis. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Fiandra V, Sannino L, Andreozzi C, Corcelli F, Graditi G. Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:97-107. [PMID: 31109589 DOI: 10.1016/j.wasman.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
An eco-friendly process to recover valuable materials deriving from silicon based photovoltaic panels at end-of-life has been proposed. In particular, in this paper a new two-step process to separate and recover glass, Si and metals has been investigated and discussed. A preliminary mechanical treatment to remove fluorinated polymers allows to exclude dangerous emissions of hydrofluoric acid and fluorinated compounds coming out from conventional heat treatments. A subsequent thermal treatment allows the complete removal of the residual polymers and the separation of valuable materials. The influence of treatment time, temperature and atmosphere, during the polymers degradation has been evaluated and the by-products have been examined. The process efficiency has been assessed by determining the quantity and quality of the recovered materials. The results have shown that the combination of the two mechanical/thermal processes allows energy efficiency and environmental sustainability with respect to conventional recovery treatments. The optimal operating conditions for the thermal treatment have turned out 500 °C for 1 h in oxidizing atmosphere. The quality of the recovered materials has been determined by analysing the residual carbon content after the thermal treatment. The gaseous products of the polymeric degradation have been characterized by gas chromatography-mass spectrometry (GC-MS) analysis.
Collapse
Affiliation(s)
- Valeria Fiandra
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA, P.le E. Fermi 1, 80055 Portici, Naples, Italy.
| | - Lucio Sannino
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA, P.le E. Fermi 1, 80055 Portici, Naples, Italy
| | - Concetta Andreozzi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA, P.le E. Fermi 1, 80055 Portici, Naples, Italy
| | - Fabiana Corcelli
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | - Giorgio Graditi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA, P.le E. Fermi 1, 80055 Portici, Naples, Italy
| |
Collapse
|
39
|
Fiandra V, Sannino L, Andreozzi C, Graditi G. End-of-life of silicon PV panels: A sustainable materials recovery process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 84:91-101. [PMID: 30691917 DOI: 10.1016/j.wasman.2018.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In this paper, the management of end-of-life PV modules based on an advanced eco-sustainable process has been presented and discussed. The thermal removal of the polymeric compounds contained in c-Si PV modules has been investigated to separate and recover Si, Ag, Cu, Al and glass. A two-step thermal process has been employed. In the first step, the rear polymeric layer has been removed without emissions of dangerous fluorinated substances. In the second step, the remaining polymers have been completely removed with low volatile organic compounds (VOCs) emissions. The polymers degradation has been studied at combustion equivalent ratios Φ varying from 0.5 to 2 and at 500 °C. The materials recovery has been evaluated from an environmental point of view and optimized by considering the energy cost, through the identification of the best operating conditions, in terms of temperature, time, atmosphere and gas flow. One hour of heat treatment and a slightly oxidizing atmosphere have been enabled to separate and recover the different materials of the module. The elemental compositions of the PV sample and the residue condensed organic products have been determined. The gaseous degradation products have been characterized by gas chromatographic analysis (GC).
Collapse
Affiliation(s)
- Valeria Fiandra
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA Portici, Naples, Italy.
| | - Lucio Sannino
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA Portici, Naples, Italy
| | - Concetta Andreozzi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA Portici, Naples, Italy
| | - Giorgio Graditi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development - Research Centre ENEA Portici, Naples, Italy
| |
Collapse
|
40
|
Zhuo Q, Xiang Q, Yi H, Zhang Z, Yang B, Cui K, Bing X, Xu Z, Liang X, Guo Q, Yang R. Electrochemical oxidation of PFOA in aqueous solution using highly hydrophobic modified PbO 2 electrodes. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Alder AC, van der Voet J. Occurrence and point source characterization of perfluoroalkyl acids in sewage sludge. CHEMOSPHERE 2015; 129:62-73. [PMID: 25176581 DOI: 10.1016/j.chemosphere.2014.07.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
The occurrence and levels of perfluoroalkyl acids (PFAAs) emitted from specific pollution sources into the aquatic environment in Switzerland were studied using digested sewage sludges from 45 wastewater treatment plants in catchments containing a wide range of potential industrial emitters. Concentrations of individual PFAAs show a high spatial and temporal variability, which infers different contributions from industrial technologies and activities. Perfluorooctane sulfonic acid (PFOS) was generally the predominant PFAA with concentrations varying between 4 and 2440μgkg(-1) (median 75μgkg(-1)). Elevated emissions were especially observed in catchments capturing discharges from metal plating industries (median 82μgkg(-1)), aqueous firefighting foams (median 215μgkg(-1)) and landfill leachates (median 107μgkg(-1)). Some elevated perfluoroalkyl carboxylic acids (PFCAs) levels could be attributed to emissions from textile finishing industries with concentrations up to 233μgkg(-1) in sewage sludge. Assuming sorption to sludge for PFOS and PFCAs of 15% and 2%, respectively, concentrations in wastewater effluents up to the low μgL(-1) level were estimated. Even if wastewater may be expected to be diluted between 10 and 100 times by the receiving waters, elevated concentrations may be reached at specific locations. Although sewage sludge is a minor compartment for PFAAs in WWTPs, these investigations are helpful for the identification of hot-spots from industrial emitters as well as to estimate monthly average concentrations in wastewater.
Collapse
Affiliation(s)
- Alfredo C Alder
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.
| | - Juergen van der Voet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
42
|
Wang F, Lu X, Li XY, Shih K. Effectiveness and Mechanisms of Defluorination of Perfluorinated Alkyl Substances by Calcium Compounds during Waste Thermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5672-5680. [PMID: 25850557 DOI: 10.1021/es506234b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The mineralization of perfluorinated alkyl substances (PFASs) by calcium compounds during the waste thermal treatment was systemically studied. Different calcium compounds showed different mineralization efficiencies of PFASs during the thermal process, owing to the different reaction mechanisms. Calcium hydroxide was recommended as the most effective Ca reagent for PFAS defluorination because the carbon-fluorine bonds in PFASs can be converted to carbon-hydrogen bonds via the hydrodefluorination reaction. PFASs with different chain lengths and functional groups were further investigated for their potentially different mineralization behavior. The results showed that the chain length of PFASs had an insignificant effect on the mineralization efficiency by calcium hydroxide. The thermogravimetric analysis-differential thermal analysis (TGA-DTA) also revealed that perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonate (PFHxS) (with different chain lengths) had a similar thermal behavior. However, PFASs with different functional groups showed different mineralization behavior with calcium hydroxide in relation to their different thermal decomposition temperatures. Finally, the mineralization ratio of polytetrafluoroethylene (PTFE) particles by calcium hydroxide could reach 80% or higher when the temperature was above 400 °C. The gas chromatography/mass spectrometry (GC/MS) results demonstrated much reduced production of gaseous fluorocarbon fragments during PTFE decomposition when coexisting with calcium hydroxide.
Collapse
Affiliation(s)
- Fei Wang
- †Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- ‡School of Environment, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xingwen Lu
- †Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-yan Li
- †Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kaimin Shih
- †Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
43
|
Firefighters' exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams. Toxicol Lett 2014; 231:227-32. [PMID: 25447453 DOI: 10.1016/j.toxlet.2014.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 01/09/2023]
Abstract
The aim of this study was to assess eight firefighters' exposure to Sthamex 3% AFFF (aqueous film forming foam) in the simulation of aircraft accidents at Oulu airport in Finland. Study was conducted in 2010 before limitation for the use of PFOA and PFOS in AFFFs. Due to prospective limitation also eight commercially available AFFFs were evaluated from occupational and environmental point of view to find substitutive AFFFs for future. The firefighters' exposure to twelve perfluoroalkyl acids (PFAS) was analyzed in order to observe the signs of accumulation during three consecutive training sessions. The firefighters' short-term exposure to 2-butoxyethanol (EGBE) was analyzed by urinalysis of 2-butoxyacetic acid (2-BAA). For the background information also the concentration of PFAS in used AFFF-liquid was analyzed. Fire fighters' serum PFHxS and PFNA concentrations seemed to increase during the three training sessions although they were not the main PFAS in used AFFF. The statistical significance for the elevations was not able to test due to limited size of test group. In two training sessions, the average urinary excretions of 2-BAA exceeded the reference limit of the occupationally unexposed population. In the evaluations of the firefighting foams, non-fluorine based products were favored and the alcohol resistance properties of foams were recommended for consideration due to the increasing use of biofuels.
Collapse
|
44
|
Taylor PH, Yamada T, Striebich RC, Graham JL, Giraud RJ. Investigation of waste incineration of fluorotelomer-based polymers as a potential source of PFOA in the environment. CHEMOSPHERE 2014; 110:17-22. [PMID: 24880594 DOI: 10.1016/j.chemosphere.2014.02.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 05/27/2023]
Abstract
In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures. The study was divided into two phases (I and II) and conducted in accordance with EPA Good Laboratory Practices (GLPs) as described in the quality assurance project plan (QAPP) for each phase. Phase I testing determined that the PFOA transport efficiency across the thermal reactor system to be used in Phase II was greater than 90%. Operating at 1000°C over 2s residence time with 3.2-6.6mgdscm(-1) hydrogen fluoride (HF), corrected to 7% oxygen (O2), and continuously monitored exhaust oxygen of 13%, Phase II testing of the FTBP composites in this thermal reactor system yielded results demonstrating that waste incineration of fluorotelomer-based polymers does not result in the formation of detectable levels of PFOA under conditions representative of typical municipal waste combustor (MWC) and medical waste incinerator (MWI) operations in the U.S. Therefore, waste incineration of these polymers is not expected to be a source of PFOA in the environment.
Collapse
Affiliation(s)
- P H Taylor
- University of Dayton Research Institute, Environmental Engineering Group, 300 College Park, Dayton, OH 45469, United States.
| | - T Yamada
- University of Dayton Research Institute, Environmental Engineering Group, 300 College Park, Dayton, OH 45469, United States
| | - R C Striebich
- University of Dayton Research Institute, Environmental Engineering Group, 300 College Park, Dayton, OH 45469, United States
| | - J L Graham
- University of Dayton Research Institute, Environmental Engineering Group, 300 College Park, Dayton, OH 45469, United States
| | - R J Giraud
- E.I. du Pont de Nemours and Company, Inc., 1007 Market Street, Wilmington, DE 19898, United States
| |
Collapse
|
45
|
Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K. Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: the remaining pieces of the puzzle. ENVIRONMENT INTERNATIONAL 2014; 69:166-76. [PMID: 24861268 DOI: 10.1016/j.envint.2014.04.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 05/17/2023]
Abstract
We identify eleven emission sources of perfluoroalkyl carboxylic acids (PFCAs) that have not been discussed in the past. These sources can be divided into three groups: [i] PFCAs released as ingredients or impurities, e.g., historical and current use of perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA) and their derivatives; [ii] PFCAs formed as degradation products, e.g., atmospheric degradation of some hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs); and [iii] sources from which PFCAs are released as both impurities and degradation products, e.g., historical and current use of perfluorobutane sulfonyl fluoride (PBSF)- and perfluorohexane sulfonyl fluoride (PHxSF)-based products. Available information confirms that these sources were active in the past or are still active today, but due to a lack of information, it is not yet possible to quantify emissions from these sources. However, our review of the available information on these sources shows that some of the sources may have been significant in the past (e.g., the historical use of PFBA-, PFHxA-, PBSF- and PHxSF-based products), whereas others can be significant in the long-term (e.g., (bio)degradation of various side-chain fluorinated polymers where PFCA precursors are chemically bound to the backbone). In addition, we summarize critical knowledge and data gaps regarding these sources as a basis for future research.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Ian T Cousins
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden
| | - Martin Scheringer
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland.
| | - Robert C Buck
- E.I. du Pont de Nemours & Co. Inc., DuPont Chemicals and Fluoroproducts, 974 Centre Road, CRP 702-2211B, Wilmington, DE 19880-0702, USA
| | - Konrad Hungerbühler
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
46
|
Chularueangaksorn P, Tanaka S, Fujii S, Kunacheva C. Batch and column adsorption of perfluorooctane sulfonate on anion exchange resins and granular activated carbon. J Appl Polym Sci 2013. [DOI: 10.1002/app.39782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pattarawan Chularueangaksorn
- Graduate School of Global Environmental Studies; Kyoto University, Yoshida Campus; Sakyo-ku Kyoto 606-8501 Japan
| | - Shuhei Tanaka
- Graduate School of Global Environmental Studies; Kyoto University, Yoshida Campus; Sakyo-ku Kyoto 606-8501 Japan
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies; Kyoto University, Yoshida Campus; Sakyo-ku Kyoto 606-8501 Japan
| | - Chinagarn Kunacheva
- Graduate School of Global Environmental Studies; Kyoto University, Yoshida Campus; Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
47
|
Wang F, Shih K, Lu X, Liu C. Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2621-2627. [PMID: 23360134 DOI: 10.1021/es305352p] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The fate and transport of the fluorine in perfluorooctanesulfonate (PFOS) during the thermal treatment of lime-conditioned sludge were observed using both qualitative and quantitative X-ray diffraction techniques. Two main fluorine mineralization mechanisms leading to the substantial formation of CaF2 and Ca5(PO4)3F phases were observed. They had a close relationship with the thermal treatment condition and the PFOS content of the sludge. At low temperatures (300-600 °C), CaF2 dominated in the product and increases in treatment time and temperature generally enhanced the fluorine transformation. However, at higher temperatures (700-900 °C), increases in treatment time and temperature had a negative effect on the overall efficiency of the fluorine crystallization. The results suggest that in the high temperature environment there were greater losses of gaseous products such as HF and SiF4 in the transformation of CaF2 to Ca5(PO4)3F, the hydrolysis of CaF2, and the reaction with SiO2. The quantitative analysis also showed that when treating sludge with low PFOS content at high temperatures, the formation of Ca5(PO4)3F may be the primary mechanism for the mineralization of the fluorine in PFOS. The overall results clearly indicate the variations in the fate and transport of fluorine in PFOS when the sludge is subject to different PFOS contents and treatment types, such as heat drying or incineration.
Collapse
Affiliation(s)
- Fei Wang
- Department of Civil Engineering, The University of Hong Kong , Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
48
|
Herzke D, Olsson E, Posner S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway - a pilot study. CHEMOSPHERE 2012; 88:980-7. [PMID: 22483730 DOI: 10.1016/j.chemosphere.2012.03.035] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/10/2012] [Accepted: 03/07/2012] [Indexed: 05/21/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are used in numerous industrial and consumer products because of their special chemical properties, for instance the ability to repel both water and oil. A broad variety of PFAS have been introduced into the Norwegian market through industrial use (e.g. via fire fighting foams and paints) as well as in treated customer products such as textiles and coated paper. Our present knowledge of the exact chemical PFAS compositions in preparations using perfluorinated compounds is limited. This lack of knowledge means that it is difficult to provide an accurate assessment of human exposure to these compounds or to the amount of waste that may contain treated products. It is a growing concern that these potentially harmful compounds can now be found throughout the global environment. Samples of consumer products and preparations were collected in Norway, with supplemental samples from Sweden. In 27 of the 30 analyzed consumer products and preparations a number of polyfluorinated substances that were analyzed were detected but this does not exclude the occurrence of unknown PFAS. Notable was that perfluorooctanesulphonate (PFOS), which has been strictly regulated in Norway since 2007, was found in amounts close to or exceeding the EU regulatory level in 4 of the 30 analyzed products, all within the leather or carpet product groups. High amounts of fluorotelomer alcohols (FTOHs) were found in waterproofing agents, carpets and textiles, consistent with earlier findings by Fiedler et al. (2010). The presence of PFAS in a broad range of consumer products can give rise to a constant diffuse human exposure that might eventually result in harm to humans.
Collapse
Affiliation(s)
- Dorte Herzke
- NILU, Norwegian Institute for Air Research, Hjalmar Johansens gt. 14, 9296 Tromsø, Norway.
| | | | | |
Collapse
|
49
|
|
50
|
Müller CE, Gerecke AC, Alder AC, Scheringer M, Hungerbühler K. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1419-1426. [PMID: 21310517 DOI: 10.1016/j.envpol.2010.12.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions.
Collapse
Affiliation(s)
- Claudia E Müller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | | | | | | | | |
Collapse
|