1
|
Lin SL, Zhang H, Chen WH, Song M, Kwon EE. Low-temperature biochar production from torrefaction for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2023; 387:129588. [PMID: 37558107 DOI: 10.1016/j.biortech.2023.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Biochar, a carbon-rich and por ous material derived from waste biomass resources, has demonstrated tremendous potential in wastewater treatment. Torrefaction technology offers a favorable low-temperature biochar production method, and torrefied biochar can be used not only as a solid biofuel but also as a pollutant adsorbent. This review compares torrefaction technology with other thermochemical processes and discusses recent advancements in torrefaction techniques. Additionally, the applications of torrefied biochar in wastewater treatment (dyes, oil spills, heavy metals, and emerging pollutants) are comprehensively explored. Many studies have shown that high productivity, high survival of oxygen-containing functional groups, low temperature, and low energy consumption of dried biochar production make it attractive as an adsorbent for wastewater treatment. Moreover, used biochar's treatment, reuse, and safe disposal are introduced, providing valuable insights and contributions to developing sustainable environmental remediation strategies by biochar.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hongjie Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Mengjie Song
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Niaz A, Spokas KA, Gámiz B, Mulla D, Arshad KR, Hussain S. 2-Methyl-4-chlorophenoxyacetic acid (MCPA) sorption and desorption as a function of biochar properties and pyrolysis temperature. PLoS One 2023; 18:e0291398. [PMID: 37683028 PMCID: PMC10490996 DOI: 10.1371/journal.pone.0291398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a highly mobile herbicide that is frequently detected in global potable water sources. One potential mitigation strategy is the sorption on biochar to limit harm to unidentified targets. However, irreversible sorption could restrict bioefficacy thereby compromising its usefulness as a vital crop herbicide. This research evaluated the effect of pyrolysis temperatures (350, 500 and 800°C) on three feedstocks; poultry manure, rice hulls and wood pellets, particularly to examine effects on the magnitude and reversibility of MCPA sorption. Sorption increased with pyrolysis temperature from 350 to 800°C. Sorption and desorption coefficients were strongly corelated with each other (R2 = 0.99; P < .05). Poultry manure and rice hulls pyrolyzed at 800°C exhibited irreversible sorption while for wood pellets at 800°C desorption was concentration dependent. At higher concentrations some desorption was observed (36% at 50 ppm) but was reduced at lower concentrations (1-3% at < 5 ppm). Desorption decreased with increasing pyrolysis temperature. Sorption data were analyzed with Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. Freundlich isotherms were better predictors of MCPA sorption (R2 ranging from 0.78 to 0.99). Poultry manure and rice hulls when pyrolyzed at higher temperatures (500 and 800°C) could be used for remediation efforts (such as spills or water filtration), due to the lack of desorption observed. On the other hand, un-pyrolyzed feedstocks or biochars created at 350°C could perform superior for direct field applications to limit indirect losses including runoff and leaching, since these materials also possess the ability to release MCPA subsequently to potentially allow herbicidal action.
Collapse
Affiliation(s)
- Abdullah Niaz
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, United States of America
| | - Kurt A. Spokas
- United States Department of Agriculture, Agricultural Research Service, St. Paul, MN, United States of America
| | - Bea Gámiz
- Department of Inorganic Chemistry, Chemical Institute for Energy and the Environment (IQUEMA), University of Córdoba, Córdoba, Spain
| | - David Mulla
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, United States of America
| | - Khaliq R. Arshad
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
| | - Sarfraz Hussain
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
| |
Collapse
|
3
|
Bose S, Senthil Kumar P, Rangasamy G, Prasannamedha G, Kanmani S. A review on the applicability of adsorption techniques for remediation of recalcitrant pesticides. CHEMOSPHERE 2023; 313:137481. [PMID: 36529165 DOI: 10.1016/j.chemosphere.2022.137481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Pesticide has revolutionised the agricultural industry by reducing yield losses and by enhancing productivity. But indiscriminate usage of such chemicals can negatively impact human health and ecosystem balance as certain pesticides can be recalcitrant in nature. Out of some of the suggested sustainable techniques to remove the pesticide load from the environment, adsorption is found to be highly efficient and can also be implemented on a large scale. It has been observed that natural adsorption that takes place after the application of the pesticide is not enough to reduce the pesticide load, hence, adsorbents like activated carbon, plant-based adsorbents, agricultural by-products, silica materials, polymeric adsorbents, metal organic framework etc are being experimented upon. It is becoming increasingly important to choose adsorbents which will not leave any secondary pollutant after treatment and the cost of production of such adsorbent should be feasible. In this review paper, it has been established that certain adsorbent like biochar, hydrochar, resin, metal organic framework etc can efficiently remove pesticides namely chlorpyrifos, diazinon, 2,4-Dichlorophenoxyacetic Acid, atrazine, fipronil, imidacloprid etc. The mechanism of adsorption, thermodynamics and kinetic part have been discussed in detail with respect to the pesticide and adsorbent under discussion. The reason behind choosing an adsorbent for the removal of a particular pesticide have also been explained. It is further highly recommended to carry out a cost analysis before implementing an absorbent because inspite of its efficacy, it might not be cost effective to use it for a particular type of pesticide or contaminant.
Collapse
Affiliation(s)
- Sanchali Bose
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - G Prasannamedha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - S Kanmani
- Centre for Environmental Studies, Department of Civil Engineering, Anna University, Chennai, 600025, India
| |
Collapse
|
4
|
Cheng H, Xing D, Lin S, Deng Z, Wang X, Ning W, Hill PW, Chadwick DR, Jones DL. Iron-Modified Biochar Strengthens Simazine Adsorption and Decreases Simazine Decomposition in the Soil. Front Microbiol 2022; 13:901658. [PMID: 35847072 PMCID: PMC9283092 DOI: 10.3389/fmicb.2022.901658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, modified biochar has been successfully used in the remediation of soil polluted with heavy metals. However, the effects of the modified biochar on pesticides (such as simazine) are still unclear. Herein, the environmental fate of simazine, such as decomposition, leaching, and adsorption in unamended soil, in the soil amended with unmodified and modified biochar (biochar + FeCl3, biochar + FeOS, biochar + Fe) were evaluated. In addition, an incubation experiment was also performed to observe the influence of modified biochar on the microbial community and diversity in the soil. The results showed that modified biochar significantly decreased the decomposition of simazine in the soil compared to its counterpart. Modified biochar also reduced the concentration of simazine in the leachate. Compared with the control, soil microbial biomass in the soil amended with unmodified biochar, biochar + FeCl3, biochar + Fe, and biochar + FeOS was decreased by 5.3%, 18.8%, 8.7%, and 18.1%, respectively. Furthermore, modified biochar changed the structure of the microbial community. This shows that modified biochar could increase the soil adsorption capacity for simazine and change the amount and microbial community that regulates the fate of simazine in the soil. This study concludes that iron-modified biochar has positive and negative effects on the soil. Therefore, its advantages and side effects should be considered before applying it to the soil.
Collapse
Affiliation(s)
- Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- School of Natural Science, Bangor University, Bangor, United Kingdom
- *Correspondence: Hongguang Cheng,
| | - Dan Xing
- Institute of Pepper Guiyang, Guizhou Academy of Agricultural Science, Guiyang, China
| | - Shan Lin
- School of Natural Science, Bangor University, Bangor, United Kingdom
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), College of Resources and Environment, Huazhong Agricultural University, Ministry of Agriculture, Wuhan, China
| | - Zhaoxia Deng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- College of Resources and Environment Engineering, Guizhou University, Guiyang, China
| | - Xi Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), College of Resources and Environment, Huazhong Agricultural University, Ministry of Agriculture, Wuhan, China
| | - Wenjing Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Paul W. Hill
- School of Natural Science, Bangor University, Bangor, United Kingdom
| | - David R. Chadwick
- School of Natural Science, Bangor University, Bangor, United Kingdom
| | - Davey L. Jones
- School of Natural Science, Bangor University, Bangor, United Kingdom
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
5
|
Goldfarb JL, Hubble AH, Ma Q, Volpe M, Severini G, Andreottola G, Fiori L. Valorization of cow manure via hydrothermal carbonization for phosphorus recovery and adsorbents for water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114561. [PMID: 35114513 DOI: 10.1016/j.jenvman.2022.114561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The increased quantities of manure being generated by livestock and their extensive agronomic use have raised concerns around run-off impacting soil and groundwater quality. Manure contains valuable nutrients (especially phosphorus) that are critical to agriculture, but when directly land-applied the run-off of such nutrients contributes to eutrophication of waterways. This study investigates the hydrothermal carbonization of cow manure at two industrially feasible process extremes: 190 °C, 1 h and 230 °C, 3 h, to concentrate and then recover phosphorus from the solid hydrochar via acid leaching and precipitation. Up to 98 wt% of phosphorus initially present in the hydrochar (88% in the raw manure) can be recovered, with the dominant crystalline species being hydroxyapatite. Acid leached hydrochars were subsequently pyrolyzed at 600 °C for 30 min, and then evaluated as adsorbent materials for water remediation by using methylene blue as a model adsorbate. Although pyrolyzed hydrochars have surface areas an order of magnitude higher (160-236 m2/g) than the non-pyrolyzed acid leached hydrochars (11-23 m2/g), their adsorption capacity is three times lower. Furthermore, while the higher carbonization temperature leads to greater recovery of phosphorus, it likewise leads to higher heavy metal concentrations in the precipitate (ranging from 0.1 to 100 mgmetal/gppt). As such, lower temperature carbonization followed by acid-extraction - without further solid processing - is a potential pathway to recover phosphorus and adsorbent materials.
Collapse
Affiliation(s)
- Jillian L Goldfarb
- Department of Biological and Environmental Engineering, Cornell University, 226 Riley-Robb Hall, Ithaca, NY, 14853, USA; Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy; The Pardee Center for the Study of the Longer-Range Future, Boston University, Bay State Road, Boston, MA, 02215, USA.
| | - Andrew H Hubble
- Department of Biological and Environmental Engineering, Cornell University, 226 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Qiulin Ma
- Department of Biological and Environmental Engineering, Cornell University, 226 Riley-Robb Hall, Ithaca, NY, 14853, USA; Henan Center for Outstanding Overseas Scientists, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Maurizio Volpe
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy; The Pardee Center for the Study of the Longer-Range Future, Boston University, Bay State Road, Boston, MA, 02215, USA
| | - Giulia Severini
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| |
Collapse
|
6
|
Loffredo E. Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of Environmental Estrogens from Water and Soil. MATERIALS 2022; 15:ma15051894. [PMID: 35269122 PMCID: PMC8911978 DOI: 10.3390/ma15051894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
New technologies have been developed around the world to tackle current emergencies such as biowaste recycling, renewable energy production and reduction of environmental pollution. The thermochemical and biological conversions of waste biomass for bioenergy production release solid coproducts and byproducts, namely biochar (BC), hydrochar (HC) and digestate (DG), which can have important environmental and agricultural applications. Due to their physicochemical properties, these carbon-rich materials can behave as biosorbents of contaminants and be used for both wastewater treatment and soil remediation, representing a valid alternative to more expensive products and sophisticated strategies. The alkylphenols bisphenol A, octylphenol and nonylphenol possess estrogenic activity comparable to that of the human steroid hormones estrone, 17β-estradiol (and synthetic analog 17α-ethinyl estradiol) and estriol. Their ubiquitous presence in ecosystems poses a serious threat to wildlife and humans. Conventional wastewater treatment plants often fail to remove environmental estrogens (EEs). This review aims to focus attention on the urgent need to limit the presence of EEs in the environment through a modern and sustainable approach based on the use of recycled biowaste. Materials such as BC, HC and DG, the last being examined here for the first time as a biosorbent, appear appropriate for the removal of EEs both for their negligible cost and continuously improving performance and because their production contributes to solving other emergencies, such as virtuous management of organic waste, carbon sequestration, bioenergy production and implementation of the circular economy. Characterization of biosorbents, qualitative and quantitative aspects of the adsorption/desorption process and data modeling are examined.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
7
|
Salomón YL, Georgin J, Franco DS, Netto MS, Piccilli DG, Foletto EL, Pinto D, Oliveira ML, Dotto GL. Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Netto MS, Georgin J, Franco DSP, Mallmann ES, Foletto EL, Godinho M, Pinto D, Dotto GL. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3672-3685. [PMID: 34389956 DOI: 10.1007/s11356-021-15366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel and effective hydrochar was prepared by hydrothermal treatment of Prunus serrulata bark to remove the pesticide atrazine in river waters. The hydrothermal treatment has generated hydrochar with a rough surface and small cavities, favoring the atrazine adsorption. The adsorption equilibrium time was not influenced by different atrazine concentrations used, being reached after 240 min. The Elovich adsorption kinetic model presented the best adjustment to the kinetic data. The Langmuir model presented the greatest compliance to the isotherm data and indicated a higher affinity between atrazine and hydrochar, reaching a maximum adsorption capacity of 63.35 mg g-1. Thermodynamic parameters showed that the adsorption process was highly spontaneous, endothermic, and favorable, with a predominance of physical attraction forces. In treating three real river samples containing atrazine, the adsorbent showed high removal efficiency, being above 70 %. The hydrochar from Prunus serrulata bark waste proved highly viable to remove atrazine from river waters due to its high efficiency and low precursor material cost.
Collapse
Affiliation(s)
- Matias S Netto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Evandro S Mallmann
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcelo Godinho
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul - UCS, Caxias do Sul, RS, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
- Facultad de Ingeniería y Arquitectura, Universidad de Lima, Lima, Peru.
| | - Guilherme L Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
9
|
Characterization of Bio-Adsorbents Produced by Hydrothermal Carbonization of Corn Stover: Application on the Adsorption of Acetic Acid from Aqueous Solutions. ENERGIES 2021. [DOI: 10.3390/en14238154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the influence of temperature on textural, morphological, and crystalline characterization of bio-adsorbents produced by hydrothermal carbonization (HTC) of corn stover was systematically investigated. HTC was conducted at 175, 200, 225, and 250 °C, 240 min, heating rate of 2.0 °C/min, and biomass-to-H2O proportion of 1:10, using a reactor of 18.927 L. The textural, morphological, crystalline, and elemental characterization of hydro-chars was analyzed by TG/DTG/DTA, SEM, EDX, XRD, BET, and elemental analysis. With increasing process temperature, the carbon content increased and that of oxygen and hydrogen diminished, as indicated by elemental analysis (C, N, H, and S). TG/DTG analysis showed that higher temperatures favor the thermal stability of hydro-chars. The hydro-char obtained at 250 °C presented the highest thermal stability. SEM images of hydro-chars obtained at 175 and 200 °C indicated a rigid and well-organized fiber structure, demonstrating that temperature had almost no effect on the biomass structure. On the other hand, SEM images of hydro-chars obtained at 225 and 250 °C indicated that hydro-char structure consists of agglomerated micro-spheres and heterogeneous structures with nonuniform geometry (fragmentation), indicating that cellulose and hemi-cellulose were decomposed. EDX analysis showed that carbon content of hydro-chars increases and that of oxygen diminish, as process temperature increases. The diffractograms (XRD) identified the occurrence of peaks of higher intensity of graphite (C) as the temperature increased, as well as a decrease of peaks intensity for crystalline cellulose, demonstrating that higher temperatures favor the formation of crystalline-phase graphite (C). The BET analysis showed 4.35 m2/g surface area, pore volume of 0.0186 cm3/g, and average pore width of 17.08 μm. The solid phase product (bio-adsorbent) obtained by hydrothermal processing of corn stover at 250 °C, 240 min, and biomass/H2O proportion of 1:10, was activated chemically with 2.0 M NaOH and 2.0 M HCl solutions to investigate the adsorption of CH3COOH. The influence of initial acetic acid concentrations (1.0, 2.0, 3.0, and 4.0 mg/mL) was investigated. The kinetics of adsorption were investigated at different times (30, 60, 120, 240, 480, and 960 s). The adsorption isotherms showed that chemically activated hydro-chars were able to recover acetic acid from aqueous solutions. In addition, activation of hydro-char with NaOH was more effective than that with HCl.
Collapse
|
10
|
Pidlisnyuk V, Newton RA, Mamirova A. Miscanthus biochar value chain - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112611. [PMID: 33892232 DOI: 10.1016/j.jenvman.2021.112611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
To complete a loop of the Miscanthus value chain including production, phytomanagement, conversion to energy, and bioproducts, the wastes accumulated from these processes have to be returned to the production cycle to provide sustainable use of the feedstock, to reduce costs, and to ensure a zero-waste approach. This can be achieved by converting Miscanthus feedstock into biogas and biochar using pyrolysis and then returning biochar to the production cycle of Miscanthus crop applications in the phytotechnology of trace elements (TEs)-contaminated/marginal lands. These processes are subjects of the current review, which focused on the peculiarities of biochar received from Miscanthus by pyrolysis, its properties, the impact on soil characteristics, the phytoremediation process, biomass yield, and the abundance of soil biodiversity. Results from the literature indicated that the pH, surface area, and porosity of Miscanthus biochar are important in determining its impact on soil characteristics. It was inferred that the most effective Miscanthus biochar was produced with a pyrolysis temperature of about 600 °C with a residence time from about 30 min to an hour. Another important factor that determined the impact of Miscanthus biochar on soil health is the application rate: with its increase, the effect became more essential, and the recommended rate is between 5% and 10%. The influence of Miscanthus biochar on the TEs phytoremediation parameters is less studied, generally Miscanthus biochar produced at higher temperatures and added with higher application rates is more likely to restrict the mobility and availability of TEs by different plants. However, some published results are contradictory to these conclusions and showed absence of significant difference in TEs reduction during application of different Miscanthus biochar doses. The future experimental studies have to focus on determining the impact of a technological pyrolysis regime on Miscanthus biochar properties on TEs-contaminated or marginal land when biochar will be obtained from contaminated rhizomes and waste after the application of phytotechnology. In addition, studies must explore the influence of this biochar on TEs phytoparameters, enhancements in biomass yield, improvements in soil parameters, and the abundance of soil diversity.
Collapse
Affiliation(s)
- Valentina Pidlisnyuk
- Department of the Environmental Chemistry & Technology, Faculty of the Environment, Jan Evangelista Purkyně University, Pasteurova 15, Ústí nad Labem, 400 96, Czech Republic.
| | - Robert Ato Newton
- Department of the Environmental Chemistry & Technology, Faculty of the Environment, Jan Evangelista Purkyně University, Pasteurova 15, Ústí nad Labem, 400 96, Czech Republic.
| | - Aigerim Mamirova
- Department of the Environmental Chemistry & Technology, Faculty of the Environment, Jan Evangelista Purkyně University, Pasteurova 15, Ústí nad Labem, 400 96, Czech Republic; Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 05 00 40, Kazakhstan.
| |
Collapse
|
11
|
Zhang Z, Zhou M, Liu J, Li J, Yang J, Chang H. Preparation and characterization of cornstalk microspheric hydrochar and adsorption mechanism of mesotrione. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202209. [PMID: 34234952 PMCID: PMC8242927 DOI: 10.1098/rsos.202209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, cornstalk was pyrolysed to obtain hydrochar (HC), which was used to remove mesotrione from aqueous solutions. HC characterization and batch experiments were conducted to investigate mesotrione adsorption and the underlying mechanism. The characterization revealed microspheres on the HC surface. FT-IR spectra showed that the HC contained a large number of -OH groups, C=C bonds of aromatic rings, C-H groups in aromatic rings and phenolic C-O bonds. The adsorption results showed that the mesotrione adsorption ability gradually increased as the HC preparation temperature increased. The quasi-second-order kinetic equation (R2 ≥ 0.9860, p < 0.05) agreed well with the mesotrione adsorption process. The maximum monolayer adsorption capacity, which was obtained at pH 7 and 45°C with HC prepared at 240°C, was 3181.7 mg kg-1 with the Langmuir isotherm model (R2 ≥ 0.9491, p < 0.05). Van der Waals and dipole forces and hydrogen bonds were inferred as the main adsorption mechanisms. HC has potential as an effective and energy-saving adsorbent for mesotrione to reduce environmental pollution.
Collapse
Affiliation(s)
- Zhongqing Zhang
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Mengmeng Zhou
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Jinhua Liu
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Jiahao Li
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Jingmin Yang
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Haibo Chang
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| |
Collapse
|
12
|
Jevrosimov I, Kragulj Isakovski M, Apostolović T, Maletić S, Ražić S, Mihajlović M, Tričković J. Mechanisms of alachlor and pentachlorobenzene adsorption on biochar and hydrochar originating from Miscanthus giganteus and sugar beet shreds. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01439-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. ENERGIES 2020. [DOI: 10.3390/en13164098] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment technology to convert waste biomass into highly dense carbonaceous materials that could be used in a wide range of applications between energy, environment, soil improvement and nutrients recovery fields. HTC converts residual organic materials into a solid high energy dense material (hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage or for adsorption of pollutants applications can be also obtained through a further activation stage. HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils. The present review proposes an outlook of the several possible applications of hydrochar produced from any sort of waste biomass sources. For each of the applications proposed, the main operative parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to match the needs for the specific application.
Collapse
|
14
|
Oladipo AA, Ahaka EO, Gazi M. Pyrochar/AgBr-derived from discarded chewing gum for decontamination of trichlorophenol via fixed-bed adsorption system. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2019.1705792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Turkey
| | - Edith Odinaka Ahaka
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Turkey
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Turkey
| |
Collapse
|
15
|
A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00098-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Hyväluoma J, Kulju S, Hannula M, Wikberg H, Källi A, Rasa K. Quantitative characterization of pore structure of several biochars with 3D imaging. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25648-25658. [PMID: 28342082 DOI: 10.1007/s11356-017-8823-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Pore space characteristics of biochars may vary depending on the used raw material and processing technology. Pore structure has significant effects on the water retention properties of biochar amended soils. In this work, several biochars were characterized with three-dimensional imaging and image analysis. X-ray computed microtomography was used to image biochars at resolution of 1.14 μm and the obtained images were analysed for porosity, pore size distribution, specific surface area and structural anisotropy. In addition, random walk simulations were used to relate structural anisotropy to diffusive transport. Image analysis showed that considerable part of the biochar volume consist of pores in size range relevant to hydrological processes and storage of plant available water. Porosity and pore size distribution were found to depend on the biochar type and the structural anisotopy analysis showed that used raw material considerably affects the pore characteristics at micrometre scale. Therefore, attention should be paid to raw material selection and quality in applications requiring optimized pore structure.
Collapse
Affiliation(s)
- Jari Hyväluoma
- Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland.
| | - Sampo Kulju
- Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Markus Hannula
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Hanne Wikberg
- VTT Technical Research Centre of Finland Ltd., P.O.Box 1000, FI-02044, VTT, Espoo, Finland
| | - Anssi Källi
- VTT Technical Research Centre of Finland Ltd., P.O.Box 1000, FI-02044, VTT, Espoo, Finland
| | - Kimmo Rasa
- Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| |
Collapse
|
17
|
Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. ENERGIES 2018. [DOI: 10.3390/en11010216] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Shou J, Dong H, Li J, Zhong J, Li S, Lü J, Li Y. Influence of Al-oxide on pesticide sorption to woody biochars with different surface areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19156-19163. [PMID: 27351874 DOI: 10.1007/s11356-016-6932-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Biochars' properties will change after application in soil due to the interactions with soil constituents, which would then impact the performance of biochars as soil amendment. For a better understanding on these interactions, two woody biochars of different surface areas (SA) were physically treated with aluminum oxide (Al-oxide) to investigate its potential influence on biochars' sorption property. Both the micropore area and mesopore (17∼500 Å in diameter) area of the low-SA biochar were enhanced by at least 1.5 times after treatment with Al-oxide, whereas the same treatment did not change the surface characteristics of the high-SA biochar due partly to its well-developed porosity. The enhanced sorption of the pesticide isoproturon to the Al-oxide-treated low-SA biochar was observed and is positively related to the increased mesopore area. The desorption hysteresis of pesticide from the low-SA biochar was strengthened because of more pesticide molecules entrapped in the expanded pores by Al-oxide. However, no obvious change of pesticide sorption to the high-SA biochar after Al-oxide treatment was observed, corresponding to its unchanged porosity. The results suggest that the influence of Al-oxide on the biochars' sorption property is dependent on their porosity. This study will provide valuable information on the use of biochars for reducing the bioavailability of pesticides.
Collapse
Affiliation(s)
- Jianxin Shou
- Yuanpei College, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Huaping Dong
- Department of Chemistry, Shaoxing University, Huancheng West Road, Shaoxing, Zhejiang, 312000, China.
| | - Jianfa Li
- Department of Chemistry, Shaoxing University, Huancheng West Road, Shaoxing, Zhejiang, 312000, China
| | - Jiaxing Zhong
- Department of Chemistry, Shaoxing University, Huancheng West Road, Shaoxing, Zhejiang, 312000, China
| | - Saijun Li
- Department of Chemistry, Shaoxing University, Huancheng West Road, Shaoxing, Zhejiang, 312000, China
| | - Jinhong Lü
- Department of Chemistry, Shaoxing University, Huancheng West Road, Shaoxing, Zhejiang, 312000, China
| | - Yimin Li
- Department of Chemistry, Shaoxing University, Huancheng West Road, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
19
|
Álvarez-Martín A, Rodríguez-Cruz MS, Andrades MS, Sánchez-Martín MJ. Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9192-9203. [PMID: 26832876 DOI: 10.1007/s11356-016-6132-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Different strategies are now being optimized to prevent water from agricultural areas being contaminated by pesticides. The aim of this work was to optimize the adsorption of non-polar (tebuconazole, triadimenol) and polar (cymoxanil, pirimicarb) pesticides by soils after applying the biosorbent spent mushroom substrate (SMS) at different rates. The adsorption isotherms of pesticides by three soils and SMS-amended soils were obtained and the adsorption constants were calculated. The distribution coefficients (K d) increased 1.40-23.1 times (tebuconazole), 1.08-23.7 times (triadimenol), 1.31-42.1 times (cymoxanil), and 0.55-23.8 times (pirimicarb) for soils amended with biosorbent at rates between 2 and 75 %. Increasing the SMS rates led to a constant increase in adsorption efficiency for non-polar pesticides but not for polar pesticides, due to the increase in the organic carbon (OC) content of soils as indicated by K OC values. The OC content of SMS-amended soils accounted for more than 90 % of the adsorption variability of non-polar pesticides, but it accounted for only 56.3 % for polar pesticides. The estimated adsorption of SMS-amended soils determined from the individual adsorption of soils and SMS was more consistent with real experimental values for non-polar pesticides than for polar pesticides. The results revealed the use of SMS as a tool to optimize pesticide adsorption by soils in dealing with specific contamination problems involving these compounds.
Collapse
Affiliation(s)
- Alba Álvarez-Martín
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - M Soledad Andrades
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 51 Madre de Dios, 26006, Logroño, Spain
| | - María J Sánchez-Martín
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| |
Collapse
|
20
|
Lei Y, Su H, Tian R. Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk. RSC Adv 2016. [DOI: 10.1039/c6ra21607b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrochar spheres were formed by the condensation, polymerization and pyrolysis behavior of hemicellulose, amorphous cellulose and soluble lignin.
Collapse
Affiliation(s)
- Yanqiu Lei
- College of Life Science
- Inner Mongolia University
- Hohhot
- China
- School of Chemistry & Chemical Engineering
| | - Haiquan Su
- College of Life Science
- Inner Mongolia University
- Hohhot
- China
- School of Chemistry & Chemical Engineering
| | - Rongkai Tian
- Engineering Department
- The University of Melbourne
- Melbourne
- Australia
| |
Collapse
|
21
|
Eibisch N, Schroll R, Fuß R. Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil. CHEMOSPHERE 2015; 134:528-535. [PMID: 25543158 DOI: 10.1016/j.chemosphere.2014.11.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/22/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Carbon (C)-rich, solid products from pyrolysis (pyrochars) and hydrothermal carbonization (HTC, hydrochars) are expected to reduce the bioavailability and bioaccessibility of pesticides as side effect of soil addition. To compare effects of different feedstocks (digestate, miscanthus, woodchips) and production processes (pyrolysis at 750°C, HTC at 200°C and 250°C), (14)C-labeled isoproturon (IPU) was applied at 0.75 kg ha(-)(1) to loamy sand amended either with 0.5% or 5% pyrochars or hydrochars, which was then incubated for 50d. Mineralization of IPU was measured as (14)C-CO2 released from soil-char composites. Pore-water and methanol extractable (14)C-IPU was quantified as well as non-extractable (14)C-residues (NER). Furthermore, C mineralization of pyrochars, hydrochars and feedstocks was studied to assess the relationship between IPU bioaccessibility and char decomposability. In pure soil, 8.1% of applied IPU was mineralized after 50d. This was reduced more strongly in pyrochar treatments (81 ± 6% reduction) than in hydrochar treatments (56 ± 25% reduction). Different feedstocks had no significantly different effect when 5% char was added, but their effect was significant and dependent on the production process in 0.5% amendments. Pesticide binding can occur by surface sorption as well as by diffusion and subsequent occlusion in micropores. The latter can be expected to result in high amounts of NER, as it was observed in the pyrochar treatments. Hydrochars were less stable than pyrochars and contained lower amounts of NER. Thus, in hydrochar amended soils, better accessibility of IPU to microbial degradation may be a result of full char decomposition within decades ensuring controlled pesticide degradation.
Collapse
Affiliation(s)
- Nina Eibisch
- Thünen-Institute of Climate-Smart Agriculture, 38116 Braunschweig, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Soil Ecology, 85764 Neuherberg, Germany
| | - Reiner Schroll
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Soil Ecology, 85764 Neuherberg, Germany.
| | - Roland Fuß
- Thünen-Institute of Climate-Smart Agriculture, 38116 Braunschweig, Germany
| |
Collapse
|
22
|
Monlau F, Sambusiti C, Antoniou N, Zabaniotou A, Solhy A, Barakat A. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification. BIORESOURCE TECHNOLOGY 2015; 187:379-386. [PMID: 25863902 DOI: 10.1016/j.biortech.2015.03.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
The robust supramolecular structure of biomass often requires severe pretreatments conditions to produce soluble sugars. Nonetheless, these processes generate some inhibitory compounds (i.e. furans compounds and aliphatic acids) deriving mainly from sugars degradation. To avoid the inhibition of the biological process and to obtain satisfactory sugars conversion level into biofuels, a detoxification step is required. This study investigates the use of two pyrochars derived from solid anaerobic digestates for the detoxification of lignocellulosic hydrolysates. At a pyrochar concentration of 40gL(-1), more than 94% of 5-HMF and 99% of furfural were removed in the synthetic medium after 24h of contact time, whereas sugars concentration remained unchanged. Furfural was adsorbed faster than 5-HMF by both pyrochars and totally removed after 3h of contact. Finally, the two pyrochars were found efficient in the detoxification of corn stalks and Douglas fir wood chips hydrolysates without affecting the soluble sugars concentrations.
Collapse
Affiliation(s)
- F Monlau
- INRA, UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes 2, place Pierre Viala, F-34060 Montpellier Cedex, France.
| | - C Sambusiti
- INRA, UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes 2, place Pierre Viala, F-34060 Montpellier Cedex, France
| | - N Antoniou
- Biomass Group, Chemical Engineering Department, Aristotle University of Thessaloniki, Un. Box 455, 54124 Thessaloniki, Greece
| | - A Zabaniotou
- Biomass Group, Chemical Engineering Department, Aristotle University of Thessaloniki, Un. Box 455, 54124 Thessaloniki, Greece
| | - A Solhy
- Université Mohammed VI Polytechnique, Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - A Barakat
- INRA, UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes 2, place Pierre Viala, F-34060 Montpellier Cedex, France.
| |
Collapse
|