1
|
Yang Y, Liu M, Pignatello JJ. Interactions between selenium species and pyrogenic carbonaceous materials in water and soil relevant to selenium control and remediation: A molecular-level perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125831. [PMID: 39929429 DOI: 10.1016/j.envpol.2025.125831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
In the environment, selenium (Se) has dual impacts on living organisms, as it is an essential element but high concentrations can be toxic. Current technologies for treating Se in real applications are not cost effective. Pyrogenic carbonaceous materials (PCM) with high surface area and redox properties have been proposed to remove Se. The objective of this review is to evaluate recent developments in fabrication of PCM and functionalized PCM for Se sorption and reduction in environmental remediation, as well as their potential impacts on crop growth. The sorptive removal of Se by PCM depends on the combined effects of electrostatic interactions, steric constraints, and complexation with metal species. The reduction property of PCM facilitates the conversion the ionic Se into solid state. The sorption of Se on PCM can also find applications in crop growth and the inhibition of heavy metal ions. We provide an outlook of terminal treatment of Se on PCM including immobilizing Se as solid species or applying PCM with sorbed Se as micronutrient soil amendment.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Mengxue Liu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Joseph J Pignatello
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Strong OKL, France HE, Scotland K, Wright K, Vreugdenhil AJ. Selenite Adsorption and Reduction via Iron(II) Impregnated Activated Carbon Produced from the Phosphoric Acid Activation of Construction Waste Wood. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:485-497. [PMID: 37816969 DOI: 10.1007/s00244-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
Chemical activation of waste materials, to form activated carbon, (AC) is complicated by the large amounts of chemical activating agents required and wastewater produced. To address these problems, we have developed an optimized process for producing AC, by phosphoric acid activation of construction waste. Waste wood from construction sites was ground and treated with an optimized phosphoric acid digestion and activation that resulted in high surface areas (> 2000 m2/g) and a greater recovery of phosphoric acid. Subsequently the phosphoric acid activated carbon (PAC), was functionalized with iron salts and evaluated for its efficacy on the adsorption of selenite and selenate. Total phosphoric acid recovery was 96.7% for waste wood activated with 25% phosphoric acid at a 1:1 ratio, which is a substantially higher phosphoric acid recovery, than previous literature findings. Post activation impregnation of iron salts resulted in iron(II) species adsorbed to the PAC surface. The iron(II) chloride impregnated AC removed up to 11.41 ± 0.502 mg selenium per g Iron-PAC. Competitive ions such as sulfate and nitrate had little effect on selenium adsorption, however, phosphate concentration did negatively impact the selenium uptake at high phosphate levels. At 250 ppm, approximately 75% of adsorption capacity of both the selenate and the selenite solutions was lost, although selenium was still preferentially adsorbed. Peak adsorption occurred between a pH of 4 and 11, with a complete loss of adsorption at a pH of 13.
Collapse
Affiliation(s)
- Oliver K L Strong
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Hamant E France
- Environmental and Life Sciences, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Kevin Scotland
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Kelly Wright
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Andrew J Vreugdenhil
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
3
|
Rajamohan N, Bosu S, Rajasimman M, Varjani S. Environmental remediation of selenium using surface modified carbon nano tubes - Characterization, influence of variables, equilibrium and kinetic analysis. ENVIRONMENTAL RESEARCH 2023; 216:114629. [PMID: 36279909 DOI: 10.1016/j.envres.2022.114629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Selenium is targeted as a priority pollutant to be removed due to its high toxicity level and lethal effects. In this research, a novel nano sorbent was fabricated using ionic liquid on multiwalled carbon nanotubes (IL-MCNT) and employed for Selenium remediation from aqueous media. Besides solution pH, nanocomposite dosage, the initial selenium concentration, temperature and sorption time were also examined as operating variables. At optimal pH 2.0, 96% of the selenium was removed with maximum efficiency with 100 mg/L of IL-MCNT at 308 K, 45 min of contact time, and 110 g of IL-MCNT dosage. From kinetic studies, it appears that the Langmuir isotherm fits the observed data (R2 > 0.9813), supporting the hypothesis that monolayer attachment occurs. The Langmuir isotherm parameters are evaluated as qm = 125 mg/g and KL = 0.172 L/mg. As a result of testing several kinetic models, the pseudo-second-order model was the most suitable for experimental data (R2 > 0.9746). Scanning Electron Microscopy images, FTIR spectra, and thermogravimetric study were used to examine the synthesized nanomaterial.
Collapse
Affiliation(s)
- Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India
| |
Collapse
|
4
|
Abejón R. A Bibliometric Analysis of Research on Selenium in Drinking Water during the 1990-2021 Period: Treatment Options for Selenium Removal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5834. [PMID: 35627373 PMCID: PMC9140891 DOI: 10.3390/ijerph19105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023]
Abstract
A bibliometric analysis based on the Scopus database was carried out to summarize the global research related to selenium in drinking water from 1990 to 2021 and identify the quantitative characteristics of the research in this period. The results from the analysis revealed that the number of accumulated publications followed a quadratic growth, which confirmed the relevance this research topic is gaining during the last years. High research efforts have been invested to define safe selenium content in drinking water, since the insufficient or excessive intake of selenium and the corresponding effects on human health are only separated by a narrow margin. Some important research features of the four main technologies most frequently used to remove selenium from drinking water (coagulation, flocculation and precipitation followed by filtration; adsorption and ion exchange; membrane-based processes and biological treatments) were compiled in this work. Although the search of technological options to remove selenium from drinking water is less intensive than the search of solutions to reduce and eliminate the presence of other pollutants, adsorption was the alternative that has received the most attention according to the research trends during the studied period, followed by membrane technologies, while biological methods require further research efforts to promote their implementation.
Collapse
Affiliation(s)
- Ricardo Abejón
- Departamento de Ingeniería Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
5
|
Ruj B, Bishayee B, Chatterjee RP, Mukherjee A, Saha A, Nayak J, Chakrabortty S. An economical strategy towards the managing of selenium pollution from contaminated water: A current state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114143. [PMID: 34864517 DOI: 10.1016/j.jenvman.2021.114143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
During the last few decades, contamination of selenium (Se) in groundwater has turned out to be a major environmental concern to provide safe drinking water. The content of selenium in such contaminated water might range from 400 to 700 μg/L, where bringing it down to a safe level of 40 μg/L for municipal water supply employing appropriate methodologies is a major challenge for the global researcher communities. The current review focuses mostly on the governing selenium remediation technologies such as coagulation-flocculation, electrocoagulation, bioremediation, membrane-based approaches, adsorption, electro-kinetics, chemical precipitation, and reduction methods. This study emphasizes on the development of a variety of low-cost adsorbents and metal oxides for the selenium decontamination from groundwater as a cutting-edge technology development along with their applicability, and environmental concerns. Moreover, after the removal, the recovery methodologies using appropriate materials are analyzed which is the need of the hour for the reutilization of selenium in different processing industries for the generation of high valued products. From the literature survey, it has been found that hematite modified magnetic nanoparticles (MNP) efficiently adsorb Se (IV) (25.0 mg/g) from contaminated groundwater. MNP@hematite reduced Se (IV) concentration from 100 g/L to 10 g/L in 10 min at pH 4-9 using a dosage of 1 g/L. In 15 min, the magnetic adsorbent can be recycled and regenerated using a 10 mM NaOH solution. The adsorption and desorption efficiencies were over 97% and 82% for five consecutive cycles, respectively. To encourage the notion towards scale-up, a techno-economic evaluation with possible environmentally sensitive policy analysis has been introduced in this article to introspect the aspects of sustainability. This type of assessment is anticipated to be extremely encouraging to convey crucial recommendations to the scientific communities in order to produce high efficiency selenium elimination and further recovery from contaminated groundwater.
Collapse
Affiliation(s)
- Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Bhaskar Bishayee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Rishya Prava Chatterjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Ankita Mukherjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Arup Saha
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Jayato Nayak
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, 626126, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
6
|
Filip J, Vinter Š, Čechová E, Sotolářová J. Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst 2021; 146:6394-6415. [PMID: 34596173 DOI: 10.1039/d1an00677k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inorganic selenium, the most common form of harmful selenium in the environment, can be determined using electrochemical sensors, which are compact, fast, reliable and easy-to-operate devices. Despite progress in this area, there is still significant room for developing high-performance selenium electrochemical sensors. To achieve this, one should take into account (i) the electrochemical process that selenium undergoes on the electrode; (ii) the valence state of selenium species in the sample and (iii) modification of the sensor surface by a material with high affinity to selenium. The goal of this review is to provide a knowledge base for these issues. After the Introduction section, mechanisms and principles of the electrochemical reduction of selenium are introduced, followed by a section introducing the modification of electrodes with materials interacting with selenium and a section dedicated to speciation methods, including the reduction of non-detectable Se(VI) to detectable Se(IV). In the following sections, the main types of materials (metallic, polymers, hybrid (nano)materials…) interacting with inorganic selenium (mostly absorbents) are reviewed to show the diversity of properties that may be endowed to sensors if the materials were to be used for the modification of electrodes. These features for the main material categories are outlined in the conclusion section, where it is stated that the engineered polymers may be the most promising modifiers.
Collapse
Affiliation(s)
- Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Štěpán Vinter
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Erika Čechová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Jitka Sotolářová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| |
Collapse
|
7
|
Engineered biochar modified with iron as a new adsorbent for treatment of water contaminated by selenium. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zoroufchi Benis K, Motalebi Damuchali A, Soltan J, McPhedran KN. Treatment of aqueous arsenic - A review of biochar modification methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139750. [PMID: 32540652 DOI: 10.1016/j.scitotenv.2020.139750] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 05/12/2023]
Abstract
Arsenic (As) is an ever-present worldwide environmental contamination issue. The process of As sorption for treatment of contaminated waters is regarded as a promising treatment technology approach due to its simplicity and potential for high efficiency. Biochars are carbon-rich porous solids produced by heating of biomasses under low oxygen conditions. Biochars are considered to be environmentally friendly sorbents that can be used to treat various As-containing waters. However, unmodified biochar is generally a poor sorbent for As species due to static repulsion between the As oxyanions and the negatively charged biochar surface. The As sorption capacity of biochars can be substantially improved by treatments using various physical and chemical activation and modification methods. Thus, this review includes 63 research studies using physical and chemical approaches to enhance biochar physicochemical structures and As sorption efficiencies. The effectiveness of each method for altering the characteristics and sorption capacity of biochars is described. This review can help to focus the scope of future As biochar sorption studies and aid researchers in optimization of biochar-based sorbents for As treatment.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ali Motalebi Damuchali
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jafar Soltan
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry Neil McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
9
|
Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon. MATERIALS 2020; 13:ma13020468. [PMID: 31963770 PMCID: PMC7013655 DOI: 10.3390/ma13020468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
In this study, we prepared a novel sorbent derived from precipitating copper ion onto the surfaces of activated carbon (Cu-AC). The sorbents were comprehensively characterized by Brunauer–Emmett–Teller (BET), zeta potential analysis, SEM, XRD, and FTIR. Batch experiments were conducted to evaluate selenate removal by Cu-AC under different conditions. The results showed that Cu was uniformly coated on the AC surface. Copper pretreatment markedly decreased the specific surface area and total pore volume of AC, and changed its surface zeta potential from highly negative to low negative and even positive. The Cu-AC substantially improved selenate adsorption capacity from the 1.36 mg Se/g AC of raw AC to 3.32, 3.56, 4.23, and 4.48 mg Se/g AC after loading of 0.1, 0.5, 1.0, and 5 mmol Cu/g AC, respectively. The results of toxicity leaching test showed AC coated with ≤1.0 mmol Cu/g was acceptable for potential application. Selenate adsorption was significantly inhibited by high ionic strength (>50 mM NaCl) and pH (>10). The electrostatic attraction between positive surface charge of Cu-AC and selenate ions and hydrogen bonding between CuO and HSeO4− might contribute to selenate sorption. Evidence showed that the selenate adsorption might involve outer-sphere surface complexation. The adsorption data appeared to be better described by Langmuir than Freundlich isotherm. The spent adsorbent could be effectively regenerated by hydroxide for reuse. Only a little decrease of removal efficiency was observed in the second and third run. This study implies that Cu-coated AC is a potential adsorbent for sustainable removal selenate from relative low salinity water/wastewater.
Collapse
|
10
|
Gurunathan P, Hari S, Suseela SB, Sankararajan R, Mukannan A. Production, characterization and effectiveness of cellulose acetate functionalized ZnO nanocomposite adsorbent for the removal of Se (VI) ions from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:528-543. [PMID: 30406595 DOI: 10.1007/s11356-018-3472-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, ZnO functionalized cellulose acetate nanocomposite (ZnO/CA NC) was synthesized using a simple chemical approach found to have a high surface area of 657.34 m2/g and utilized as adsorbents for the removal of Se (VI) from aqueous solutions. Investigations on X-ray diffraction (XRD) revealed that ZnO nanocomposite has a smaller crystallite size compared to ZnO nanoparticles which facilitated for reduced agglomeration confirmed by scanning electron microscopy (SEM). The ensuing properties of ZnO/CA NC displayed high maximum adsorption capacity of 160.5 mg/g for Se (VI) ions. Inner-sphere surface complexes on ZnO/CA NC under prevailing conditions for Se (VI) were discussed using FTIR spectroscopical results. In order to evaluate the removal efficiency, the effects of adsorbent dosage, pH, and temperature were thoroughly investigated. The amount of Se (VI) ions adsorbed on ZnO/CA NC was also determined by zeta potential. The fractional removal of pollutants (Se (VI)) was done using mass transfer model. In addition, prominent adsorption capacity was also tested utilizing concurrent anions (SO42-, Cl-, and F-) with reference to Se (VI) and cost prudent regenerability of adsorbent by NaOH solution was ascertained with anti-interference and recovery steps. ZnO/CA NC was obtained by simple chemical methodology and high surface adsorption capacities supply an encouraging technique for Se (VI) removal in water treatment applications.
Collapse
Affiliation(s)
- Padmalaya Gurunathan
- Department of Electronics and Communication Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
| | - Sivaram Hari
- Centre for Nanoscience and Technology, Anna University, Chennai, India
| | | | - Radha Sankararajan
- Department of Electronics and Communication Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
| | | |
Collapse
|
11
|
He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, Shang C, Luo L, Gao J, Tang L. Selenium contamination, consequences and remediation techniques in water and soils: A review. ENVIRONMENTAL RESEARCH 2018; 164:288-301. [PMID: 29554620 DOI: 10.1016/j.envres.2018.02.037] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/04/2018] [Accepted: 02/26/2018] [Indexed: 05/21/2023]
Abstract
Selenium (Se) contamination in surface and ground water in numerous river basins has become a critical problem worldwide in recent years. The exposure to Se, either direct consumption of Se or indirectly may be fatal to the human health because of its toxicity. The review begins with an introduction of Se chemistry, distribution and health threats, which are essential to the remediation techniques. Then, the review provides the recent and common removal techniques for Se, including reduction techniques, phytoremediation, bioremediation, coagulation-flocculation, electrocoagulation (EC), electrochemical methods, adsorption, coprecipitation, electrokinetics, membrance technology, and chemical precipitation. Removal techniques concentrate on the advantages, drawbacks and the recent achievements of each technique. The review also takes an overall consideration of experimental conditions, comparison criteria and economic aspects.
Collapse
Affiliation(s)
- Yangzhuo He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jun Gao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
12
|
|
13
|
Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes. Bioinorg Chem Appl 2017; 2017:4323619. [PMID: 28555093 PMCID: PMC5438866 DOI: 10.1155/2017/4323619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 11/30/2022] Open
Abstract
The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions.
Collapse
|
14
|
Investigation of highly selective regenerative cellulose microcolumn for selenium detection and efficient recovery. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Johansson CL, Paul NA, de Nys R, Roberts DA. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 165:117-123. [PMID: 26413805 DOI: 10.1016/j.jenvman.2015.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 08/28/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Ash disposal waters from coal-fired power stations present a challenging water treatment scenario as they contain high concentrations of the oxyanions Se, As and Mo which are difficult to remove through conventional techniques. In an innovative process, macroalgae can be treated with Fe and processed through slow pyrolysis into Fe-biochar which has a high affinity for oxyanions. However, the effect of production conditions on the efficacy of Fe-biochar is poorly understood. We produced Fe-biochar from two algal sources; "Gracilaria waste" (organic remnants after agar is extracted from cultivated Gracilaria) and the freshwater macroalgae Oedogonium. Pyrolysis experiments tested the effects of the concentration of Fe(3+) in pre-treatment, and pyrolysis temperatures, on the efficacy of the Fe-biochar. The efficacy of Fe-biochar increased with increasing concentrations of Fe(3+) in the pre-treatment solutions, and decreased with increasing pyrolysis temperatures. The optimized Fe-biochar for each biomass was produced by treatment with a 12.5% w/v Fe(3+) solution, followed by slow pyrolysis at 300 °C. The Fe-biochar produced in this way had higher a biosorption capacity for As and Mo (62.5-80.7 and 67.4-78.5 mg g(-1) respectively) than Se (14.9-38.8 mg g(-1)) in single-element mock effluents, and the Fe-biochar produced from Oedogonium had a higher capacity for all elements than the Fe-biochar produced from Gracilaria waste. Regardless, the optimal Fe-biochars from both biomass sources were able to effectively treat Se, As and Mo simultaneously in an ash disposal effluent from a power station. The production of Fe-biochar from macroalgae is a promising technique for treatment of complex effluents containing oxyanions.
Collapse
Affiliation(s)
- Charlotte L Johansson
- MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia.
| | - Nicholas A Paul
- MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia
| | - Rocky de Nys
- MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia
| | - David A Roberts
- MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia
| |
Collapse
|
16
|
Interactions between reactive oxygen groups on nanoporous carbons and iron oxyhydroxide nanoparticles: effect on arsenic(V) removal. ADSORPTION 2015. [DOI: 10.1007/s10450-015-9743-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|