1
|
Uy JP, Shin K, Buthmann JL, Kircanski K, LeMoult J, Berens AE, Gotlib IH. Exposure to diesel-related particulate matter, cortisol stress responsivity, and depressive symptoms in adolescents. Psychoneuroendocrinology 2024; 171:107214. [PMID: 39426039 DOI: 10.1016/j.psyneuen.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Exposure to air pollution is associated with higher risk for psychopathology; however, the mechanisms underlying this association are not clear. Dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress has been implicated in depression. Here, we estimated annual exposure to particulate matter (PM) from diesel emissions in 170 9- to 15-year-old adolescents (56 % female) using their residential addresses and data from nearby monitoring sites. We obtained salivary cortisol samples from participants while they completed a social stress task and calculated area under the curve with respect to ground (AUCg) and with respect to increase (AUCi) in order to assess cortisol responsivity during stress. Participants also reported on their depressive symptoms and sleep disturbances. Greater exposure to diesel PM was associated with lower cortisol output (AUCg) during stress, which was associated with higher depressive symptoms, particularly for adolescents with more sleep disturbances. Importantly, these effects were independent of household and neighborhood socioeconomic disadvantage and exposure to early adversity. Thus, HPA-axis dysfunction may be one mechanism through which environmental pollutants affect adolescents' mental health.
Collapse
Affiliation(s)
- Jessica P Uy
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Katy Shin
- Department of Psychology, Stanford University, Stanford, CA, USA
| | | | - Katharina Kircanski
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Joelle LeMoult
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Anne E Berens
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Jetton TL, Galbraith OT, Peshavaria M, Bonney EA, Holmén BA, Fukagawa NK. Sex-specific metabolic adaptations from in utero exposure to particulate matter derived from combustion of petrodiesel and biodiesel fuels. CHEMOSPHERE 2024; 346:140480. [PMID: 37879369 PMCID: PMC10841900 DOI: 10.1016/j.chemosphere.2023.140480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Maternal exposure to particulate matter derived from diesel exhaust has been shown to cause metabolic dysregulation, neurological problems, and increased susceptibility to diabetes in the offspring. Diesel exhaust is a major source of air pollution and the use of biodiesel (BD) and its blends have been progressively increasing throughout the world; however, studies on the health impact of BD vs. petrodiesel combustion-generated exhaust have been controversial in part, due to differences in the chemical and physical nature of the associated particulate matter (PM). To explore the long-term impact of prenatal exposure, pregnant mice were exposed to PM generated by combustion of petrodiesel (B0) and a 20% soy BD blend (B20) by intratracheal instillation during embryonic days 9-17 and allowed to deliver. Offspring were then followed for 52 weeks. We found that mother's exposure to B0 and B20 PM manifested in striking sex-specific phenotypes with respect to metabolic adaptation, maintenance of glucose homeostasis, and medial hypothalamic glial cell makeup in the offspring. The data suggest PM exposure limited to a narrower critical developmental window may be compensated for by the mother and/or the fetus by altered metabolic programming in a marked sex-specific and fuel-derived PM-specific manner, leading to sex-specific risk for diseases related to environmental exposure later in life.
Collapse
Affiliation(s)
- Thomas L Jetton
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA.
| | - Oban T Galbraith
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA
| | - Mina Peshavaria
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, USA
| | | | - Britt A Holmén
- Larner College of Medicine, Department of Civil & Environmental Engineering, College of Engineering and Mathematical Sciences, USA
| | - Naomi K Fukagawa
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA; University of Vermont, Burlington, VT 05405, USA; USDA-ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705-2350, USA
| |
Collapse
|
3
|
Du Y, Zhao F, Tao R, Liu B. Effect of forceful suction and air disinfection machines on aerosol removal. BMC Oral Health 2023; 23:652. [PMID: 37684672 PMCID: PMC10492290 DOI: 10.1186/s12903-023-03369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUNDS Dental procedures involving drilling and grinding can produce a significant amount of suspended aerosol particles (PM) and bioaerosols. This study aims to analyze the size and concentration of aerosol particles generated during drilling and to investigate the effectiveness of two air exchange systems, namely forceful suction (FS) and air disinfection machines (DM), in removing PM. METHODS For this study, 100 extracted permanent teeth were collected and divided into three groups: without suction (n = 50), suction with forceful suction (n = 25), and suction with air disinfection machines (n = 25). The removal rate of suspended aerosol particles was analyzed using particle counters and air data multimeter. RESULTS When drilling and grinding were performed without vacuum, 0.75% of the aerosol particles generated were PM2.5-10, 78.25% of total suspended aerosol particles (TSP) were PM2.5, and 98.68% of TSP were PM1. The nanoanalyzer measurements revealed that the aerodynamic diameter of most aerosol particles was below 60 nm, with an average particle diameter of 52.61 nm and an average concentration of 2.6*1011 ultrafine aerosol particles. The air change per hour (ACH) was significantly lower in the air disinfection machines group compared to the forceful suction group. Additionally, the number of aerosol particles and mass concentration was significantly lower in the air disinfection machines group compared to the forceful suction group in terms of PM2.5 levels. However, the forceful suction group also reduced the mass concentration in PM10 level than the air disinfection machines group. CONCLUSION In conclusion, the air exchange system can reduce the aerosol particles generated during drilling and grinding. Comparing the two air exchange systems, it was found that the air disinfection machines group reduces the number of aerosol particles and mass concentration in PM2.5 levels, while the forceful suction group reduces the mass concentration in PM10 level.
Collapse
Affiliation(s)
- Yaru Du
- Department of hospital allergy, Medical department, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fei Zhao
- Department of Periodontal I, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ran Tao
- Medical department, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bing Liu
- Department of Periodontal I, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
4
|
Sly PD, Vilcins D. Climate impacts on air quality and child health and wellbeing: Implications for Oceania. J Paediatr Child Health 2021; 57:1805-1810. [PMID: 34792251 DOI: 10.1111/jpc.15650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Despite the enormous gains in reducing child mortality resulting from the United Nations Millennium Development Goals, in some ways children's future wellbeing has never been under greater threat. Climate and environmental change, primarily driven by poor air quality, represents a major threat to child health and wellbeing, through both direct and indirect effects. Climate change has multiple environmental consequences impacting negatively on child health and wellbeing, including increases in ambient temperature, rising atmospheric carbon dioxide (CO2) , altered distribution of rainfall, ocean warming, rising sea level and more frequent and severe adverse weather events. Multiple pathways link these exposures to a wide variety of adverse health outcomes. Countries in Oceania are especially likely to be subjected to the effects of increases in ambient temperature, altered distribution of rainfall, ocean warming and sea level rise. These changes pose a significant risk to children and provide a moral imperative for us to act to protect child health.
Collapse
Affiliation(s)
- Peter D Sly
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Dwan Vilcins
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Extraction and Quality Evaluation of Biodiesel from Six Familiar Non-Edible Plants Seeds. Processes (Basel) 2021. [DOI: 10.3390/pr9050840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Biodiesel produced from non-edible plant sources is cost-effective, biodegradable, environment friendly, and compatible with petro-diesel, but new sources and extraction processes still need to be discovered. Here, we explored the fuel properties of seeds from six non-edible plant sources, including Sapindus mukorossi (Soapnut, SP), Vernicia fordii (Tung, TO), Ricinus communis (Castor, CA), Toona sinensis (Juss. TS), Ailanthus altissima (Heaven tree, AA), and Linum usitatissimum L. (Lin seed, LS) from China. The optimum extraction conditions were obtained by optimizing the most important variables (reaction temperature, ratio of alcohol to vegetable oil, catalyst, mixing intensity, and purity of reactants) that influence the transesterification reaction of the biodiesel. All six plants contained high seed oil content (SOC; % w/v) with the highest in the TO-54.4% followed by SP-51%, CA-48%, LS-45%, AA-38%, and TS-35%, respectively, and all expressed satisfactory physico-chemical properties as per international standards of ASTM D6751 and EN14214. Our data provide a scientific basis for growing these plants in unproductive agricultural lands as an alternative energy sources for biodiesel production either standalone or blended with petro-diesel.
Collapse
|
6
|
Verma P, Jafari M, Zare A, Pickering E, Guo Y, Osuagwu CG, Stevanovic S, Brown R, Ristovski Z. Soot particle morphology and nanostructure with oxygenated fuels: A comparative study into cold-start and hot-start operation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116592. [PMID: 33582631 DOI: 10.1016/j.envpol.2021.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the morphology and nanostructure of soot particles during cold-start and hot-start engine operation of a diesel engine using oxygenated fuels. The soot samples were analysed using transmission electron microscopy. The oxygen content in the fuel was varied between 0 and 12%. The results showed that the primary particles during cold-start have significantly smaller size when compared to hot-start engine operation. The addition of oxygenated fuels also resulted in smaller sized primary particles. Smaller radius of gyration and higher fractal dimension of soot aggregates during cold-start would mean smaller aggregate size with a more compact structure. Shorter fringes with a higher inter-fringe spacing for cold-start would mean lower graphitisation of soot particles that could be related to higher oxidation reactivity of soot particles.
Collapse
Affiliation(s)
- Puneet Verma
- International Laboratory of Air Quality and Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Biofuel Engine Research Facility, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Mohammad Jafari
- International Laboratory of Air Quality and Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Biofuel Engine Research Facility, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ali Zare
- Flow, Aerosols & Thermal Energy (FATE) Group, School of Engineering, Deakin University, VIC, 3216, Australia
| | - Edmund Pickering
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yi Guo
- International Laboratory of Air Quality and Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Chiemeriwo Godday Osuagwu
- International Laboratory of Air Quality and Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Svetlana Stevanovic
- Flow, Aerosols & Thermal Energy (FATE) Group, School of Engineering, Deakin University, VIC, 3216, Australia
| | - Richard Brown
- Biofuel Engine Research Facility, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Zoran Ristovski
- International Laboratory of Air Quality and Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Biofuel Engine Research Facility, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
7
|
Can-Terzi B, Ficici M, Tecer LH, Sofuoglu SC. Fine and coarse particulate matter, trace element content, and associated health risks considering respiratory deposition for Ergene Basin, Thrace. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142026. [PMID: 33254949 DOI: 10.1016/j.scitotenv.2020.142026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 05/21/2023]
Abstract
Ergene Basin is located in Thrace, Turkey, where industries are densely populated. This study aimed to determine exposure of people living in Ergene Basin (Çorlu and Çerkezköy) to fine and coarse PM, and its potentially toxic element (PTE) content by considering variation in respiratory airway deposition rates with daily activities and PM particle size by employing deposition models of International Commission on Radiological Protection and Multiple Path Particle Dosimetry. Fine and coarse PM samples were collected daily for a year at points in Çorlu and Çerkezköy representing urban and industrial settings, respectively. A questionnaire survey was conducted in the study area to obtain time-activity budgets, and associated variation was included in the health risk assessment by considering time-activity-dependent inhalation rates. The studied PTEs were Al, As, Ba, Cd, Cr, Co, Mn, Ni, Pb, and Se. The mean fine and coarse PM concentrations were measured as 23 and 14 μg/m3 in Çorlu, and 22 and 12 μg/m3 in Çerkezköy, respectively. The only PTE that exceeded acceptable risk in terms of total carcinogenic risk was Cr. Non-carcinogenic risks of all the PTEs including Cr were below the threshold. The use of deposition fractions in the health risk assessment (HRA) calculations was found to prevent overestimation of health risks by at least 91% and 87% for fine and coarse PM, respectively, compared to the regular HRA. Minor differences in risk between Çorlu and Çerkezköy suggest that urban pollution sources could be at least as influential on human health as industrial sources.
Collapse
Affiliation(s)
- Begum Can-Terzi
- Dept. of Environmental Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Merve Ficici
- Dept. of Environmental Engineering, Namık Kemal University, Corlu, Tekirdag, Turkey
| | - Lokman Hakan Tecer
- Dept. of Environmental Engineering, Namık Kemal University, Corlu, Tekirdag, Turkey.
| | - Sait C Sofuoglu
- Dept. of Environmental Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
8
|
Fang Q, Zhao Q, Chai X, Li Y, Tian S. Interaction of industrial smelting soot particles with pulmonary surfactant: Pulmonary toxicity of heavy metal-rich particles. CHEMOSPHERE 2020; 246:125702. [PMID: 31927361 DOI: 10.1016/j.chemosphere.2019.125702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Inhalable particles can influence the interfacial behavior of pulmonary surfactant (PS) resulting in various pulmonary diseases. However, the effects of actually airborne particles on the interfacial behavior of PS and its role in the alteration for soluble metal fraction in particles are entirely unexplored. Herein, we investigated the interaction of PS extracted from porcine lungs with smelting soot fine particles as a model of inhaled heavy metal-rich particles. Our results showed that the phase behavior and foamability of PS were obviously altered in the presence of smelting soot fine particles. In addition, the soluble heavy metals in smelting soot fine particles notably increased in the presence of PS as compared to that of saline solution. Further experiments conducted by adding PS's major components (dipalmitoylphosphatidylcholine, DPPC; bovine serum albumin, BSA) demonstrated that comparison of DPPC, adsorbed BSA is beneficial for the dissolution of heavy metals in smelting soot fine particles. Dynamic light scattering experiments verified that the well dispersion of smelting soot fine particles in the presence of BSA may be responsible for the higher solubility of heavy metals. These findings indicate that PS's interfacial behavior change and PS-enhanced solubilization release of metal components may increase the potentially pulmonary risk in the exposure of airborne fine particles enriched with heavy metals.
Collapse
Affiliation(s)
- Qi Fang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Xiaolong Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
9
|
An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines. ENERGIES 2019. [DOI: 10.3390/en12101987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rising pollution levels resulting from vehicular emissions and the depletion of petroleum-based fuels have left mankind in pursuit of alternatives. There are stringent regulations around the world to control the particulate matter (PM) emissions from internal combustion engines. To this end, researchers have been exploring different measures to reduce PM emissions such as using modern combustion techniques, after-treatment systems such as diesel particulate filter (DPF) and gasoline particulate filter (GPF), and alternative fuels. Alternative fuels such as biodiesel (derived from edible, nonedible, and waste resources), alcohol fuels (ethanol, n-butanol, and n-pentanol), and fuel additives have been investigated over the last decade. PM characterization and toxicity analysis is still growing as researchers are developing methodologies to reduce particle emissions using various approaches such as fuel modification and after-treatment devices. To address these aspects, this review paper studies the PM characteristics, health issues, PM physical and chemical properties, and the effect of alternative fuels such as biodiesel, alcohol fuels, and oxygenated additives on PM emissions from diesel engines. In addition, the correlation between physical and chemical properties of alternate fuels and the characteristics of PM emissions is explored.
Collapse
|
10
|
Magnusson P, Dziendzikowska K, Oczkowski M, Øvrevik J, Eide DM, Brunborg G, Gutzkow KB, Instanes C, Gajewska M, Wilczak J, Sapierzynski R, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Duale N, Gromadzka-Ostrowska J, Myhre O. Lung effects of 7- and 28-day inhalation exposure of rats to emissions from 1st and 2nd generation biodiesel fuels with and without particle filter - The FuelHealth project. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:8-20. [PMID: 30685595 DOI: 10.1016/j.etap.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.
Collapse
Affiliation(s)
- Pål Magnusson
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Dag M Eide
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Gunnar Brunborg
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Kristine B Gutzkow
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Christine Instanes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Rafał Sapierzynski
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Nur Duale
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Oddvar Myhre
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway.
| |
Collapse
|
11
|
Valand R, Magnusson P, Dziendzikowska K, Gajewska M, Wilczak J, Oczkowski M, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Marcus Eide D, Sapierzyński R, Gromadzka-Ostrowska J, Duale N, Øvrevik J, Myhre O. Gene expression changes in rat brain regions after 7- and 28 days inhalation exposure to exhaust emissions from 1st and 2nd generation biodiesel fuels - The FuelHealth project. Inhal Toxicol 2018; 30:299-312. [DOI: 10.1080/08958378.2018.1520370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Renate Valand
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Magnusson
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Katarzyna Dziendzikowska
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malgorzata Gajewska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dag Marcus Eide
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rafał Sapierzyński
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Nur Duale
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Oddvar Myhre
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
12
|
Lankoff A, Brzoska K, Czarnocka J, Kowalska M, Lisowska H, Mruk R, Øvrevik J, Wegierek-Ciuk A, Zuberek M, Kruszewski M. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19357-19374. [PMID: 28674953 PMCID: PMC5556143 DOI: 10.1007/s11356-017-9561-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/14/2017] [Indexed: 05/05/2023]
Abstract
Biodiesels represent more carbon-neutral fuels and are introduced at an increasing extent to reduce emission of greenhouse gases. However, the potential impact of different types and blend concentrations of biodiesel on the toxicity of diesel engine emissions are still relatively scarce and to some extent contradictory. The objective of the present work was to compare the toxicity of diesel exhaust particles (DEP) from combustion of two 1st-generation fuels: 7% fatty acid methyl esters (FAME; B7) and 20% FAME (B20) and a 2nd-generation 20% FAME/HVO (synthetic hydrocarbon biofuel (SHB)) fuel. Our findings indicate that particulate emissions of each type of biodiesel fuel induce cytotoxic effects in BEAS-2B and A549 cells, manifested as cell death (apoptosis or necrosis), decreased protein concentrations, intracellular ROS production, as well as increased expression of antioxidant genes and genes coding for DNA damage-response proteins. The different biodiesel blend percentages and biodiesel feedstocks led to marked differences in chemical composition of the emitted DEP. The different DEPs also displayed statistically significant differences in cytotoxicity in A549 and BEAS-2B cells, but the magnitude of these variations was limited. Overall, it seems that increasing biodiesel blend concentrations from the current 7 to 20% FAME, or substituting 1st-generation FAME biodiesel with 2nd-generation HVO biodiesel (at least below 20% blends), affects the in vitro toxicity of the emitted DEP to some extent, but the biological significance of this may be moderate.
Collapse
Affiliation(s)
- Anna Lankoff
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland.
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland.
| | - Kamil Brzoska
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland
| | - Joanna Czarnocka
- Automotive Industry Institute, 55 Jagiellońska Str., 03-301, Warsaw, Poland
| | - Magdalena Kowalska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Halina Lisowska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska Str., 02-787, Warsaw, Poland
| | - Johan Øvrevik
- Division of Environmental Medicine Norwegian Institute of Public Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - Aneta Wegierek-Ciuk
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Mariusz Zuberek
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland
- Independent Laboratory of Molecular Biology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| |
Collapse
|
13
|
Yuan X, Leng L, Huang H, Chen X, Wang H, Xiao Z, Zhai Y, Chen H, Zeng G. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. CHEMOSPHERE 2015; 120:645-652. [PMID: 25462309 DOI: 10.1016/j.chemosphere.2014.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/22/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI.
Collapse
Affiliation(s)
- Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lijian Leng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaohong Chen
- School of Business, Central South University, Changsha 410083, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhihua Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hongmei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
14
|
Ranzan C, Ranzan L, Trierweiler LF, Trierweiler JO. Sulfur Determination in Diesel using 2D Fluorescence Spectroscopy and Linear Models. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ifacol.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Bhavaraju L, Shannahan J, William A, McCormick R, McGee J, Kodavanti U, Madden M. Diesel and biodiesel exhaust particle effects on rat alveolar macrophages with in vitro exposure. CHEMOSPHERE 2014; 104:126-33. [PMID: 24268344 PMCID: PMC3962714 DOI: 10.1016/j.chemosphere.2013.10.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/23/2013] [Accepted: 10/30/2013] [Indexed: 05/23/2023]
Abstract
Combustion emissions from diesel engines emit particulate matter which deposits within the lungs. Alveolar macrophages (AMs) encounter the particles and attempt to engulf the particles. Emissions particles from diesel combustion engines have been found to contain diverse biologically active components including metals and polyaromatic hydrocarbons which cause adverse health effects. However little is known about AM response to particles from the incorporation of biodiesel. The objective of this study was to examine the toxicity in Wistar Kyoto rat AM of biodiesel blend (B20) and low sulfur petroleum diesel (PDEP) exhaust particles. Particles were independently suspended in media at a range of 1-500μgmL(-1). Results indicated B20 and PDEP initiated a dose dependent increase of inflammatory signals from AM after exposure. After 24h exposure to B20 and PDEP gene expression of cyclooxygenase-2 (COX-2) and macrophage inflammatory protein 2 (MIP-2) increased. B20 exposure resulted in elevated prostaglandin E2 (PGE2) release at lower particle concentrations compared to PDEP. B20 and PDEP demonstrated similar affinity for sequestration of PGE2 at high concentrations, suggesting detection is not impaired. Our data suggests PGE2 release from AM is dependent on the chemical composition of the particles. Particle analysis including measurements of metals and ions indicate B20 contains more of select metals than PDEP. Other particle components generally reduced by 20% with 20% incorporation of biodiesel into original diesel. This study shows AM exposure to B20 results in increased production of PGE2in vitro relative to diesel.
Collapse
Affiliation(s)
- Laya Bhavaraju
- Currciculum in Toxicology, University of North Carolina, Chapel Hill, NC, United States
| | | | - Aaron William
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - John McGee
- EPHD, NHEERL, US EPA, Research Triangle Park, NC, United States
| | | | - Michael Madden
- EPHD, NHEERL, US EPA, Research Triangle Park, NC, United States.
| |
Collapse
|
16
|
Betha R, Behera SN, Balasubramanian R. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4327-35. [PMID: 24646334 DOI: 10.1021/es405533d] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recurring biomass burning-induced smoke haze is a serious regional air pollution problem in Southeast Asia (SEA). The June 2013 haze episode was one of the worst air pollution events in SEA. Size segregated particulate samples (2.5-1.0 μm; 1.0-0.5 μm; 0.5- 0.2 μm; and <0.2 μm) were collected during the June 2013 haze episode. PM2.5 concentrations were elevated (up to 329 μg/m(3)) during the haze episode, compared to those during the nonhaze period (11-21 μg/m(3)). Chemical fractionation of particulate-bound trace elements (B, Ca, K, Fe, Al, Ni, Zn, Mg, Se, Cu, Cr, As, Mn, Pb, Co, and Cd) was done using sequential extraction procedures. There was a 10-fold increase in the concentration of K, an inorganic tracer of biomass burning. A major fraction (>60%) of the elements was present in oxidizable and residual fractions while the bioavailable (exchangeable) fraction accounted for up to 20% for most of the elements except K and Mn. Deposition of inhaled potentially toxic trace elements in various regions of the human respiratory system was estimated using a Multiple-Path Particle Dosimetry model. The particle depositions in the respiratory system tend to be more severe during hazy days than those during nonhazy days. A prolonged exposure to finer particles can thus cause adverse health outcomes during hazy days. Health risk estimates revealed that the excessive lifetime carcinogenic risk to individuals exposed to biomass burning-impacted aerosols (18 ± 1 × 10(-6)) increased significantly (P < 0.05) compared to those who exposed to urban air (12 ± 2 × 10(-6)).
Collapse
Affiliation(s)
- Raghu Betha
- Department of Civil and Environmental Engineering, National University of Singapore (NUS) , 1 Engineering Drive 2, E1A-07-03, 117576 Singapore
| | | | | |
Collapse
|
17
|
Behera SN, Xian H, Balasubramanian R. Human health risk associated with exposure to toxic elements in mainstream and sidestream cigarette smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:947-956. [PMID: 24342102 DOI: 10.1016/j.scitotenv.2013.11.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 06/03/2023]
Abstract
Toxic particulate elements present in cigarette smoke pose health threats to the life of smokers due to direct inhalation and at the same time increase health risks to non-smokers present in the vicinity of smokers because of their exposure. This study conducted a series of experiments using a controlled experimental chamber, equipped with simulated smoking conditions for characterization of particulate trace elements in mainstream and sidestream cigarette smoke. Four popular commercial cigarette brands available in Singapore market were used in this study. The target elements for extraction and analysis were Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sn, Sr, Te, Tl and Zn of both water-soluble and total constituents. The human health risk assessment results showed that the sidestream smoke had higher concentrations of toxic elements than those in the mainstream smoke. However, risk assessment analysis revealed that the sidestream smoke resulted in less human health risks compared to the mainstream smoke due to the influence of dilution of particulate emissions in sidestream smoke prior to inhalation exposure experienced by non-smokers. The cumulative non-cancer and cancer risks of toxic elements varied from 2.0 to 3.1 and from 398.4×10(-6) to 626.1×10(-6) due to inhalation of cigarette smoke by an active smoker. In the case of non-smokers, the risks were estimated under three possible cases of exposure. The cumulative cancer risks under three different cases were greater than the permissible limits. Therefore, it could be concluded that the toxic particulate elements present in cigarette smoke have significant carcinogenic and non-carcinogenic health effects due to inhalation exposure in the environment.
Collapse
Affiliation(s)
- Sailesh N Behera
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Huang Xian
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | | |
Collapse
|
18
|
Fukagawa NK, Li M, Poynter ME, Palmer BC, Parker E, Kasumba J, Holmén BA. Soy biodiesel and petrodiesel emissions differ in size, chemical composition and stimulation of inflammatory responses in cells and animals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12496-504. [PMID: 24053625 PMCID: PMC3947323 DOI: 10.1021/es403146c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Debate about the biological effects of biodiesel exhaust emissions exists due to variation in methods of exhaust generation and biological models used to assess responses. Because studies in cells do not necessarily reflect the integrated response of a whole animal, experiments were conducted in two human cell lines representing bronchial epithelial cells and macrophages and female mice using identical particle suspensions of raw exhaust generated by a Volkswagen light-duty diesel engine using petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume). Tailpipe particle emissions measurement showed B0 generated two times more particle mass, larger ultrafine particle number distribution modes, and particles of more nonpolar organic composition than the B20 fuel. Biological assays (inflammatory mediators, oxidative stress biomarkers) demonstrated that particulate matter (PM) generated by combustion of the two fuels induced different responses in in vitro and in vivo models. Concentrations of inflammatory mediators (Interleukin-6, IL-6; Interferon-gamma-induced Protein 10, IP-10; Granulocyte-stimulating factor, G-CSF) in the medium of B20-treated cells and in bronchoalveolar lavage fluid of mice exposed to B20 were ∼20-30% higher than control or B0 PM, suggesting that addition of biodiesel to diesel fuels will reduce PM emissions but not necessarily adverse health outcomes.
Collapse
Affiliation(s)
| | - Muyao Li
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | | | - Brian C. Palmer
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Erin Parker
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - John Kasumba
- School of Engineering, University of Vermont, Burlington, VT 05405
| | - Britt A. Holmén
- School of Engineering, University of Vermont, Burlington, VT 05405
| |
Collapse
|