1
|
Dobra KS, Capo RC, Stewart BW, Haag WR. Controls on the Barium and Strontium Isotopic Records of Water Chemistry Preserved in Freshwater Bivalve Shells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16454-16464. [PMID: 39214627 PMCID: PMC11411712 DOI: 10.1021/acs.est.4c05652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biogenic carbonates, including bivalve shells, record past environmental conditions, but their interpretation requires understanding environmental and biological factors that affect trace metal uptake. We examined stable barium (δ138Ba) and radiogenic strontium (87Sr/86Sr) isotope ratios in the aragonite shells of four native freshwater mussel species and two invasive species in five streams and assessed the effects of species identity, growth rate, and river water chemistry on shell isotopic composition. Shells were robust proxies for Sr, accurately reflecting 87Sr/86Sr ratios of river water, regardless of species or growth rate. In contrast, shell δ138Ba values, apart from invasive Corbicula fluminea, departed widely from those of river water and varied according to species and growth rate. Apparent fractionation between river water and the shell (Δ138Bashell-water) reached -0.86‰, the greatest offset observed for carbonate minerals. The shell deposited during slow growth periods was more enriched in lighter Ba isotopes than the rapidly deposited shell; thus, this phenomenon cannot be explained by aragonite precipitation kinetics. Instead, biological ion transport processes linked to growth rate may be largely responsible for Ba isotope variation. Our results provide information necessary to interpret water chemistry records preserved in shells and provide insights into biomineralization processes and bivalve biochemistry.
Collapse
Affiliation(s)
- Kristi S Dobra
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rosemary C Capo
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian W Stewart
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wendell R Haag
- US Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Frankfort, Kentucky 40601, United States
| |
Collapse
|
2
|
Hu H, Wei R, Zerizghi T, Du C, Zhao C, Wang Z, Zhang J, Tan Q, Guo Q. Control mechanisms of water chemistry based on long-term analyses of the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164713. [PMID: 37302593 DOI: 10.1016/j.scitotenv.2023.164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/13/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Long-term series data can provide a glimpse of the influence of natural and anthropogenic factors on water chemistry. However, few studies have been conducted to analyze the driving forces of the chemistry of large rivers based on long-term data. This study aimed to analyze the variations and driving mechanisms of riverine chemistry from 1999 to 2019. We compiled published data on major ions in the Yangtze River, one of the three largest rivers in the world. The results showed that Na+ and Cl- concentrations decreased with increasing discharge. Significant differences in riverine chemistry were found between the upper and middle-lower reaches. Major ion concentrations in the upper reaches were mainly controlled by evaporites, especially Na+ and Cl- ions. In contrast, major ion concentrations in the middle-lower reaches were mainly affected by silicate and carbonate weathering. Furthermore, human activities were the drivers of some major ions, notably SO42- ions associated with coal emissions. The increased major ions and total dissolved solids in the Yangtze River in the last 20 years were ascribed to the continuous acidification of the river and the construction of the Three Gorges Dam. Attention should be given to the impact of anthropogenic activities on the water quality of the Yangtze River.
Collapse
Affiliation(s)
- Huiying Hu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Teklit Zerizghi
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenjun Du
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changqiu Zhao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziteng Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyu Tan
- Yunnan University, Kunming 650091, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Brombin V, Natali C, Frijia G, Schmitt K, Casalini M, Bianchini G. Isotope Geochemistry for Seafood Traceability and Authentication: The Northern Adriatic Manila Clams Case Study. Foods 2022; 11:foods11193054. [PMID: 36230130 PMCID: PMC9562164 DOI: 10.3390/foods11193054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In Italy, the production of manila clams (Ruditapes philippinarum, Adams and Reeve, 1850) is mainly localized in northern Adriatic lagoons in the Po River delta, where shellfish farming provides important socio-economic revenue. However, in our globalized world, the seafood market is threated by fraudulent activities, in which agri-food products whose provenance is not certified are sold, posing a risk to consumer health. Multi-isotope ratio analysis is commonly used to trace the provenance of goods produced in different countries with different climatic and environmental conditions. Here, we investigated the reliability of this approach in terms of tracing the exact provenance of manila clams harvested in three Adriatic northern lagoons that are close to each other. We also verified the origin of samples bought at a local supermarket with a certificate of provenance. We carried out elemental analyses of carbon (C), nitrogen (N), and sulfur (S) and the respective isotopic ratios (13C/12C; 15N/14N; 34S/32S) on manila clam tissues, plus isotopic analyses of carbon (13C/12C), oxygen (18O/16O), and strontium (87Sr/86Sr) on manila clam shells. Each isotopic parameter can be used to identify the marine and continental contributions of water and/or nutrient supplies occurring in the lagoons. Therefore, the combination of isotopic parameters in a linear discriminant analysis (LDA) allowed for the identification of the lagoons in which the manila clams were produced.
Collapse
Affiliation(s)
- Valentina Brombin
- Department of Physics and Earth Sciences, University of Ferrara, Via Giuseppe Saragat 1, 44122 Ferrara, Italy
| | - Claudio Natali
- Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Gianluca Frijia
- Department of Physics and Earth Sciences, University of Ferrara, Via Giuseppe Saragat 1, 44122 Ferrara, Italy
| | - Katharina Schmitt
- Institute of Geosciences, University of Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
| | - Martina Casalini
- Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Gianluca Bianchini
- Department of Physics and Earth Sciences, University of Ferrara, Via Giuseppe Saragat 1, 44122 Ferrara, Italy
- Correspondence:
| |
Collapse
|
4
|
Zhang S, Han G, Zeng J, Malem F. Source tracing and chemical weathering implications of strontium in agricultural basin in Thailand during flood season: A combined hydrochemical approach and strontium isotope. ENVIRONMENTAL RESEARCH 2022; 212:113330. [PMID: 35452669 DOI: 10.1016/j.envres.2022.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
87Sr/86Sr of river water are of great significance in constraining oceanic strontium (Sr) record and terrestrial climate change due to the connection of continental weathering and the adjacent ocean. This work presents the geochemical characteristics of dissolved Sr and hydrochemistry, and estimates chemical weathering rate together with elemental Sr flux during the flood season of the Mun River, the largest tributary of Mekong River. Hydrochemistry analysis indicates the dominance of Cl- and HCO3- for major anions with the average of 34.6 and 43.0 mg/L, respectively, and Na+ and Ca2+ together dominated the cationic composition with the average of 22.9 and 10.5 mg/L, respectively. The ion concentrations during flood season were lower than that in dry season, implying tremendous river runoff due to extreme rainfall. The dissolved Sr ranges 6.1-237.5 μg/L with higher contents in the upper Mun. Sr contents in flood season are lower and less fluctuated than that in dry season, whereas the divergence between up and downstream becomes larger. 87Sr/86Sr ranges 0.7100-0.7597, slightly higher than global average. Elemental molar ratio analysis partly corroborates the inference from correlation analysis, but 87Sr/86Sr does not correlate with Na/Ca, indicating additional influence except for the weathering of evaporites and silicates. Comparing to regional wastewater and rainwater, the lower reaches exhibits superimposed impact of agricultural inputs on weathering to dissolved loads, especially in downstream with more tributary convergence. Extreme rainfall during flood season and extensive agricultural production activities may interfere in altering riverine solutes. Silicate weathering rate and CO2 consumption rate are calculated as well as the yearly 87Sr in excess to the Mekong River and finally to the Pacific Ocean with a Sr flux of 1.98 × 103 tons/year, indicating significant influence on seawater strontium isotope evolution in the long run. Together with tropical climate and high-intensity precipitation, the accelerated chemical weathering process seems inevitable. Therefore, the impact of agricultural interference in the pan-Mekong River basin needs more systematic and multi-angle research to provide a comprehensive insight on better watershed management under tropical climatic conditions.
Collapse
Affiliation(s)
- Shitong Zhang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fairda Malem
- Environmental Research and Training Center, Department of Environmental Quality Promotion, Ministry of Natural Resources and Environment, Klong Luang, 12120, Thailand
| |
Collapse
|
5
|
Zhang S, Han G, Zeng J, Liu M, Li X, Liu J. Multi-isotopes revealing the coastal river anthropogenic pollutants and natural material flux to ocean: Sr, C, N, S, and O isotope study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61397-61411. [PMID: 35441999 DOI: 10.1007/s11356-022-20223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Coastal river exports massive terrestrial materials to the adjacent marine environment with information about chemical weathering, providing critical insights on riverine flux and the potential impact on marine ecosystem. In this study, the preliminary data of dissolved strontium (Sr) and 87Sr/86Sr in a typical coastal river in southeastern China were collected along with hydrochemistry and C, N, S, and O isotopes to discriminate the source of terrestrial weathering and the riverine flux. Sr concentrations exhibited a range of 0.084 ~ 1.307 μmol L-1, and 87Sr/86Sr values ranged 0.7089 ~ 0.7164. The total cationic charge (TZ+) ranged 0.2 ~ 11.7 meq L-1 with the predominant Ca2+ which accounted for > 50% of TZ+, while the anions were dominated by HCO3-. The extremely high Na+ and Cl- near the estuary indicated seawater mixing in such a coastal river. δ13C-DIC, δ15N-NO3-, δ18O-NO3-, and δ34S-SO42- of river water ranged - 24.1‰ ~ - 9.2‰, 0.3‰ ~ 22.7‰, - 2.1‰ ~ 21.4‰, and - 9.3‰ ~ 18.0‰, respectively. δ13C enhanced correspondingly to decreased δ34S, confirming the attendance of H2SO4 in carbonate weathering. Most δ18O values exhibited within ± 10‰, indicating the dominant nitrification process. δ15N presented slightly negative relationship with δ13C and no obvious correlation with δ34S, indicating relatively limited impact of denitrification. The depleted δ13C and δ15N may be attributed to carbonate dissolution with nitric acids and the oxidation of organic matters into C and N pools. Quantitative analysis revealed that silicate weathering accounts for 79% of total dissolved Sr, indicating the dominant weathering process. The estimated monthly flux of dissolved Sr to the East China Sea was 138.1 tons, demonstrating an potential impact on seawater Sr isotope evolution. Overall, the investigations of multi-isotopes revealed the enhancement of weathering rates and the consequently depleted CO2 consumption, which further proved the involvement of strong acids (H2SO4 and HNO3). This study provides scientific insight in terrestrial weathering and anthropogenic impact of a typical coastal watershed and may orient the management of environmental issues related to coastal ecosystems.
Collapse
Affiliation(s)
- Shitong Zhang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Man Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiaoqiang Li
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jinke Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
6
|
Zhang S, Han G, Zeng J. Geochemical characteristics of strontium isotopes in a coastal watershed: implications for anthropogenic influenced chemical weathering and export flux. PeerJ 2022; 10:e13223. [PMID: 35402102 PMCID: PMC8992644 DOI: 10.7717/peerj.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Coastal watershed are essential in transporting dissolved loads from terrestrial biogeochemical process of surface environment to the adjacent oceans. The solute chemistry of coastal river water contains significant information about environmental processes under the impact of both natural lithology and anthropogenic pressure. In this study, strontium (Sr) isotopes and water chemistry data of the Jiulongjiang (JLJ) river water were analyzed in detail to trace the contribution of bedrock weathering, and quantify Sr flux to the East China Sea (ECS). The dissolved Sr contents ranged 0.07-0.90 μmol L-1 and greatly fluctuated where tributaries encountered, and 87Sr/86Sr values relatively fluctuated between 0.7140 and 0.7514. Silicate weathering was identified to be the predominant contribution of riverine dissolved loads. Strontium flux to the ocean in dry season was estimated to be 689.2 tons per year, implying an essential influence on oceanic strontium evolution. In accordance with forward model, the silicate weathering rate and CO2 consumption rate were 55.7 tons km-2 per year and 16.9 × 105 mol km-2 per year, respectively, slightly higher than world average. Considering anthropogenic impacts alongside the river, the integrated effect of lower runoff and longer retention time of river water in dry season may aggravate weathering processes. Although CO2 sink by silicate weathering in JLJ seems less than the sink in world's central reservoirs, it should still be taken into consideration for coastal carbon budget. These findings highlight the use of geochemical characteristics of strontium and its isotopes in identifying weathering process and output flux to the ocean, which provides basic data for sustainable coastal water resource management.
Collapse
|
7
|
A Strontium and Hydro-Geochemical Perspective on Human Impacted Tributary of the Mekong River Basin: Sources Identification, Fluxes, and CO2 Consumption. WATER 2021. [DOI: 10.3390/w13213137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the largest and most representative tributary of the Mekong River, the Mun River Basin (MRB) provides critical understanding of regional hydro-geochemical features and rock weathering processes on a basin scale. The present study measured strontium (Sr) isotopes with hydro-geochemistry data of 56 water samples in detail in the MRB in northeast Thailand. The dissolved Sr contents and 87Sr/86Sr isotopic ratios were reported to be 8.7–344.6 μg/L (average 126.9 μg/L) and 0.7085–0.7281 (average 0.7156), respectively. The concentrations of dissolved Sr in the mainstream slightly decreased from upstream to downstream, while the variation trend of 87Sr/86Sr was on the contrary. Correlation analysis showed that Na+ strongly correlated with Cl− (0.995, p < 0.01), while Ca2+ exhibited weak relationships with SO42− (0.356, p < 0.01). Samples of the MRB exhibited lower Mg2+/Na+, Ca2+/Na+, HCO3−/Na+ and 1000Sr/Na ratios, and gathered around the end-member of evaporite dissolution, with slight shift to silicate weathering end-member, demonstrating the dominant contribution of evaporite dissolution and silicate weathering on dissolved loads. Comparing with data of major world rivers from previous research, our results remained consistency with rivers draining through similar geological conditions. The dissolved Sr flux to the adjacent Mekong River was estimated to be 20.7 tons/year. In accordance with the forward model, silicate weathering rate and CO2 consumption rate during dry season were calculated to be 0.73 tons/km2/year and 1.94 × 104 mol/km2/year, and may get underestimated due to intense water consumption by extensive agricultural activities. The superimposed effect of anthropogenic impacts on the water environment could enhance chemical weathering, and thus should be taken into account in regional ion cycles and carbon budgets. These findings highlight the coupling analysis of Sr isotopes and hydro-geochemistry in Earth surface processes and provide basic investigation for sustainable regional water treatment mechanisms in the pan basin of the Mekong River.
Collapse
|
8
|
Wang Q, Zhou L, Little SH, Liu J, Feng L, Tong S. The geochemical behavior of Cu and its isotopes in the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138428. [PMID: 32339845 DOI: 10.1016/j.scitotenv.2020.138428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Copper (Cu) isotopes can be a useful tool to constrain the interaction of water and the environment, but they have not been widely applied to riverine research in the preceding decades. Isotopically heavy Cu in rivers (global average: about +0.7‰) compared to rocks (at about 0‰) has been attributed to: a) the mobilization of heavy Cu during oxidative weathering, and b) partitioning between an isotopically heavy, organically complexed dissolved pool, and an isotopically light pool adsorbed to particulates. Here, we report Cu concentrations and isotope ratios of the main stream of the Yangtze River and its several tributaries. We find that the Yangtze River exhibits anomalously heavy Cu isotope compositions compared to other rivers: δ65CuNIST 976 of dissolved Cu for the main stream, from Chongqing to Nanjing, ranges from +0.59 to +1.65‰, while the tributaries vary from +0.48 to +1.20‰. A negative correlation is observed between Cu concentrations and Cu isotope compositions. We attribute the anomalous Cu isotope geochemistry of the Yangtze River to two key features of the basin: first, the influence of the Three Gorges Dam (TGD), and second, the presence of extensive Cu sulphide deposits close to the lower reaches of the river. In the upper reaches, downstream towards the TGD, δ65Cu values increase as Cu concentrations decrease, reflecting the preferential adsorption of light Cu by sedimenting particulate phases. δ65Cu values continue to increase to a maximum of +1.65‰ in the middle reaches, at Guangxingzhou. The lower reaches, from Jiujiang to Tongling, are characterized by less positive values of δ65Cu (at about +0.60‰), due to the oxidative weathering of Cu sulphide deposits. The overall Cu-δ65Cu trend in the river reflects mixing of these waters from the lower reaches, influenced by Cu sulphides, with waters from upstream, which have lower Cu concentrations and elevated δ65Cu values.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Lian Zhou
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China.
| | - Susan H Little
- Department of Earth Sciences, University College London, Gower Street, WC1E 6BT, London
| | - Jinhua Liu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Lanping Feng
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Shuoyun Tong
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
9
|
Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau. WATER 2019. [DOI: 10.3390/w11081631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau.
Collapse
|
10
|
Chen Y, Wang L, Liang T, Xiao J, Li J, Wei H, Dong L. Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1091-1104. [PMID: 30284697 DOI: 10.1007/s10653-018-0204-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Deteriorating lake water quality has become a serious environmental issue around the globe. Heavy metals dissolved in the overlying water of lakes are notably more toxic than those found in lake sediment. Given this, we sought to better understand the characteristics of particular major ion and dissolved heavy metal in Dongting Lake-the second largest freshwater lake in China. Overlying water samples were collected from Dongting Lake to investigate the major ion geochemistry and to examine the relationship between the major ions and dissolved heavy metals. Chemical analysis of the overlying water showed that the average cation concentration was the highest for Ca2+, followed by Mg2+, Na+, and K+. Similarly, the highest anion concentration was SO42-, followed by Cl-, NO3-, and HCO3-. Total dissolved solids in the overlying water of Dongting Lake ranged from 66.19 to 159.20 mg/L, with an average value of 93.13 mg/L. The predominant hydrochemical type was Ca-SO4. The mean concentrations of dissolved heavy metal in both surface and deep waters decreased in the following order: Zn > Cr > Ni > Cu > Pb > Cd. Importantly, all of the selected heavy metals tested in the overlying water were lower than the corresponding toxicity reference values. Co-occurrence network analyses were performed and compared the correlations between all measured major ions and heavy metals. Results of the subsequent principal component analyses revealed that heavy metal levels in the aquatic environment primarily originated from natural processes and were enhanced by anthropogenic activities.
Collapse
Affiliation(s)
- Yan Chen
- Department of Water Environmental Planning, Chinese Academy for Environmental Planning, Beijing, 100012, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jing Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haicheng Wei
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xining, 810008, China
| | - Linlin Dong
- Suzhou Academy of Agricultural Sciences, Suzhou, 215155, China
| |
Collapse
|
11
|
Zou J, Yang Y, Zhang H. Sr isotope fingerprinting of multiple water-source characterizations and its environmental implications in a complex lake-groundwater system, Wudalianchi, Northeast China. CHEMOSPHERE 2018; 212:1095-1103. [PMID: 30286539 DOI: 10.1016/j.chemosphere.2018.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
The Wudalianchi UNESCO Global Geopark (Northeast China) is famous for its rare cold mineral springs and its associated five hydrologically connected barrier lakes. During this study, strontium (Sr) isotopes (87Sr/86Sr) were studied along with other geochemical data to determine the source of water within the region's deep and shallow mineral springs, shallow wells, and lakes. These waters were characterized by a relatively narrow range of 87Sr/86Sr ratios (0.70648-0.70816). Those ratios were not different in shallow and deep mineral spring waters, and probably reflect ratios associated with potassium volcanic rocks in the area as expected. When combined with 1/Sr ratios, it appears that the shallow mineral springs were derived from upwelling of deep mineral springs and had a composition as an endmember of other waters. Shallow mineral springs and wells exhibited large variations in Cl-/Sr2+ and NO3-/Sr2+ ratios, owing to the input of fertilizers. Farmland runoff and waters from Yaoquan Lake that drains an agricultural area also appear to have been influenced by fertilizers and showed 87Sr/86Sr ratios intermediate between wells and mineral springs. Sewage input is likely responsible for this difference and a slight elevation of the ratios in the wells. The Wudalianchi lakes had similar variations in 87Sr/86Sr and 1/Sr ratios, suggesting their rapid response to terrestrial runoff and the supply of shallow mineral springs. Strontium isotope data can be combined with water chemistry to emphasize water-rock interaction and refine the region's existing model of water interaction in surface and subsurface environments.
Collapse
Affiliation(s)
- Junyu Zou
- Key Lab of Groundwater Resources & Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun 130021, China.
| | - Yuesuo Yang
- Key Lab of Groundwater Resources & Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun 130021, China; Key Lab of Eco-Restoration of Regional Polluted Environment (Shenyang University), Ministry of Education, Shengyang 110044, China
| | - Haiyan Zhang
- Key Lab of Groundwater Resources & Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun 130021, China; Hydrogeology and Engineering Geology Survey of Heilongjiang Province, Haerbin 150030, China
| |
Collapse
|
12
|
Wu Y, Luo Z, Luo W, Ma T, Wang Y. Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 218:44-58. [PMID: 30391046 DOI: 10.1016/j.jconhyd.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Karst water is an important resource for drinking water supply. To determine the impacts of urbanization on karst water quality, we performed a case study in the rapidly urbanized Guiyang-Anshun region, Guizhou province, southwestern China. We interpret data from regional reconnaissance and long-term monitoring related to major ion chemistry, stable isotopes (Sr, C, S (for SO42-), and N and O (for NO3-)), remote sensing, and socio-economic development. We identify groundwater SO42- and NO3- sources by combined use of δ34S and Ca2+/Na+ molar ratio and δ15N and NO3-/Na+ ratio, respectively. We find that carbonate, sulfide, silicate, and gypsum weathering, anthropogenic inputs, and hydrodynamic conditions account for karst water composition and its seasonal variations. Atmospheric N and S deposition, nitrification of soil N, and sulfide oxidation control the background levels of groundwater NO3- and SO42-. The elevated concentrations of NO3- and SO42- at residential sites in rural and urban areas mainly arise from domestic sewage. Nitrification and fertilizer application are major reasons for the high levels of NO3- in regional groundwater systems. Vegetated/forested land area decreases as constructed land area increases, which results in declining biogenic CO2 production and inputs into the aquifer. Although the local government has attempted to control SO2 emissions, substantial increases in fossil fuel utilization and fertilizer consumption as well as population growth may have increased atmospheric HNO3 deposition and induced increasingly severe contamination of groundwater with NO3- and SO42-. Our results improve the understanding of urbanization impacts on water quality and are important for water resource management in karst regions.
Collapse
Affiliation(s)
- Ya Wu
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Zhaohui Luo
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Wei Luo
- Guizhou Institute of Geo-Environment Monitoring, 550004 Guiyang, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
13
|
Sr-Nd isotope stratification along water depth: An example from Datong hydrological station of Yangtze River. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5311-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Seasonal variations in the Sr-Nd isotopic compositions of suspended particulate matter in the lower Changjiang River: Provenance and erosion constraints. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4589-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|