1
|
Chen C, Zhao T, Liu J, Zheng S, Zeng W, Zhang X, Cui Y, Zhong R. Effect of HHCB and Cd on phytotoxicity, accumulation, subcellular distribution and stereoselectivity of chiral HHCB in soil-plant systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107699. [PMID: 37054615 DOI: 10.1016/j.plaphy.2023.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023]
Abstract
The toxicity of HHCB in the growth and development of plants is well known, but its uptake, subcellular distribution, and stereoselectivity, especially in a co-contamination environment, is not fully understood. Therefore, a pot experiment was performed to research the physiochemical response, and the fate of HHCB in pakchoi when the Cd co-existed in soil. The Chl contents were significantly lower, and the oxidative stress was aggravated under the co-exposure of HHCB and Cd. The accumulations of HHCB in roots were inhibited, and those in leaves were elevated. The transfer factors of HHCB in HHCB-Cd treatment increased. The subcellular distributions were analyzed in the cell walls, cell organelles, and cell soluble constituents of roots and leaves. In roots, the distribution proportion of HHCB followed cell organelle > cell wall > cell soluble constituent. In leaves, the distribution proportion of HHCB was different from that in roots. And the co-existing Cd made the distribution proportion of HHCB change. In the absence of Cd, the (4R,7S)-HHCB and (4R,7R)-HHCB were preferentially enriched in roots and leaves, and the stereoselectivity of chiral HHCB was more significant in roots than leaves. The co-existing Cd reduced the stereoselectivity of HHCB in plants. Our findings suggested that the fate of HHCB was affected by the co-existing Cd, so the risk of HHCB in the complicated environment should be paid more attention.
Collapse
Affiliation(s)
- Cuihong Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Tong Zhao
- Xiong'an Urban Planning and Design Research Institute Co.Ltd, Baoding, Hebei, 071700, China
| | - Jinzheng Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang, Shandong, 261061, China
| | - Wenlu Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohui Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, 037009, China
| | - Yuxiao Cui
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Rong Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
Faizan M, Cheng SH, Tonny SH, Robab MI. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:186-195. [PMID: 36244191 DOI: 10.1016/j.plaphy.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones (SLs) have been implicated in various developmental processes of the plant, including the response against several abiotic stresses. It is well known as a class of endogenous phytohormones that regulates shoot branching, secondary growth and root morphology. This hormone facilitates plants in responding to nitrogen and phosphorus starvation by shaping the above and below ground structural design. SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Heavy metals (HMs) in soil are considered a serious environmental problem that causes various harmful effects on plants. SLs along with other plant hormones imply the role in plant architecture is far from being fully understood. Strategy to remove/remediation of HMs from the soil with the help of SLs has not been defined yet. Therefore, the present review aims to comprehensively provide an overview of SLs role in fine-tuning plant architectures, relation with other plant hormones under abiotic stress, and remediation of HMs contaminated soil using SLs.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India.
| | - Shi Hui Cheng
- School of Biosciences, University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agriculture University, Mymensingh, 2202, Bangladesh
| | - Merajul Islam Robab
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| |
Collapse
|
3
|
Zhang P, Ge L, Xu Y, Yao T, Bian Y, Zhou D, Gao X. Exploring the influence of concentration fluctuation and matrix effects on a passive sampler of triolein-embedded cellulose acetate membrane measuring polychlorinated biphenyls in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31659-31674. [PMID: 35006562 DOI: 10.1007/s11356-021-17237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
A membrane of triolein-embedded cellulose acetate membrane (TECAM), as an integrative passive sampler, was applied to adsorb 28 polychlorinated biphenyls (PCBs) from pure water and sea water in order to probe into the influence of concentration fluctuation and water matrix. The results demonstrated the temporal variations of PCBs concentrations in TECAM followed the first-order kinetics model. The periodic refreshment of solution and matrix effects of sea water significantly prolonged the time that PCBs reached equilibrium stage. The refreshment facilitated the uptake mass in TECAM. On the contrary, the matrix effects of sea water and dissolved organic matter (DOM) declined the PCBs absorption to TECAM. The average logKP values of PCBs in pure water were about 1.2 log unit higher than those in sea water in the experiments that the solution was not refreshed, while the difference of average logKP values narrowed to 0.3 log unit if the PCBs solutions were periodically refreshed. The correlation between logKP and logKOW values fitted the quadratic curve well, which was similar to semi-permeable membrane device (SPMD). The appropriate sampling times (t94%) ranged from 98.8 to 819 h (mean 500 h) for pure water with refreshment, much longer than those in sea water with refreshment (80.1~410 h, mean 189 h). The t94% values in the solution with high DOM content increased significantly, up to 409 h. Furthermore, comparing the two experiments that the spiked pure water and sea water solution were refreshed frequently, the estimated sampling rates (Rs) in pure water (0.154~2.06 L/day with a mean value of 0.605 L/day) were slightly lower than those in sea water (0.292~3.84 L/day with a mean value of 1.69 L/day). However, the Rs values in sea water with DOM declined sharply to 0.042 L/day. Therefore, concentration fluctuation, matrix effect, and DOM contents of sea water evidently posed significant influence on dynamic parameters of TECAM absorption, which would be screened and probed detailed in future.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ting Yao
- College of Chemistry, Liaoning Formal University, Dalian, 116021, China
| | - Ying Bian
- College of Chemistry, Liaoning Formal University, Dalian, 116021, China
| | - Dongxing Zhou
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources of PRC, Tianjin, 300192, China
| | - Xiaozhong Gao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
4
|
Du J, Liu J, Jia T, Chai B. The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118823. [PMID: 35007680 DOI: 10.1016/j.envpol.2022.118823] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the major channel for their decontamination from different environments. Aerobic and anaerobic biodegradations of PAHs in batch reactors with single or multiple bacterial strains have been intensively studied, but the cooperative mechanism of functional PAH-degrading populations at the community level under field conditions remains to be explored. We determined the composition of PAH-degrading populations in the bacterial community and PAHs in farmland and wasteland soils contaminated by coking plants using high-throughput sequencing and high-performance liquid chromatography (HPLC), respectively. The results indicated that the PAH content of farmland was significantly lower than that of wasteland, which was attributed to the lower content of low molecular weight (LMW) PAHs and benzo [k]fluoranthene. The soil physicochemical properties were significantly different between farmland and wasteland. The naphthalene content was related to the soil organic carbon (SOC) and pH, while phenanthrene was related to the nitrate nitrogen (NO3--N) and water content (WC). The pH, nitrite (NO2--N), SOC, NO3--N and WC were correlated with the content of high molecular weight (HMW) PAHs and total PAHs. The relative abundances of the phyla Actinobacteria, Chloroflexi, Acidobacteria, and Firmicutes and the genera Nocardioides, Bacillus, Lysobacter, Mycobacterium, Streptomyces, and Steroidobacter in farmland soil were higher than those in wasteland soil. The soil physicochemical characteristics of farmland increased the diversities of the PAH degrader and total bacterial communities, which were significantly negatively related to the total PAHs and LMW PAHs. Subsequently, the connectivity and complexity of the network in farmland were lower than those in wasteland, while the module containing a module hub capable of degrading PAHs was identified in the network of farmland soil. Structural equation modelling (SEM) analysis showed that the soil characteristics and optimized abundance and diversity of the bacterial community in farmland were beneficial for the dissipation efficiency of PAHs.
Collapse
Affiliation(s)
- Jingqi Du
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, PR China; Department of Life Sciences, Lüliang University, Lüliang, 033000, PR China
| | - Jinxian Liu
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, PR China
| | - Tong Jia
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, PR China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
5
|
Li Y, Ma J, Li Y, Xiao C, Shen X, Chen J, Xia X. Nitrogen addition facilitates phytoremediation of PAH-Cd cocontaminated dumpsite soil by altering alfalfa growth and rhizosphere communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150610. [PMID: 34597578 DOI: 10.1016/j.scitotenv.2021.150610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Thousands of unlined landfills and open dumpsites seriously threatened the safety of soil and groundwater due to leachate leakage with a mass of pollutants, particularly heavy metals, organic contaminants and ammonia. Phytoremediation is widely used in the treatment of cocontaminated soils because it is cost-effective and environmentally friendly. However, the extent to which phytoremediation efficiency and plant physiological responses are affected by the high nitrogen (N) content in such cocontaminated soil is still uncertain. Here, pot experiments were conducted to investigate the effects of N addition on the applicability of legume alfalfa remediation for polycyclic aromatic hydrocarbon‑cadmium (PAHCd) co-/contaminated soil and the corresponding microbial regulation mechanism. The results showed that the PAH dissipation rates and Cd removal rates in the high-contamination groups increased with the external N supply, among which the pyrene dissipation rates in the cocontaminated soil was elevated most significantly, from 78.10% to 87.25%. However, the phytoremediation efficiency weakened in low cocontaminated soil, possibly because the excessive N content had inhibitory effects on the rhizobium Ensifer and restrained alfalfa growth. Furthermore, the relative abundance of PAH-degrading bacteria in the rhizosphere dominated PAH dissipation. As reflected by principal coordinate analysis (PCoA) analysis and hierarchical dendrograms, the microbial community composition changed with N addition, and a more pronounced shift was found in the rhizosphere relative to the endosphere or shoots of alfalfa. This study will provide a theoretical basis for legume plant remediation of dumpsites as well as soil contaminated with multiple pollutants.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Junwei Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Yuqian Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Chen Xiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinyi Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Jiajun Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| |
Collapse
|
6
|
Li J, Luo L, Zhang Z, Hu J. Growth and Cellular Responses of Toxigenic Microcystis to Chloramphenicol-Stress at Various Environmentally-Relevant Nitrogen Levels. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:337-344. [PMID: 32676683 DOI: 10.1007/s00128-020-02935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
This study explored nitrogen (N)-dependent interaction between Microcystis and chloramphenicol (CAP) along 20 day-test. Results showed that 5 mg/L N largely alleviated inhibitory effects of CAP on Microcystis growth, while 50 and 0.5 mg/L N exacerbated growth-inhibition by CAP especially in early (before day 8) and mid-late stage, respectively. At each N level, CAP-induced antioxidant defense and cell damage extents were negatively correlated to growth state in each stage, and CAP-biodegradation coincided with Microcystis growth and glutathione synthesis dynamics, implying that antioxidant defense, cell damage and CAP-removal closely linked to N-dependent Microcystis growth under CAP-stress. Microcystin (MC)-production and -release under CAP-stress were also N-dependent. Although Microcystis growth was greatly-inhibited by prolonged CAP-stress at 0.5 mg/L N, delayed CAP-loss and high MC-release at 0.5 mg/L N should be emphasized during Microcystis-dominated cyanobacterial blooms (MCBs) and CAP co-occurrence. This study had great implication in risk assessment for MCBs-CAP co-occurrence in different waters.
Collapse
Affiliation(s)
- Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Lin Luo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhong Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Chen J, Xia X, Zhang Z, Wen W, Xi N, Zhang Q. The combination of warming and copper decreased the uptake of polycyclic aromatic hydrocarbons by spinach and their associated cancer risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138732. [PMID: 32334236 DOI: 10.1016/j.scitotenv.2020.138732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 05/28/2023]
Abstract
Both climate warming and co-contamination of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are environmental issues of great concern. However, the interactive effects of warming and heavy metals on PAH accumulation in edible plants and the PAH-associated health risk remain unclear. In this study, enclosed soil/water-air-plant microcosm experiments were conducted to explore the effects of copper (Cu), warming (+6 °C), and their combination on the uptake of four deuterated PAH (PAH-d10) by spinach (Spinacia oleracea L.) in aged soil. PAH-associated health risks for soil, plant, and air exposure pathways were also assessed. The results showed that both individual Cu or warming decreased the PAH-d10 concentrations in root and shoot (non-normalized by lipid content) as well as the total PAH-associated cancer risk. Although antagonism existed between warming and Cu, compared to the presence of Cu, warming further reduced the spinach uptake of PAHs-d10 and total PAH-associated cancer risk, and the reductions were stronger at higher Cu levels. The inhibitory effect of the binary combination on PAH-d10 root uptake was attributed to decreased root lipid content and phytoavailable concentrations of PAHs-d10 in soil as a consequence of biodegradation, aging effect and cation-π interaction. The antagonism between warming and Cu on spinach uptake could be explained by their opposite effects on PAH-d10 biodegradation and the inhibition of the cation-π interaction caused by warming. Additionally, the shoot uptake of PAHs-d10 was mainly controlled by their soil to air to shoot partitioning. The findings suggest that the interactive effects of climate warming and co-existing pollutants should be taken into account for the assessment of plant uptake and health risk of PAHs.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Zhenrui Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wu Wen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nannan Xi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Chen J, Xia X, Chu S, Wang H, Zhang Z, Xi N, Gan J. Cation-π Interactions with Coexisting Heavy Metals Enhanced the Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons in Spinach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7261-7270. [PMID: 32434324 DOI: 10.1021/acs.est.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Few studies have considered the effect of co-occurring heavy metals on plant accumulation of hydrophobic organic compounds (HOCs), and less is known about the role of intermolecular interactions. This study investigated the molecular mechanisms of Cu/Zn effects on hydroponic uptake of four deuterated polycyclic aromatic hydrocarbons (PAHs-d10) by spinach (Spinacia oleracea L.). Both solubility enhancement experiment and quantum mechanical calculations demonstrated the existence of [PAH-Cu(H2O)0-4]2+ and [2·PAH-Cu(H2O)0-2]2+ via cation-π interactions when Cu2+ concentration was ≤100 μmol/L. Notably, PAH-d10 concentrations in both roots and shoots increased significantly with Cu2+ concentration. This was because the formation of phytoavailable PAH-Cu2+ complexes decreased PAH-d10 hydrophobicity and consequently decreased their sorption onto dissolved organic carbon (DOC, i.e., root exudates), thereby increasing phytoavailable concentrations and uptake of PAHs-d10. X-ray absorption near-edge structure analysis showed that PAH-Cu2+ complexes could enter defective spinach roots via apoplastic pathway. However, Zn2+ and PAHs-d10 cannot form the cation-π interactions because of the high desolvation penalty of Zn2+. Actually, Zn2+ decreased the spinach uptake of PAHs-d10 due to the increase of DOC induced by Zn. This work provides molecular insights into how metals could selectively affect the plant uptake of HOCs and highlights the importance of considering the HOC phytoavailability with coexisting metals.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhenrui Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nannan Xi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
9
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|
10
|
Tang J, Wang S, Tai Y, Tam NF, Su L, Shi Y, Luo B, Tao R, Yang Y, Zhang X. Evaluation of factors influencing annual occurrence, bioaccumulation, and biomagnification of antibiotics in planktonic food webs of a large subtropical river in South China. WATER RESEARCH 2020; 170:115302. [PMID: 31751894 DOI: 10.1016/j.watres.2019.115302] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/12/2019] [Accepted: 11/09/2019] [Indexed: 05/26/2023]
Abstract
Biological pump is important to control the fate and distribution of organic contaminants, particularly in temperate and cold oligotrophic waters. However, it remains largely unknown how factors affect the long-term occurrence and fate of ionogenic organic compounds in subtropical eutrophic waters. The present study aimed to assess biogeochemical and physical factors affecting the annual occurrence, bioaccumulation, and trophic transfer of 14 antibiotics through planktonic food webs in the Pearl River, a large subtropical eutrophic river in China. This was done by carrying out 1-year simultaneous field observations of antibiotic concentrations in five water column compartments and assessing the variability of bioconcentration (BCF), bioaccumulation (BAF), and biomagnification (BMF) factors, which were influenced by plankton biomass, pH and temperature of water columns. The annual mean antibiotic concentration per site ranged from 1014.66 ± 535.66 ng L-1 to 1464.63 ± 1075.91 ng L-1, and was positively correlated with phytoplankton biomass, but independent of the proximity of the sites to urban areas. Antibiotic occurrences in both phytoplankton and zooplankton were greatly influenced by a biodilution effect. The annual occurrence of antibiotics in the water column was modulated by biological pumps as well as their equilibrium partitioning, and indirectly influenced of eutrophication with pH increased with phytoplankton biomass and phytoplankton life cycling. BAF of antibiotics by plankton had biphasic correlations with temperature (n = 150, R2 = 0.17-0.60, p < 0.001) and decreased with plankton biomass (n = 105-147, R2 = 0.10-0.22, p < 0.001). The trophic transfer of antibiotics from phytoplankton to zooplankton (BMFs) were positively correlated with both phytoplankton biomass (n = 30, R2 = 0.58, p < 0.001) and temperature (n = 132-150, R2 = 0.12-0.43, p < 0.001). Mean BMFs of ciprofloxacin, lomefloxacin, ofloxacin, oxytetracycline, and tetracycline ranged between 0.18 and 2.25, implying these chemicals can undergo biomagnification along planktonic food webs. The present research demonstrates the important role of biogeochemical and physical factors in the environmental fate of antibiotics at large spatiotemporal scales.
Collapse
Affiliation(s)
- Jinpeng Tang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Sai Wang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Yiping Tai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Nora Fungyee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Linhui Su
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Yuming Shi
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Bangke Luo
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Ran Tao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China.
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China.
| | - Xiaomeng Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Tao Y, Liu D. Trophic status affects the distribution of polycyclic aromatic hydrocarbons in the water columns, surface sediments, and plankton of twenty Chinese lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:666-674. [PMID: 31185355 DOI: 10.1016/j.envpol.2019.05.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The influence of trophic status on the distribution of hydrophobic organic contaminants (HOCs) in different subtropical shallow waters at large spatial scales remains largely unknown. In this study, samples of surface sediments, water, total suspended particles, phytoplankton, and zooplankton were simultaneously collected from 83 sampling sites in 20 subtropical oligotrophic to hyper-eutrophic shallow lakes in China to investigate the influence of trophic status on the spatial distribution and sinking fluxes of 16 polycyclic aromatic hydrocarbons (PAHs). The total concentration of the 16 PAHs (ΣPAH16) in the water columns of these lakes varied from 0.22 to 5.81 μg L-1, and increased with the trophic state index (TSI) and phytoplankton biomass. Phytoplankton were the dominant reservoir for the PAHs in the water column. However, the fraction of ΣPAH16 in phytoplankton decreased with the TSI. The average sinking flux of ΣPAH16 of the individual lakes varied from 2257.1 to 261674.1 mg m-2 d-1, and increased with the TSI of the lakes. The concentration of ΣPAH16 in the surface sediments ranged from 385.77 to 3784.37 ng gdw-1, and increased with the TSI and the ratio of phycocyanin/sediment organic carbon. It suggested that cyanobacterial biomass affected by trophic status dominated the occurrence of the PAHs in the surface sediments of these lakes. Biomass dilution and the biological pump affected the accumulation of the PAHs in phytoplankton, and zooplankton, and had more influence on the PAHs with higher hydrophobicity. Both the bioconcentration factors and bioaccumulation factors of the PAHs decreased with the TSI. No biomagnification was observed for the PAHs from phytoplankton to zooplankton in these lakes in spring. Our study provided novel knowledge for the coupling between eutrophication and HOCs in 20 subtropical shallow lakes with different trophic status.
Collapse
Affiliation(s)
- Yuqiang Tao
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Donghong Liu
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
12
|
Zhu Q, Wu Y, Zeng J, Wang X, Zhang T, Lin X. Influence of bacterial community composition and soil factors on the fate of phenanthrene and benzo[a]pyrene in three contrasting farmland soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:229-237. [PMID: 30677667 DOI: 10.1016/j.envpol.2018.12.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
The fate of polycyclic aromatic hydrocarbons (PAHs) determines their potential risk in soil, which may be directly affected by abiotic conditions and indirectly through the changes in decomposer communities. In comparison, the indirect effects on the fate remain largely elusive. In this study, the fate of phenanthrene and benzo[a]pyrene and the corresponding bacterial changes were investigated in three contaminated farmland soils using a 14C tracer method and Miseq sequencing. The results showed that most benzo[a]pyrene was consistently extractable with dichloromethane (DCM) after the 60-day incubation (60.4%-78.2%), while phenanthrene was mainly mineralized to CO2 during the 30-day incubation (40.4%-58.7%). Soils from Guangzhou (GZ) showed a different distribution pattern of 14C-PAHs exemplified by low mineralization and disparate bound residue formation. The PAH fate in the Shenyang (SY) and Nanjing (NJ) soils were similar to each other than to that in the GZ soil. The fate in the GZ soil seemed to be linked to the distinct edaphic properties, such as organic matter content, however soil microbial community could have influenced the distribution pattern of PAHs. This potential role of microorganisms was reflected by the unique changes in the copy numbers of Gram positive RHDα gene, and by the distinct shifts in bacterial community composition during the incubation. A quite different shift in bacterial communities was found in the GZ microcosms which may influence PAH mineralization and non-extractable residue (NER) formation.
Collapse
Affiliation(s)
- Qinghe Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Liu SH, Zeng ZT, Niu QY, Xiao R, Zeng GM, Liu Y, Cheng M, Hu K, Jiang LH, Tan XF, Tao JJ. Influence of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of Cd(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1279-1287. [PMID: 30577120 DOI: 10.1016/j.scitotenv.2018.11.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Suspended microbes gradually lost advantages in practical applications of PAHs and heavy metals bioremediation. Therefore this study investigated the effect of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of different Cd(II) concentrations. Condensed Bacillus sp. P1 was immobilized with polyvinyl alcohol and sodium alginate and PVA-SA-cell cryogel beads were prepared. The results indicated that the use of gel beads increased the number of adsorption sites thus accelerating phenanthrene degradation. In addition, changes in detoxification indices, including superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), were determined to elucidate the immobilization mechanisms related to cells protection from Cd(II) when degrading phenanthrene. By protecting the gel membrane, oxidative damage was minimized, while SOD activity increased from 55.72 to 81.33 U/mgprot as Cd(II) increased from 0 to 200 mg/L but later dropped to 44.29 U/mgprot as Cd(II) increased to 300 mg/L for the non-immobilized system. On the other hand, the SOD activity kept increasing from 52.23 to 473.35 U/mgprot for the immobilized system exposed to Cd(II) concentration between 0 and 300 mg/L. For CAT and GSH, immobilization only slowed down the depletion process without any change on the variation trends. The changes in surface properties and physiological responses of microbes caused the differences of immobilization effect on phenanthrene biodegradation in the presence of Cd(II), which is a novel finding.
Collapse
Affiliation(s)
- Shao-Heng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| | - Zhuo-Tong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kai Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu-Huang Jiang
- School of Minerals Processing and Bioengineering and Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jian-Jun Tao
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| |
Collapse
|
14
|
Kim I, Lee Y, Kim SD. Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:391-400. [PMID: 29934778 DOI: 10.1007/s10653-018-0139-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni-PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni-PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation-π interactions between Ni and PAHs. In the single Ni exposure, the dose-response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation-π interactions between Ni and PAHs. Ni-PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni-PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.
Collapse
Affiliation(s)
- Injeong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Yeseul Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
15
|
Deng S, Ke T, Wu Y, Zhang C, Hu Z, Yin H, Guo L, Chen L, Zhang D. Heavy Metal Exposure Alters the Uptake Behavior of 16 Priority Polycyclic Aromatic Hydrocarbons (PAHs) by Pak Choi ( Brassica chinensis L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13457-13468. [PMID: 30351035 DOI: 10.1021/acs.est.8b01405] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are predominant pollutants normally coexisting at electronic waste dumping sites or in agricultural soils irrigated with wastewater. The accumulation of PAHs and HMs in food crops has become a major concern for food security. This study explored the hydroponic uptake of 16 priority PAHs and 5 HMs (Cd, Cr, Cu, Pb, and Zn) by pak choi ( Brassica chinensis L.). PAHs exhibited stronger inhibition on pak choi growth and physiological features than HMs. Five HMs were categorized into high-impact HMs (Cr, Cu, and Pb) and low-impact HMs (Cd and Zn) with distinct behavior under the coexposure with PAHs, and low-impact HMs showed synergistic toxicity effects with PAHs. Coexposure to PAHs and HMs slightly decreased the uptake and translocation of PAHs by pak choi, possibly attributing to the commutative hindering effects on root adsorption or cation-π interactions. The bioconcentration factors in PAHs + HMs treatments were independent of the octanol-water partition coefficient ( Kow), owing to the cation-π interaction associated change of Kow and induced defective root system. This study provides new insights into the mechanisms and influential factors of PAHs uptake in Brassica chinensis L. and gives clues for reassessing the environmental risks of PAHs in food crops.
Collapse
Affiliation(s)
- Songqiang Deng
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan 430079 , P.R. China
| | - Tan Ke
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology , Wuhan University , Wuhan 430074 , P.R. China
| | - Yanfang Wu
- Wuhan Wenke Ecological Environment, Ltd. , Wuhan 430223 , P.R. China
| | - Chao Zhang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology , Wuhan University , Wuhan 430074 , P.R. China
| | - Zhiquan Hu
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan 430079 , P.R. China
| | - Hongmei Yin
- Hunan Institute of Microbiology , Changsha 410009 , P.R. China
| | - Limin Guo
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan 430079 , P.R. China
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology , Wuhan University , Wuhan 430074 , P.R. China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , P.R. China
| |
Collapse
|
16
|
Tao Y, Yu J, Xue B, Yao S, Wang S. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:447-457. [PMID: 28110880 DOI: 10.1016/j.scitotenv.2017.01.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Hydrophobic organic contaminants (HOCs) are toxic and ubiquitous in aquatic environments and pose great risks to aquatic organisms. Bioaccumulation by plankton is the first step for HOCs to enter aquatic food webs. Trophic status is considered to dominate variations in bioaccumulation of HOCs in plankton in temperate and frigid deep oligotrophic waters. However, long-term driving factors for bioaccumulation of HOCs in planktonic food webs of subtropical shallow eutrophic waters have not been well investigated. China has the largest subtropical lake density in the Northern Hemisphere. Due to limited field data, long-term variations in the bioaccumulation of HOCs in these lakes are almost unknown. Here we take Lake Xuanwu as an example to investigate long-term variations in the bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbon (PAHs) in planktonic food webs of subtropical shallow eutrophic lakes in China, and elucidate the driving factors. Our results indicate that temperature rather than nutrients dominates long-term dynamics of planktonic biomass in this lake. Precipitation significantly enhances the concentrations of the PAHs, and total suspended particles, and consequently affects the distribution of the PAHs in the water column. Biomass dilution induced by temperature dominates bioaccumulation of the PAHs by both phytoplankton and zooplankton (copepods and cladocerans). Biomagnification of the PAHs from phytoplankton to zooplankton is positively correlated with temperature. Our study suggests that temperature and precipitation drive long-term variations in the bioaccumulation of the PAHs in the planktonic food webs of this subtropical shallow eutrophic lake. Lake Xuanwu has a similar mean annual temperature, annual precipitation, sunshine duration, and nutrient levels as other subtropical shallow eutrophic lakes in China. This study may also help to understand the bioaccumulation of HOCs in planktonic food webs of other subtropical shallow eutrophic lakes.
Collapse
Affiliation(s)
- Yuqiang Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jing Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of public health, Lanzhou University, Lanzhou 730000, China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shuchun Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sumin Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
17
|
Tao Y, Xue B, Lei G, Liu F, Wang Z. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:624-634. [PMID: 28173953 DOI: 10.1016/j.envpol.2017.01.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
To date effects of climate change on bioaccumulation and biomagnification of chemical pollutants in planktonic food webs have rarely been studied. Recruitments of plankton have shifted earlier due to global warming. Global warming and precipitation patterns are projected to shift seasonally. Whether and how the shifts in plankton phenology induced by climate change will impact bioaccumulation and biomagnification of chemical pollutants, and how they will respond to climate change are largely unknown. Here, we combine data analysis of the past seven decades, high temporal resolution monitoring and model development to test this hypothesis with nine polycyclic aromatic hydrocarbons (PAHs) in the planktonic food web of a subtropical shallow eutrophic lake in China. We find biphasic correlations between both bioconcentration factors and bioaccumulation factors of the PAHs and the mean temperature, which depend on the recruitment temperatures of cyanobacteria, and copepods and cladocerans. The positive correlations between bioconcentration factors, bioaccumulation factors and the mean temperature will be observed less than approximately 13-18 days by 2050-2060 due to the shifts in plankton phenology. The PAHs and their bioaccumulation and biomagnification will respond seasonally and differently to climate change. Bioaccumulation of most of the PAHs will decrease with global warming, with higher decreasing rates appearing in winter and spring. Biomagnification of most of the PAHs from phytoplankton to zooplankton will increase with global warming, with higher increasing rates appearing in winter and spring. Our study provides novel insights into bioaccumulation and biomagnification of chemical pollutants in eutrophic waters under climate change scenarios.
Collapse
Affiliation(s)
- Yuqiang Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guoliang Lei
- Key Laboratory for Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, 350007, China
| | - Fei Liu
- Fuzhou Environmental Monitoring Station, Fuzhou, 350011, China
| | - Zhen Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
18
|
Bai L, Xu H, Wang C, Deng J, Jiang H. Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa. CHEMOSPHERE 2016; 162:172-180. [PMID: 27497347 DOI: 10.1016/j.chemosphere.2016.07.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Phytoplankton-derived extracellular polymeric substances (EPS) are of vital importance for the biogeochemical cycles of hydrophobic organic pollutants in lake ecosystems. In this study, roles of loosely-bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in biosorption of phenanthrene (PHE) on a typical cyanobacteria Microcystis aeruginosa were investigated. The results showed that the biosorption of PHE on M. aeruginosa cell varied lasted 24 h, while the binding of PHE to LB-EPS and TB-EPS reached equilibrium within less than 2 h. The equilibrium biosorption capacities of M. aeruginosa cell, LB-EPS and TB-EPS were 6.78, 12.31, and 9.47 μg mg(-1), respectively, indicating that the binding of PHE to EPS was a considerable process involved in biosorption. Fluorescence quenching titration revealed that increasing temperature induced more binding sites in EPS for PHE and the binding process was driven by electrostatic force and hydrophobic interactions. Interestingly, dynamic and static quenching processes occurred simultaneously for the binding of PHE to protein-like substances in EPS, whereas the binding of PHE to humic-like substances belonged to static quenching. The relatively higher contents of proteins in LB-EPS produced a stronger binding capacity of PHE. Overall, the interactions between hydrophobic organic pollutants and cyanobacterial EPS are favorable to the bioaccumulation of hydrophobic organic pollutants in cyanobacteria and facilitate the regulatory function of cyanobacterial biomass as a biological pump.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; Graduate University of Chinese Academy of Sciences, PR China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jiancai Deng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
19
|
Chen T, Liu X, Zhang X, Chen X, Tao K, Hu X. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils. CHEMOSPHERE 2016; 154:515-520. [PMID: 27085066 DOI: 10.1016/j.chemosphere.2016.03.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 03/10/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
At present, few research focus on the phytoremediation for organic pollutants and heavy metals enhanced by surfactants and chelate agents in the combined contaminated soils or sediments. In this study, the effect of a novel combined addition of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) into pyrene and lead (Pb) co-contaminated soils on bioaccessiblity of pyrene/Pb and dehydrogenase activities (DHA) was studied. Through the comparison of the results with the alone and combined application, synergistic effect on bioaccessiblity of pyrene and Pb was found while APG and NTA was applied together. Results also indicated a significant promotion on the DHA in mixed addition of APG and NTA. In addition, correlation and principal component analysis were performed to better understand the relationship among APG/NTA, bioaccessiblity of pyrene/Pb and the DHA. Results showed that APG and NTA can affect DHA directly by themselves but also can affect DHA indirectly by changing bioaccessible pyrene and exchangeable Pb.
Collapse
Affiliation(s)
- Tingru Chen
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaoyan Liu
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xinying Zhang
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kaiyun Tao
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaoxin Hu
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
20
|
Tao Y, Xue B, Yang Z, Yao S, Li S. Effects of heavy metals on the sorption of polycyclic aromatic hydrocarbons by. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1953-1962. [PMID: 25602212 DOI: 10.2134/jeq2014.01.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To date, little is known about the effects of heavy metals on the sorption of organic contaminants by phytoplankton. In this study, the effects of Cu, Cd, and Ag on the sorption of polycyclic aromatic hydrocarbons (PAHs) by were studied. Phenanthrene sorption was facilitated by low concentrations of metal salts (≤20 μmol L) and was significantly suppressed in the presence of 50 to 200 μmol L metal salts and rebounded and exceeded the control in the presence of 500 to 5000 μmol L Cu(NO) and AgNO, respectively. Although the ionic strengths of the solutions were the same, phenanthrene sorption was different in the presence of the same concentrations of Cu(NO) and Cd(NO) especially in the high concentration range. In the high concentration range, Ag was much more effective than Cu and Cd to increase phenanthrene sorption. In contrast to phenanthrene, sorption of both pyrene and benzo[a]pyrene increased dramatically in the presence of Cu(NO). The cation-π interactions between the metal cations and PAHs facilitated the sorption of the PAHs. Sorption enhancement of the PAHs caused by the cation-π interactions increased with the softness order of the metals (Cd < Cu < Ag) and the π donor strength order of the PAHs (phenanthrene < pyrene < benzo[a]pyrene). This study suggests that sorption of PAHs by cyanobacteria can be significantly altered by concentrations and properties of both heavy metals and PAHs.
Collapse
|