1
|
Sakai M, Mori JF, Kanaly RA. Assessment of bacterial biotransformation of alkylnaphthalene lubricating base oil component 1-butylnaphthalene by LC/ESI-MS(/MS). CHEMOSPHERE 2024; 364:143269. [PMID: 39241838 DOI: 10.1016/j.chemosphere.2024.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Alkylnaphthalene lubricating oils are synthetic Group V base oils that are utilized in wide-ranging industrial applications and which are composed of polyalkyl chain-alkylated naphthalenes. Identification of alkylnaphthalene biotransformation products and determination of their mass spectrometry (MS) fragmentation signatures provides valuable information for predicting their environmental fates and for development of analytical methods to monitor their biodegradation. In this work, laboratory-based environmental petroleomics was applied to investigate the catabolism of the alkylnaphthalene, 1-butylnaphthalene (1-BN), by liquid chromatography electrospray ionization MS data mapping and targeted collision-induced dissociation (CID) analyses. Comparative mapping revealed that numerous catabolites were produced from soil bacterium, Sphingobium barthaii KK22. Targeted CID showed unique patterns of production of even-valued deprotonated fragments that were found to originate from specific classes of bacterial catabolites. Based upon results of CID analyses of catabolites and authentic standards, MS signatures were proposed to occur through formation of distonic radical anions from bacterially-produced alkylphenol biotransformation products. Finally, spectra interpretation was guided by CID results to propose chemical structures for twenty-two 1-BN catabolites resulting in construction of 1-BN biotransformation pathways. Multiple pathways were identified that included aromatic ring-opening, alkyl chain-shortening and production of α,β-unsaturated aldehydes from alkylated phenols. Until now, α,β-unsaturated aldehydes have not been a class of compounds much reported from alkylated polycyclic aromatic hydrocarbon (APAH) and PAH biotransformation. This work provides a new understanding of alkylnaphthalene biotransformation and proposes MS markers applicable to monitoring APAH biotransformation in the form of alkylated phenols, and by extension, α,β-unsaturated aldehydes, and toxic potential during spilled oil biodegradation.
Collapse
Affiliation(s)
- Miharu Sakai
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| | - Jiro F Mori
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| |
Collapse
|
2
|
Nemoto Y, Ozawa K, Mori JF, Kanaly RA. Nondesulfurizing benzothiophene biotransformation to hetero and homodimeric ortho-substituted diaryl disulfides by the model PAH-degrading Sphingobium barthaii. Biodegradation 2023; 34:215-233. [PMID: 36808269 DOI: 10.1007/s10532-023-10014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
Understanding the biotransformation mechanisms of toxic sulfur-containing polycyclic aromatic hydrocarbon (PASH) pollutants such as benzothiophene (BT) is useful for predicting their environmental fates. In the natural environment, nondesulfurizing hydrocarbon-degrading bacteria are major active contributors to PASH biodegradation at petroleum-contaminated sites; however, BT biotransformation pathways by this group of bacteria are less explored when compared to desulfurizing organisms. When a model nondesulfurizing polycyclic aromatic hydrocarbon-degrading soil bacterium, Sphingobium barthaii KK22, was investigated for its ability to cometabolically biotransform BT by quantitative and qualitative methods, BT was depleted from culture media but was biotransformed into mostly high molar mass (HMM) hetero and homodimeric ortho-substituted diaryl disulfides (diaryl disulfanes). HMM diaryl disulfides have not been reported as biotransformation products of BT. Chemical structures were proposed for the diaryl disulfides by comprehensive mass spectrometry analyses of the chromatographically separated products and were supported by the identification of transient upstream BT biotransformation products, which included benzenethiols. Thiophenic acid products were also identified, and pathways that described BT biotransformation and novel HMM diaryl disulfide formation were constructed. This work shows that nondesulfurizing hydrocarbon-degrading organisms produce HMM diaryl disulfides from low molar mass polyaromatic sulfur heterocycles, and this may be taken into consideration when predicting the environmental fates of BT pollutants.
Collapse
Affiliation(s)
- Yuki Nemoto
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Kohei Ozawa
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Jiro F Mori
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
3
|
Complete Genome Sequence of Sphingobium barthaii KK22, a High-Molecular-Weight Polycyclic Aromatic Hydrocarbon-Degrading Soil Bacterium. Microbiol Resour Announc 2021; 10:10/1/e01250-20. [PMID: 33414343 PMCID: PMC8407719 DOI: 10.1128/mra.01250-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sphingobium barthaii KK22T is a high-molecular-weight polycyclic aromatic hydrocarbon-degrading soil bacterium that has been investigated in biotransformation, microbial ecology, and DNA damage studies. The complete genome sequence of S. barthaii revealed four closed circular sequences, including two chromosomes, a megaplasmid, and a smaller plasmid, by hybrid assembly using short- and long-read sequencing technologies. Sphingobium barthaii KK22T is a high-molecular-weight polycyclic aromatic hydrocarbon-degrading soil bacterium that has been investigated in biotransformation, microbial ecology, and DNA damage studies. The complete genome sequence of S. barthaii revealed four closed circular sequences, including two chromosomes, a megaplasmid, and a smaller plasmid, by hybrid assembly using short- and long-read sequencing technologies.
Collapse
|
4
|
Wang Z, Sun T, Luo T, Shi X, Lin H, Zhang H. Selective removal of phenanthrene for the recovery of sodium dodecyl sulfate by UV-C and UV-C/PDS processes: Performance, mechanism and soil washing recycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123141. [PMID: 32574877 DOI: 10.1016/j.jhazmat.2020.123141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Soil washing is commonly used to remediate PAHs contaminated sites. However, the effluent after washing containing PAHs and surfactant may cause secondary pollution and remediation cost is still high, unless PAHs are selectively removed from the effluent and the surfactant is recovered and recycled. Herein, ultraviolet irradiation (254 nm, UV-C) and its combination with peroxydisulfate (UV-C/PDS) were applied to selectively degrade PHE in the synthetic soil washing effluent. At natural pH of 8.6, 98.2 % of PHE was removed within 30 min under 6 W UV-C irradiation. After adding 2 mM PDS, the time was shortened to 8 min but still achieving 98.7 % PHE removal and less toxic treated effluent than UV-C alone. The 1O2 was the main oxidizing species in UV-C alone system, while 1O2 as well OH and SO4- were responsible for PHE removal in the UV-C/PDS system. The possible intermediates of PHE degradation were recognized using liquid chromatography-mass spectrometry technique and the degradation pathways in both systems were proposed. Soil washing recycling experiments verified the recovered SDS could be reused directly without surfactant supplement and the soil washing efficiency changed insignificantly during three cycles. It indicates UV-C/PDS coupled with soil washing is a promising remediation technology.
Collapse
Affiliation(s)
- Zenan Wang
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Tiantai Sun
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Tian Luo
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Xiaolu Shi
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Heng Lin
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Experimental Designs for Optimizing Multi-residual Microwave-assisted Extraction and Chromatographic Analysis of Oxygenated (Hydroxylated, Quinones) Metabolites of PAHs in Sediments. Chromatographia 2018. [DOI: 10.1007/s10337-018-3584-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Kanaly RA, Micheletto R, Matsuda T, Utsuno Y, Ozeki Y, Hamamura N. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22. Microbiologyopen 2015; 4:841-56. [PMID: 26305056 PMCID: PMC4618615 DOI: 10.1002/mbo3.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2'-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H](+) > [M + H - 116](+) transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Ruggero Micheletto
- Department of Nanosystem Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Youko Utsuno
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
7
|
Liu X, Xu X, Li C, Zhang H, Fu Q, Shao X, Ye Q, Li Z. Degradation of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil. CHEMOSPHERE 2015; 119:334-341. [PMID: 25043960 DOI: 10.1016/j.chemosphere.2014.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/03/2014] [Accepted: 06/08/2014] [Indexed: 06/03/2023]
Abstract
Cycloxaprid (CYC), with two stereogenic centers from oxabridged ring, is a novel potent neonicotinoid insecticide. The investigation of relevant transformation products (TPs) is critical for the risk evaluation of CYC on environment impact and further regulatory decisions. In this study, stereoselective soil metabolism of CYC enantiomers was investigated using isotope labeling techniques. Liquid scintillation counting with LC-MS/MS was used to identify and quantify the major transformation products (TPs) of CYC enantiomers in four various soils under anoxic and flooded condition. Most of CYC had been transformed in four soils at 5d after treatment. Furthermore, CYC was found converted to a range of transformation products, which exhibited soil-specific dynamic changes. Cleavage of the oxabridged seven-member ring, reductive dechlorination in the chloropyridinyl and cleavage of C-N between the chloropyridinylmethyl and imidazalidine ring are the main transformation pathways of CYC. It is presumed that acidic condition may conduce to form the cleavage product of oxabridged seven-member ring. However, abiotic or biotic stereoselective persistence of TPs in all soils was not observed from the experimental data and may be attributed to the unstable oxabridged ring.
Collapse
Affiliation(s)
- Xuanqi Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hanxue Zhang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Qiuguo Fu
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|