1
|
Maurya R, Pandey AK. Importance of protozoa Tetrahymena in toxicological studies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140058. [PMID: 32599397 DOI: 10.1016/j.scitotenv.2020.140058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Tetrahymena is a single-cell eukaryotic organism present in all aquatic environments and can easily be maintained in laboratory conditions in a cost-effective manner. This review gives a brief description of the physiology of Tetrahymena, culture handling, and maintenance of Tetrahymena species. The review article focuses on various toxicological bioassays at different biological organizational (biochemical, individual, population, and community) levels. Furthermore, some techniques such as single cell gel electrophoresis (SCGE) and microcalorimetry assay are also available to investigate the effect of xenobiotics on the integrity of DNA and metabolic state of Tetrahymena species respectively. The article also discusses how the general physiology, behavioural activities and different organelles of Tetrahymena could be useful in toxicological studies. The strength and limitations of Tetrahymena over other model organisms are also discussed. This article also provides suggestions to overcome some problems related to toxicity assessment. Various aspects associated with variability in results, toxicity endpoints, characteristics of organisms and responses against xenobiotic substances (old and new emerging toxicants) are considered.
Collapse
Affiliation(s)
- Renuka Maurya
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Alok Kumar Pandey
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Benzyl Alcohol, Benzoic Acid and its Salts, and Benzyl Benzoate. Int J Toxicol 2018; 36:5S-30S. [PMID: 29243541 DOI: 10.1177/1091581817728996] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzyl alcohol, benzoic acid and its salts, and benzyl benzoate function mostly as fragrance ingredients/preservatives in cosmetic products. The Cosmetic Ingredient Review Expert Panel previously established concentration limits for benzyl alcohol, benzoic acid, and sodium benzoate in cosmetics and determined that the available data were insufficient to support the safety of these ingredients during inhalation exposure. After reviewing newly available data, it was concluded that benzyl alcohol, benzoic acid and its salts, and benzyl benzoate are safe in the present practices of use and concentration described in this safety assessment.
Collapse
Affiliation(s)
- Wilbur Johnson
- 1 Cosmetic Ingredient Review Scientific Analyst/Writer, Washington, DC, USA
| | - Wilma F Bergfeld
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Donald V Belsito
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Ronald A Hill
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Curtis D Klaassen
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Daniel C Liebler
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - James G Marks
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Ronald C Shank
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Thomas J Slaga
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Paul W Snyder
- 2 Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - F Alan Andersen
- 3 Cosmetic Ingredient Review Former Director, Washington, DC, USA
| |
Collapse
|
3
|
Shi J, Xu B, Sun X, Ma C, Yu C, Zhang H. Light induced toxicity reduction of silver nanoparticles to Tetrahymena Pyriformis: effect of particle size. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:53-60. [PMID: 23454310 DOI: 10.1016/j.aquatox.2013.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 05/16/2023]
Abstract
As a result of the extensive application of silver nanoparticles (AgNPs), their potential hazards, once they are released into the natural environment, are of great concern to people. Since silver is very sensitive to light, the toxicity of AgNPs released into the natural environment will be inevitably affected by light. The aim of this study was to investigate the relationship between light, toxicity, and particle size of AgNPs and deduce the possible mechanism of any interaction. Our study revealed that there was negative correlation between the particle size and the toxicity: small AgNPs (5-10nm) had higher toxicity than large AgNPs (15-25nm) to Tetrahymena pyriformis (T. pyriformis) under dark condition. Comparing the size dependent AgNPs toxicity under dark and light conditions, the effect of light to size dependent AgNPs toxicity was ascertained. The results indicated that AgNPs toxicity was decreased by light and the most important discovery was that the change of size dependent AgNPs toxicity had significant difference under light irradiation. The decrease of small AgNPs toxicity induced by light was more notable than large AgNPs. The decreased level of cell toxicity for small AgNPs was 32±0.7%, whereas it was only 10.6±5.2% for large AgNPs kept 24h under light irradiation. The further investigation indicated that the above changes induced by light can be attributed to the decrease of released silver ions, particle growth and aggregation of AgNPs under light irradiation. The obtained results showed that the light irradiation can promote the rapid growth of small AgNPs and result in the obvious increase of particle size and serious aggregation. These phenomena would induce the decrease of silver ions released from small AgNPs, which is responsible for the remarkable decrease of toxicity for small AgNPs.
Collapse
Affiliation(s)
- Junpeng Shi
- Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China
| | | | | | | | | | | |
Collapse
|
4
|
Hatzi VI, Terzoudi GI, Spiliopoulou CA, Stefanidou ME. Toxicogenomic evaluation of chemically induced chromosomal imbalance using DNA image analysis. Toxicol Mech Methods 2012; 23:303-7. [PMID: 23215871 DOI: 10.3109/15376516.2012.756091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of carcinogenic potential of a variety of chemical agents such as food additives and drugs of abuse via the application of various in vitro methodologies constitutes the first step for the evaluation of their toxicogenomic profile. Considering the chromosomal theories of carcinogenesis, where it is stated that aneuploidy and chromosomal imbalance (instability) are among the main causes of carcinogenesis, chemicals capable to induce such changes in the cells could be considered as potential carcinogens. Chromosomal imbalance and aneuploidy directly affect the overall DNA content of the exposed cell as well as other cellular morpho- and densitometric features. These features can be measured by means of computerized DNA image analysis technologies and include DNA content (DNA Index), Proliferation Index, Ploidy Balance, Degree of Aneuploidy, Skewness and Kurtosis. Considering the enormous number of untested chemicals and drugs of abuse that follow non-genotoxic mechanisms of carcinogenesis, the establishment of a reliable technology for the estimation of chemically induced chromosomal imbalance is of particular importance in toxicogenomic studies. In the present article and based on our previously published work, we highlight the advantages of the applications of DNA image analysis technology in an easy-to-use experimental model for the evaluation of the potential risk of various chemicals. The use of this technology for the detection of chemically induced chromosomal instability will contribute to the development of safer regulatory directives concerning the use of chemicals in food and pharmaceutical industry, as well as in the clarification of mechanisms of action of drugs of abuse.
Collapse
Affiliation(s)
- Vasiliki I Hatzi
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research, NCSR Demokritos , Athens , Greece.
| | | | | | | |
Collapse
|
5
|
Loutsidou AC, Hatzi VI, Chasapis CT, Terzoudi GI, Spiliopoulou CA, Stefanidou ME. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate. ACTA BIOLOGICA HUNGARICA 2012; 63:483-9. [PMID: 23134605 DOI: 10.1556/abiol.63.2012.4.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.
Collapse
|
6
|
Montagnes D, Roberts E, Lukeš J, Lowe C. The rise of model protozoa. Trends Microbiol 2012; 20:184-91. [PMID: 22342867 DOI: 10.1016/j.tim.2012.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 12/23/2022]
Abstract
It is timely to evaluate the role of protozoa as model organisms given their diversity, abundance and versatility as well as the economic and ethical pressures placed on animal-based experimentation. We first define the term model organism and then examine through examples why protozoa make good models. Our examples reflect major issues including evolution, ecology, population and community biology, disease, the role of organelles, ageing, space travel, toxicity and teaching. We conclude by recognising that although protozoa may in some cases not completely mimic tissue- or whole-animal-level processes, they are extremely flexible and their use should be embraced. Finally, we offer advice on obtaining emergent model protozoa.
Collapse
Affiliation(s)
- David Montagnes
- Institute of Integrative Biology, University of Liverpool, BioScience Building, Crown Street, Liverpool L69 7ZB, UK.
| | | | | | | |
Collapse
|
7
|
Stefanidou ME, Hatzi VI, Terzoudi GI, Loutsidou AC, Maravelias CP. Effect of cocaine and crack on the ploidy status of Tetrahymena pyriformis: a study using DNA image analysis. Cytotechnology 2010; 63:35-40. [PMID: 21057873 DOI: 10.1007/s10616-010-9318-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/20/2010] [Indexed: 11/30/2022] Open
Abstract
The effect of cocaine and crack on the ploidy status of Feulgen-stained Tetrahymena pyriformis macronuclei using computerized DNA image analysis system was tested. For this purpose, selected doses of 5, 10 and 20 μg (per mL culture) of both drugs were administered for 2, 5 and 20 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the following parameters: Ploidy Balance (PB), Degree of Aneuploidy (DA), skewness and kurtosis. The results have shown a positive effect of both cocaine and crack on PB and on DA of T. pyriformis macronuclei. In particular, our results reveal that the aneugenic effect (which is expressed as a decrease in PB and an increase in DA) of cocaine on T. pyriformis macronuclei follows a dose-dependent manner, while crack induces aneuploidy in a dose-independent manner. Changes in the PB and DA values would induce a disturbance in the cellular density and heterogeneity of chromatin and the increase in skewness and kurtosis values after exposure of T. pyriformis to both drugs, did confirm this hypothesis. These observations were further correlated with alterations in the chromosomal segregation and with damage in mitotic spindle microtubules observed previously. In this study the impact of cocaine and crack on genomic instability and carcinogenesis was further supported and T. pyriformis can be proposed as a model organism to test the nuclear ploidy status after exposure to harmful chemicals and drugs.
Collapse
Affiliation(s)
- Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 M. Asias str., Goudi 115.27, Athens, Greece,
| | | | | | | | | |
Collapse
|