1
|
Hanwen S, Xiaoqing Z, Xiong X, Xuemin F, Da S, Ali I, Junrui C, Changsheng P. Non-target screening and prioritization of organic contaminants in seawater desalination and their ecological risk assessment. CHEMOSPHERE 2024; 358:142055. [PMID: 38641292 DOI: 10.1016/j.chemosphere.2024.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.
Collapse
Affiliation(s)
- Song Hanwen
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Zhang Xiaoqing
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China.
| | - Xu Xiong
- Chengdu Shanyu Environmental Technology Ltd., Chengdu, 610213, China; Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, Beijing, 100085, China.
| | - Feng Xuemin
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China.
| | - Song Da
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Imran Ali
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Cao Junrui
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China.
| | - Peng Changsheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| |
Collapse
|
2
|
Sun H, Lei C, Yuan Y, Xu J, Han M. Nanoplastic impacts on the foliar uptake, metabolism and phytotoxicity of phthalate esters in corn (Zea mays L.) plants. CHEMOSPHERE 2022; 304:135309. [PMID: 35709832 DOI: 10.1016/j.chemosphere.2022.135309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastic pollution in terrestrial plants is of increasing concern for its negative effects on living organisms. However, the impacts of nanoplastics on chemical processes and plant physiology of phthalate esters (PAEs) remain unclear. The present work offers insight into the foliar uptake, metabolism and phytotoxicity of two typical PAEs, namely, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), in corn (Zea mays L.) seedlings and the effects of amino-functionalized polystyrene nanoplastics (PSNPs-NH2). The presence of PSNPs-NH2 increased DBP and DEHP accumulation in the leaves by 1.36 and 1.32 times, respectively. PSNPs-NH2 also promoted the leaf-to-root translocation of DBP and DEHP, with the translocation factor increasing by approximately 1.05- and 1.16-fold, respectively. Furthermore, the addition of PSNPs-NH2 significantly enhanced the transformation of PAEs to their primary metabolites, mono-butyl phthalate and mono(2-ethylhexyl) phthalate in corn leaves and roots. The co-presence of PSNPs-NH2 and PAEs showed stronger impairment of photosystem II efficiency via the downregulation of transporter D1 protein, thus exhibiting a greater inhibitory effect on plant growth. Our findings reveal that nanoplastics promote the foliar uptake and transformation of PAE chemicals in crops and exacerbate their toxicity to crop plants, thereby threatening agricultural safety and human health.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China.
| | - Chunli Lei
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Yihao Yuan
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Jianhong Xu
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Ming Han
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| |
Collapse
|
3
|
Li J, Li H, Lin D, Li M, Wang Q, Xie S, Zhang Y, Liu F. Effects of butyl benzyl phthalate exposure on Daphnia magna growth, reproduction, embryonic development and transcriptomic responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124030. [PMID: 33045484 DOI: 10.1016/j.jhazmat.2020.124030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Butyl benzyl phthalate (BBP) is widely used as a plasticizer to increase the plasticity and flexibility of plastic products. Although the potential health hazards of BBP have recently received extensive attention, its toxicological properties and mechanisms remain largely undefined. In the present work, growth, reproductive and developmental toxicity of BBP to Daphnia magna were evaluated, and the transcriptomic alteration of early embryos upon BBP exposure was analyzed. In a 21-day chronic toxicity test, reduced survival ratio, decreased body length, increased abnormal ratio, advanced time to first brood, and reduced offspring of D. magna were observed. BBP exposure inhibited expression of the vitellogenin gene. In addition, embryotoxicity of BBP was observed, which showed not only in the induction of abnormal neonates, but also in the shortened embryonic development cycle. RNA-Seq of early embryo treated with 0.1 mg/L BBP indicated that the pathways involved in signal transduction, cell communication, and embryonic development were significantly down-regulated, while those of biosynthesis, metabolism, cell homeostasis, redox homeostasis were remarkably up-regulated upon BBP exposure, which was consistent with the above phenotypic results. Taken together, our results highlight the toxic effects of BBP on the embryonic development and larval growth of D. magna.
Collapse
Affiliation(s)
- Jing Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Haotian Li
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Dongdong Lin
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Muyi Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Quansheng Wang
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Song Xie
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Ai S, Gao X, Wang X, Li J, Fan B, Zhao S, Liu Z. Exposure and tiered ecological risk assessment of phthalate esters in the surface water of Poyang Lake, China. CHEMOSPHERE 2021; 262:127864. [PMID: 32768751 DOI: 10.1016/j.chemosphere.2020.127864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Phthalate esters (PAEs) are a class of endocrine disruptors that are produced and used extensively in China. Given its presence in various products, a great quantity of PAEs flows into different aquatic systems each year. Hence, it is important to study the pollution levels and ecological risk of PAEs. This study investigated the distribution and seasonal variation of six priority PAEs in the surface water of Poyang Lake, the largest freshwater lake in China. In the wet season, the mean concentration of the total PAEs was 0.544 ± 0.173 μg/L, while the dry season concentration (1.003 ± 0.451 μg/L) nearly doubled. The most abundant PAE congeners were di-n-butyl phthalate (DBP), followed by bis (2-ethylhexyl) phthalate (DEHP). To evaluate the ecological risks in Poyang Lake, the predicted no-effect concentrations (PNECs) of four PAEs based on non-lethal effects were derived. For diethyl phthalate (DEP), butyl benzyl phthalate (BBP), DBP, and DEHP, the PNECs were 31.6, 3.30, 2.31, and 0.0210 μg/L, respectively. The tiered ecological risk assessment showed that DEP and BBP posed no risk in Poyang Lake. Meanwhile, DBP posed a potential risk in Poyang Lake, but the risk of DEHP was unacceptable and requires more actions. Specifically, the probabilities of exceeding the threshold for the protection of 95% of the aquatic organisms (HC5) were 3.30% and 4.43% for DEHP in the wet and dry season, respectively. This study provides an appropriate reference for the surface water management of PAE pollution in China.
Collapse
Affiliation(s)
- Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Bo Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shiqing Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; The College of Life Science, Nanchang University, Nanchang, 330047, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
5
|
Ding J, Zhou Y, Wang C, Peng Z, Mu Y, Tang X, Huang Z. Development of a whole-cell biocatalyst for diisobutyl phthalate degradation by functional display of a carboxylesterase on the surface of Escherichia coli. Microb Cell Fact 2020; 19:114. [PMID: 32471417 PMCID: PMC7260753 DOI: 10.1186/s12934-020-01373-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phthalic acid esters (PAEs) are widely used as plasticizers or additives during the industrial manufacturing of plastic products. PAEs have been detected in both aquatic and terrestrial environments due to their overuse. Exposure of PAEs results in human health concerns and environmental pollution. Diisobutyl phthalate is one of the main plasticizers in PAEs. Cell surface display of recombinant proteins has become a powerful tool for biotechnology applications. In this current study, a carboxylesterase was displayed on the surface of Escherichia coli cells, for use as whole-cell biocatalyst in diisobutyl phthalate biodegradation. RESULTS A carboxylesterase-encoding gene (carEW) identified from Bacillus sp. K91, was fused to the N-terminal of ice nucleation protein (inpn) anchor from Pseudomonas syringae and gfp gene, and the fused protein was then cloned into pET-28a(+) vector and was expressed in Escherichia coli BL21(DE3) cells. The surface localization of INPN-CarEW/or INPN-CarEW-GFP fusion protein was confirmed by SDS-PAGE, western blot, proteinase accessibility assay, and green fluorescence measurement. The catalytic activity of the constructed E. coli surface-displayed cells was determined. The cell-surface-displayed CarEW displayed optimal temperature of 45 °C and optimal pH of 9.0, using p-NPC2 as substrate. In addition, the whole cell biocatalyst retained ~ 100% and ~ 200% of its original activity per OD600 over a period of 23 days at 45 °C and one month at 4 °C, exhibiting the better stability than free CarEW. Furthermore, approximately 1.5 mg/ml of DiBP was degraded by 10 U of surface-displayed CarEW cells in 120 min. CONCLUSIONS This work provides a promising strategy of cost-efficient biodegradation of diisobutyl phthalate for environmental bioremediation by displaying CarEW on the surface of E. coli cells. This approach might also provide a reference in treatment of other different kinds of environmental pollutants by displaying the enzyme of interest on the cell surface of a harmless microorganism.
Collapse
Affiliation(s)
- Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, Yunnan, China.
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, Yunnan, China.
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| | - Yang Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Chaofan Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Zheng Peng
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Yuelin Mu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, Yunnan, China.
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, Yunnan, China.
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Zheng X, Yan Z, Liu P, Li H, Zhou J, Wang Y, Fan J, Liu Z. Derivation of aquatic life criteria for four phthalate esters and their ecological risk assessment in Liao River. CHEMOSPHERE 2019; 220:802-810. [PMID: 30612049 DOI: 10.1016/j.chemosphere.2018.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 05/13/2023]
Abstract
As a critical family of endocrine disruptors, phthalate esters (PAEs) attracted considerable attentions due to increasingly detected worldwide. Aquatic life criteria (ALC) for PAEs are crucial for their accurate ecological risk assessment (ERA) and have seldom been derived before. Given this concern, the purpose of the present study is to optimize the ALCs of four priority PAEs to estimate their ecological risks in Liao River. Reproductive endpoint was found to be more sensitive than other endpoints. Thus, reproduction related toxicity data were screened to derive ALCs applying species sensitivity distribution (SSD) method. ALCs of DEHP, DBP, BBP and DEP were calculated to be 0.04, 0.62, 4.71 and 41.9 μg L-1, which indicated decreased toxicity in sequence. Then, the derived ALCs of the four PAEs were applied to estimate their ecological risks in Liao River. A total of 27 sampling sites were selected to detect and analyze the exposure concentrations of PAEs. ERA using the hazard quotient (HQ) method was conducted. The results demonstrated that DEHP exhibited higher risks at 92.6% of sampling sites, and risks posed by DBP were moderate at 63.0% sampling sites. However, risks posed by BBP were low at 70.4% of sampling sites, and there were no risks posed by DEP at 96.3% of sampling sites. The results of probabilistic ecological risk assessment (PERA) indicated that probabilities of exceeding effects thresholds on 5% of species were 60.41%, 0%, 0.12%, 14.28% for DEHP, DEP, BBP and DBP, respectively. The work provides useful information to protect aquatic species in Liao River.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Hong Li
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
| | - Junli Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yizhe Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
7
|
Mi L, Xie Z, Zhao Z, Zhong M, Mi W, Ebinghaus R, Tang J. Occurrence and spatial distribution of phthalate esters in sediments of the Bohai and Yellow seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:792-800. [PMID: 30759605 DOI: 10.1016/j.scitotenv.2018.10.438] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Phthalate esters (PEs) are a class of synthetic chemicals that have been widely used as plasticizers in industrial products and households. The occurrence of PEs in the marine environment has been a concern for many years because of their adverse impacts on marine organisms and human health. In this study, six major PEs, i.e. diethyl phthalate (DEP), di‑isobutyl phthalate (DiBP), di‑n‑butyl phthalate (DnBP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP) and di‑(2‑ethylhexyl) phthalate (DEHP), were analyzed in sediment samples collected in the Bohai and Yellow seas. The sum concentrations of the six PEs ranged from 1.4 to 24.6 ng/g and the average was 9.1 ng/g. The highest concentrations of PEs in the sediment samples were those of DEHP with a median concentration of 3.77 ng/g, followed by DiBP (median, 1.60 ng/g), DnBP (0.91 ng/g), DEP (0.32 ng/g), BBP (0.03 ng/g) and DCHP (0.01 ng/g). Generally, concentrations of PEs in the Bohai Sea are higher than those in the Yellow Sea. The varying spatial distributions of the individual PEs can be the result of discharge sources, regional ocean circulation patterns, and mud areas in the Bohai and Yellow seas. Significant positive correlations were found between total organic carbon content and the concentrations of DiBP, DnBP, and DEHP. It is estimated that the inventories of the ∑6PEs were 20.73 tons in the Bohai Sea and 65.87 tons in the Yellow Sea. Both riverine discharge and atmospheric deposition are major input sources for the PE sedimentation, while massive plastic litter and microplastics sinking to the ocean floor can directly release PEs into sediment. This study provides an appropriate data set for the assessment of the risk of PEs to the marine ecosystem.
Collapse
Affiliation(s)
- Lijie Mi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany.
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingyu Zhong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| |
Collapse
|
8
|
Dong X, Dong J, Zhao Y, Guo J, Wang Z, Liu M, Zhang Y, Na X. Effects of Long-Term In Vivo Exposure to Di-2-Ethylhexylphthalate on Thyroid Hormones and the TSH/TSHR Signaling Pathways in Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14010044. [PMID: 28054989 PMCID: PMC5295295 DOI: 10.3390/ijerph14010044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) was a widely used chemical with human toxicity. Recent in vivo and in vitro studies suggested that DEHP-exposure may be associated with altered serum thyroid hormones (THs) levels, but the underlying molecular mechanisms were largely unknown. To explore the possible molecular mechanisms, 128 Wistar rats were dosed with DEHP by gavage at 0, 150, 300, and 600 mg/kg/day for 3 months (M) and 6 M, respectively. After exposure, expression of genes and proteins in the thyroid, pituitary, and hypothalamus tissues of rats were analyzed by Q-PCR and western blot, while the sera and urine samples were assayed by radioimmunoassay and ELISA. Results showed that serum THs levels were suppressed by DEHP on the whole. DEHP treatment influenced the levels of rats’ thyrotropin releasing hormone receptor (TRHr), Deiodinases 1 (D1), thyroid stimulating hormone beta (TSHβ), sodium iodide symporter (NIS), thyroid stimulating hormone receptor (TSHr), thyroperoxidase (TPO), thyroid transcription factor 1 (TTF-1), and thyroglobulin (TG) mRNA/protein expression in the hypothalamus-pituitary-thyroid (HPT) axis and decreased urine iodine. Taken together, observed findings indicate that DEHP could reduce thyroid hormones via disturbing the HPT axis, and the activated TSH/TSHR pathway is required to regulate thyroid function via altering TRHr, TSHβ, NIS, TSHr, TPO, TTF-1 and TG mRNA/protein expression of the HPT axis.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Jin Dong
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Yue Zhao
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Jipeng Guo
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Zhanju Wang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Mingqi Liu
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Yunbo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Xiaolin Na
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
9
|
The Effects of Disturbance on Hypothalamus-Pituitary-Thyroid (HPT) Axis in Zebrafish Larvae after Exposure to DEHP. PLoS One 2016; 11:e0155762. [PMID: 27223697 PMCID: PMC4880181 DOI: 10.1371/journal.pone.0155762] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/04/2016] [Indexed: 12/14/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) has the potential to disrupt the thyroid endocrine system, but the underlying mechanism is unknown. In this study, zebrafish (Danio rerio) embryos were exposed to different concentrations of DEHP (0, 40, 100, 200, 400 μg/L) from 2 to 168 hours post fertilization (hpf). Thyroid hormones (THs) levels and transcriptional profiling of key genes related to hypothalamus-pituitary-thyroid (HPT) axis were examined. The result of whole-body thyroxine (T4) and triiodothyronine (T3) indicated that the thyroid hormone homeostasis was disrupted by DEHP in the zebrafish larvae. After exposure to DEHP, the mRNA expressions of thyroid stimulating hormone (tshβ) and corticotrophin releasing hormone (crh) genes were increased in a concentration dependent manner, respectively. The expression level of genes involved in thyroid development (nkx2.1 and pax8) and thyroid synthesis (sodium/iodide symporter, nis, thyroglobulin, tg) were also measured. The transcripts of nkx2.1 and tg were significantly increased after DEHP exposure, while those of nis and pax8 had no significant change. Down-regulation of uridinediphosphate-glucuronosyl-transferase (ugt1ab) and up-regulation of thyronine deiodinase (dio2) might change the THs levels. In addition, the transcript of transthyretin (ttr) was up-regulated, while the mRNA levels of thyroid hormone receptors (trα and trβ) remained unchanged. All the results demonstrated that exposure to DEHP altered the whole-body thyroid hormones in the zebrafish larvae and changed the expression profiling of key genes related to HPT axis, proving that DEHP induced the thyroid endocrine toxicity and potentially affected the synthesis, regulation and action of thyroid hormones.
Collapse
|
10
|
Ding J, Wang C, Xie Z, Li J, Yang Y, Mu Y, Tang X, Xu B, Zhou J, Huang Z. Properties of a newly identified esterase from Bacillus sp. K91 and its novel function in diisobutyl phthalate degradation. PLoS One 2015; 10:e0119216. [PMID: 25746227 PMCID: PMC4352063 DOI: 10.1371/journal.pone.0119216] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
The widely used plasticizer phthalate esters (PAEs) have become a public concern because of their effects on environmental contamination and toxicity on mammals. However, the biodegradation of PAEs, especially diisobutyl phthalate (DiBP), remains poorly understood. In particular, genes involved in the hydrolysis of these compounds were not conclusively identified. In this study, the CarEW gene, which encodes an enzyme that is capable of hydrolyzing ρ-nitrophenyl esters of fatty acids, was cloned from a thermophilic bacterium Bacillus sp. K91 and heterologously expressed in Escherichia coli BL21 using the pEASY-E2 expression system. The enzyme showed a monomeric structure with a molecular mass of approximately 53.76 kDa and pI of 4.88. The enzyme exhibited maximal activity at pH 7.5 and 45 °C, with ρ-NP butyrate as the best substrate. The enzyme was fairly stable within the pH range from 7.0 to 8.5. High-pressure liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) were employed to detect the catabolic pathway of DiBP. Two intermediate products were identified, and a potential biodegradation pathway was proposed. Altogether, our findings present a novel DiBP degradation enzyme and indicate that the purified enzyme may be a promising candidate for DiBP detoxification and for environmental protection.
Collapse
Affiliation(s)
- Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Chaofan Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Zhenrong Xie
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Yunjuan Yang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Yuelin Mu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| | | | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, Yunnan, China
| |
Collapse
|