1
|
Mohiuddin I, Singh R, Kaur V. Blending polydopamine-derived imprinted polymers with rice straw-based fluorescent carbon dots for selective detection and adsorptive removal of ibuprofen. Int J Biol Macromol 2024; 269:131765. [PMID: 38677686 DOI: 10.1016/j.ijbiomac.2024.131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Dual-functioning probes capable of detecting and removing hazardous substances have recently received increased attention compared to exclusive sensory probes. Herein, a new composite is synthesized by blending polydopamine imprinted polymers with fluorescent carbon dots (PIP-FCDs) for the selective recognition and adsorption of Ibuprofen (IBF). IBF is a nonsteroidal anti-inflammatory drug and is excessively released in the pharmaceutical wastes. The PIP-FCDs consist of confined pockets for encasing IBF and quenches fluorescence signal when contact with the molecule. PIP-FCDs show high sensitivity (limit of detection = 1.58 × 10-5 μM) and selectivity towards IBF in the presence of other pharmaceutical drugs i.e., aspirin, ketoprofen, norfloxacin, and levofloxacin. The adsorption studies show an adsorption capacity of 209.8 mg g-1 with an extraction efficiency of around 99.9 %. Furthermore, PIP-FCDs are utilized to determine IBF levels in various aqueous pharmaceutical samples. This development provides a simple and dual-functioning probe for the detection and adsorption of IBF from various matrices.
Collapse
Affiliation(s)
- Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector, 10, Chandigarh, -160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
2
|
Mikula P, Hollerova A, Hodkovicova N, Doubkova V, Marsalek P, Franc A, Sedlackova L, Hesova R, Modra H, Svobodova Z, Blahova J. Long-term dietary exposure to the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen can affect the physiology of common carp (Cyprinus carpio) on multiple levels, even at "environmentally relevant" concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170296. [PMID: 38301789 DOI: 10.1016/j.scitotenv.2024.170296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
The aim of the study was to evaluate the effects of emerging environmental contaminants, the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and ibuprofen (IBP), on physiological functions in juvenile common carp (Cyprinus carpio). Fish were exposed for 6 weeks, and for the first time, NSAIDs were administered through diet. Either substance was tested at two concentrations, 20 or 2000 μg/kg, resulting in four different treatments (DCF 20, DCF 2000, IBP 20, IBP 2000). The effects on haematological and biochemical profiles, the biomarkers of oxidative stress, and endocrine disruption were studied, and changes in RNA transcription were also monitored to obtain a comprehensive picture of toxicity. Fish exposure to high concentrations of NSAIDs (DCF 2000, IBP 2000) elicited numerous statistically significant changes (p < 0.05) in the endpoints investigated, with DCF being almost always more efficient than IBP. Compared to control fish, a decrease in total leukocyte count attributed to relative lymphopenia was observed. Plasma concentrations of total proteins, ammonia, and thyroxine, and enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase, and alkaline phosphatase (ALP) were significantly elevated in either group, as were the activities of certain hepatic antioxidant enzymes (superoxide dismutase, glutathione-S-transferase) in the DCF 2000 group. The transcriptomic profile of selected genes in the tissues of exposed fish was affected as well. Significant changes in plasma total proteins, ammonia, ALT, and ALP, as well as in the transcription of genes related to thyroid function and the antioxidant defense of the organism, were found even in fish exposed to the lower DCF concentration (DCF 20). As it was chosen to match DCF concentrations commonly detected in aquatic invertebrates (i.e., the potential feed source of fish), it can be considered "environmentally relevant". Future research is necessary to shed more light on the dietary NSAID toxicity to fish.
Collapse
Affiliation(s)
- Premysl Mikula
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Aneta Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Lucie Sedlackova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Renata Hesova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Helena Modra
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic; Department of Environmentalistics and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generala Piky 7, 613 00 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic.
| |
Collapse
|
3
|
Pang L, He K, Zhang Y, Li P, Lin Y, Yue J. Predicting environmental risks of pharmaceutical residues by wastewater surveillance: An analysis based on pharmaceutical sales and their excretion data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170204. [PMID: 38262535 DOI: 10.1016/j.scitotenv.2024.170204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Pharmaceutical residues are increasingly becoming a significant source of environmental water pollution and ecological risk. This study, leveraging official national pharmaceutical sales statistics, predicts the environmental concentrations of 33 typical pharmaceuticals in the Tianjin area. The results show that 52 % of the drugs have a PEC/MEC (Predicted Environmental Concentration/Measured Environmental Concentration) ratio within the acceptable range of 0.5-2, including atenolol (1.21), carbamazepine (1.22), and sulfamethoxazole (0.91). Among the selected drugs, tetracycline, ciprofloxacin, and acetaminophen had the highest predicted concentrations. The EPI (Estimation Programs Interface) biodegradation model, a tool from the US Environmental Protection Agency, is used to predict the removal efficiency of compounds in wastewater treatment plants. The results indicate that the EPI predictions are acceptable for macrolide antibiotics and β-blockers, with removal rates of roxithromycin, spiramycin, acetaminophen, and carbamazepine being 14.1 %, 61.2 %, 75.1 %, and 44.5 %, respectively. However, the model proved to be less effective for fluoroquinolone antibiotics. The ECOSAR (Ecological Structure-Activity Relationships) model was used to supplement the assessment of the potential impacts of drugs on aquatic ecosystems, further refining the analysis of pharmaceutical environmental risks. By combining the concentration and detection frequency of pharmaceutical wastewater, this study identified 9 drugs with significant toxicological risks and marked another 24 drugs as substances of potential concern. Additionally, this study provides data support for addressing pharmaceutical residues of priority concern in subsequent research.
Collapse
Affiliation(s)
- Lihao Pang
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai He
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China.
| | - Yuxuan Zhang
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China
| | - Penghui Li
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchao Lin
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Junjie Yue
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
4
|
Martínez-Megías C, Arenas-Sánchez A, Manjarrés-López D, Pérez S, Soriano Y, Picó Y, Rico A. Pharmaceutical and pesticide mixtures in a Mediterranean coastal wetland: comparison of sampling methods, ecological risks, and removal by a constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14593-14609. [PMID: 38277107 PMCID: PMC10884053 DOI: 10.1007/s11356-024-31968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Pharmaceuticals and pesticides can be considered hazardous compounds for Mediterranean coastal wetland ecosystems. Although many of these compounds co-occur in environmental samples, only a few studies have been dedicated to assessing the ecotoxicological risks of complex contaminant mixtures. We evaluated the occurrence of 133 pharmaceuticals and pesticides in 12 sites in a protected Mediterranean wetland, the Albufera Natural Park (ANP), based on conventional grab sampling and polar organic chemical integrative samplers (POCIS). We assessed acute and chronic ecological risks posed by these contaminant mixtures using the multi-substance Potentially Affected Fraction (msPAF) approach and investigated the capacity of a constructed wetland to reduce chemical exposure and risks. This study shows that pharmaceuticals and pesticides are widespread contaminants in the ANP, with samples containing up to 75 different compounds. POCIS samplers were found to be useful for the determination of less predictable exposure profiles of pesticides occurring at the end of the rice cultivation cycle, while POCIS and grab samples provide an accurate method to determine (semi-)continuous pharmaceutical exposure. Acute risks were identified in one sample, while chronic risks were determined in most of the collected samples, with 5-25% of aquatic species being potentially affected. The compounds that contributed to the chronic risks were azoxystrobin, ibuprofen, furosemide, caffeine, and some insecticides (diazinon, imidacloprid, and acetamiprid). The evaluated constructed wetland reduced contaminant loads by 45-73% and reduced the faction of species affected from 25 to 6%. Our study highlights the need of addressing contaminant mixture effects in Mediterranean wetlands and supports the use of constructed wetlands to reduce contaminant loads and risks in areas with high anthropogenic pressure.
Collapse
Affiliation(s)
- Claudia Martínez-Megías
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Madrid, Spain
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Alba Arenas-Sánchez
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Diana Manjarrés-López
- ONHEALTH, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sandra Pérez
- ONHEALTH, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Soriano
- Food and Environmental Research Group of the University of Valencia (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-UV-GV), CV-315 Road, Km 10.7, 46113, Moncada, Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Research Group of the University of Valencia (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-UV-GV), CV-315 Road, Km 10.7, 46113, Moncada, Valencia, Spain
| | - Andreu Rico
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain.
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
5
|
Tyumina E, Bazhutin G, Kostrikina N, Sorokin V, Mulyukin A, Ivshina I. Phenotypic and metabolic adaptations of Rhodococcus cerastii strain IEGM 1243 to separate and combined effects of diclofenac and ibuprofen. Front Microbiol 2023; 14:1275553. [PMID: 38125575 PMCID: PMC10730942 DOI: 10.3389/fmicb.2023.1275553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The increasing use of non-steroidal anti-inflammatory drugs (NSAIDs) has raised concerns regarding their environmental impact. To address this, understanding the effects of NSAIDs on bacteria is crucial for bioremediation efforts in pharmaceutical-contaminated environments. The primary challenge in breaking down persistent compounds lies not in the biochemical pathways but in capacity of bacteria to surmount stressors. Methods In this study, we examined the biodegradative activity, morphological and physiological changes, and ultrastructural adaptations of Rhodococcus cerastii strain IEGM 1243 when exposed to ibuprofen, diclofenac, and their mixture. Results and Discussion Our findings revealed that R. cerastii IEGM 1243 exhibited moderate biodegradative activity towards the tested NSAIDs. Cellular respiration assay showed higher metabolic activity in the presence of NSAIDs, indicating their influence on bacterial metabolism. Furthermore, catalase activity in R. cerastii IEGM 1243 exposed to NSAIDs showed an initial decrease followed by fluctuations, with the most significant changes observed in the presence of DCF and the NSAID mixture, likely influenced by bacterial growth phases, active NSAID degradation, and the formation of multicellular aggregates, suggesting potential intercellular synergy and task distribution within the bacterial community. Morphometric analysis demonstrated alterations in size, shape, and surface roughness of cells exposed to NSAIDs, with a decrease in surface area and volume, and an increase in surface area-to-volume ratio (SA/V). Moreover, for the first time, transmission electron microscopy confirmed the presence of lipid inclusions, polyphosphates, and intracellular membrane-like structures in the ibuprofen-treated cells. Conclusion These results provide valuable insights into the adaptive responses of R. cerastii IEGM 1243 to NSAIDs, shedding light on the possible interaction between bacteria and pharmaceutical compounds in the environment.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, Russia
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Grigory Bazhutin
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, Russia
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Nadezhda Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Irina Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, Russia
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| |
Collapse
|
6
|
Silva VWPD, Figueira KL, Silva FGD, Zagui GS, Meschede MSC. [Disposal of drugs and the ensuing environmental impacts: an integrative review of the literature]. CIENCIA & SAUDE COLETIVA 2023; 28:1113-1123. [PMID: 37042892 DOI: 10.1590/1413-81232023284.05752022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/20/2022] [Indexed: 04/13/2023] Open
Abstract
The scope of this article is to investigate the national and international evidence available on the forms of drug disposal and the presence of drugs in environmental matrices. It involved an integrative review of the literature conducted in the PubMed, SciELO and Virtual Health Library (VHL) databases, which included articles in English, Spanish and Portuguese published between 2010 and 2020. Twenty-six articles were selected, which revealed the incorrect disposal of medicines by professionals and consumers due mainly to the lack of knowledge about the environmental impacts that they may cause. Studies have highlighted the contamination of water, sewage and sediments by incorrectly discarded drugs. Furthermore, it was observed that aquatic living creatures can be impacted by the presence of drugs in environmental matrices. The incorrect disposal of drugs continues to be a reality in the evidence assessed, which leads to the contamination of environmental matrices and is often not removed by wastewater treatment plants and interferes with the equilibrium of environmental life.
Collapse
Affiliation(s)
- Vanessa Wayne Palhares da Silva
- Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará. R. Vera Paz s/n, Salé, Unidade Tapajós. 68040-255 Santarém PA Brasil.
| | - Keylla Lopes Figueira
- Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará. R. Vera Paz s/n, Salé, Unidade Tapajós. 68040-255 Santarém PA Brasil.
| | - Flávia Garcez da Silva
- Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará. R. Vera Paz s/n, Salé, Unidade Tapajós. 68040-255 Santarém PA Brasil.
| | - Guilherme Sgobbi Zagui
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo. Ribeirão Preto SP Brasil
| | - Marina Smidt Celere Meschede
- Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará. R. Vera Paz s/n, Salé, Unidade Tapajós. 68040-255 Santarém PA Brasil.
| |
Collapse
|
7
|
Souza CPFAD, Kligerman DC, Bezerra GM, Oliveira JLDM. Environmental risk caused by drug waste in the city of Rio de Janeiro, Brazil, during the SARS-Cov19 pandemic. CIENCIA & SAUDE COLETIVA 2023. [DOI: 10.1590/1413-81232023283.05722022en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Abstract The relationship between the distribution of medicines used in the Pandemic by SARS-COV-19 in the municipality of Rio de Janeiro and the estimated level of environmental risk caused by their residues was evaluated. The amount of medicines distributed by primary health care (PHC) units between 2019 and 2021 were collected. The risk quotient (RQ) corresponded to the ratio between the estimated predictive environmental concentration (PECest) obtained by the consumption and excretion of each drug and its non-effective predictive concentration (PNEC). Between 2019 and 2020, the PECest of azithromycin (AZI) and ivermectin (IVE) increased between 2019 and 2020, with a decrease in 2021 probably due to shortages. Dexchlorpheniramine (DEX) and fluoxetine (FLU) fell, returning to growth in 2021. While the PECest of diazepam (DIA) increased over these 3 years, ethinylestradiol (EE2) decreased possibly due to the prioritization of PHC in the treatment of COVID-19. The largest QR were from FLU, EE2 and AZI. The consumption pattern of these drugs did not reflect their environmental risk because the most consumed ones have low toxicity. It is worth noting that some data may be underestimated due to the incentive given during the pandemic to the consumption of certain groups of drugs.
Collapse
|
8
|
Souza CPFAD, Kligerman DC, Bezerra GM, Oliveira JLDM. Environmental risk caused by drug waste in the city of Rio de Janeiro, Brazil, during the SARS-Cov19 pandemic. CIENCIA & SAUDE COLETIVA 2023; 28:711. [PMID: 36888856 DOI: 10.1590/1413-81232023283.05722022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/30/2022] [Indexed: 03/08/2023] Open
Abstract
The relationship between the distribution of medicines used in the Pandemic by SARS-COV-19 in the municipality of Rio de Janeiro and the estimated level of environmental risk caused by their residues was evaluated. The amount of medicines distributed by primary health care (PHC) units between 2019 and 2021 were collected. The risk quotient (RQ) corresponded to the ratio between the estimated predictive environmental concentration (PECest) obtained by the consumption and excretion of each drug and its non-effective predictive concentration (PNEC). Between 2019 and 2020, the PECest of azithromycin (AZI) and ivermectin (IVE) increased between 2019 and 2020, with a decrease in 2021 probably due to shortages. Dexchlorpheniramine (DEX) and fluoxetine (FLU) fell, returning to growth in 2021. While the PECest of diazepam (DIA) increased over these 3 years, ethinylestradiol (EE2) decreased possibly due to the prioritization of PHC in the treatment of COVID-19. The largest QR were from FLU, EE2 and AZI. The consumption pattern of these drugs did not reflect their environmental risk because the most consumed ones have low toxicity. It is worth noting that some data may be underestimated due to the incentive given during the pandemic to the consumption of certain groups of drugs.
Collapse
Affiliation(s)
- Carla Patricia Figueiredo Antunes de Souza
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. R. Leopoldo Bulhões 1.480, Manguinhos. 21041-210. Rio de Janeiro RJ Brasil.
| | - Débora Cynamon Kligerman
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. R. Leopoldo Bulhões 1.480, Manguinhos. 21041-210. Rio de Janeiro RJ Brasil.
| | | | - Jaime Lopes da Mota Oliveira
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. R. Leopoldo Bulhões 1.480, Manguinhos. 21041-210. Rio de Janeiro RJ Brasil.
| |
Collapse
|
9
|
Ivshina I, Bazhutin G, Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front Microbiol 2022; 13:967127. [PMID: 36246215 PMCID: PMC9557007 DOI: 10.3389/fmicb.2022.967127] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Active pharmaceutical ingredients present a substantial risk when they reach the environment and drinking water sources. As a new type of dangerous pollutants with high chemical resistance and pronounced biological effects, they accumulate everywhere, often in significant concentrations (μg/L) in ecological environments, food chains, organs of farm animals and humans, and cause an intense response from the aquatic and soil microbiota. Rhodococcus spp. (Actinomycetia class), which occupy a dominant position in polluted ecosystems, stand out among other microorganisms with the greatest variety of degradable pollutants and participate in natural attenuation, are considered as active agents with high transforming and degrading impacts on pharmaceutical compounds. Many representatives of rhodococci are promising as unique sources of specific transforming enzymes, quorum quenching tools, natural products and novel antimicrobials, biosurfactants and nanostructures. The review presents the latest knowledge and current trends regarding the use of Rhodococcus spp. in the processes of pharmaceutical pollutants’ biodegradation, as well as in the fields of biocatalysis and biotechnology for the production of targeted pharmaceutical products. The current literature sources presented in the review can be helpful in future research programs aimed at promoting Rhodococcus spp. as potential biodegraders and biotransformers to control pharmaceutical pollution in the environment.
Collapse
|
10
|
Wang H, Dong F, Zhao Y, Fu S, Zhao H, Liu S, Zhang W, Hu F. Exposure to diclofenac alters thyroid hormone levels and transcription of genes involved in the hypothalamic-pituitary-thyroid axis in zebrafish embryos/larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109335. [PMID: 35351617 DOI: 10.1016/j.cbpc.2022.109335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Diclofenac (DCF), one of typical non-steroidal anti-inflammatory drugs (NSAIDs), has been frequently detected in various environmental media. Nevertheless,the potential endocrine disrupting effects of DCF on fish were poorly understood. In the present study, zebrafish embryos/larvae were used as a model to evaluate the adverse effects of DCF on development and thyroid system. The results demonstrated that DCF only significantly decreased the heart rate at 72 h post-fertilization (hpf), exhibiting limited influence on the embryonic development of zebrafish. Treatment with DCF significantly reduced whole-body thyroxine (T4) levels, and changed transcriptional levels of several genes related to the hypothalamic-pituitary-thyroid (HPT) axis. These findings provide important information regarding to the mechanisms of DCF-induced developmental toxicity and thyroid disruption in fish.
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shirong Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113694. [PMID: 34537557 DOI: 10.1016/j.jenvman.2021.113694] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
In recent years, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have surfaced as a novel class of pollutants due to their incomplete degradation in wastewater treatment plants and their inherent ability to promote physiological predicaments in humans even at low doses. The occurrence of the most common NSAIDs (diclofenac, ibuprofen, naproxen, and ketoprofen) in river water, groundwater, finished water samples, WWTPs, and hospital wastewater effluents along with their toxicity effects were reviewed. The typical concentrations of NSAIDs in natural waters were mostly below 1 μg/L, the rivers receiving untreated wastewater discharge have often showed higher concentrations, highlighting the importance of effective wastewater treatment. The critical analysis of potential, pathways and mechanisms of microbial degradation of NSAIDs were also done. Although studies on algal and fungal strains were limited, several bacterial strains were known to degrade NSAIDs. This microbial ability is attributed to hydroxylation by cytochrome P450 because of the decrease in drug concentrations in fungal cultures of Phanerochaete sordida YK-624 on incubation with 1-aminobenzotriazole. Moreover, processes like decarboxylation, dehydrogenation, dechlorination, subsequent oxidation, demethylation, etc. also constitute the degradation pathways. A wide array of enzymes like dehydrogenase, oxidoreductase, dioxygenase, monooxygenase, decarboxylase, and many more are upregulated during the degradation process, which indicates the possibility of their involvement in microbial degradation. Specific hindrances in upscaling the process along with analytical research needs were also identified, and novel investigative approaches for future monitoring studies are proposed.
Collapse
|
12
|
The Use of Surface-Modified Nanocrystalline Cellulose Integrated Membranes to Remove Drugs from Waste Water and as Polymers to Clean Oil Sands Tailings Ponds. Polymers (Basel) 2021; 13:polym13223899. [PMID: 34833197 PMCID: PMC8620018 DOI: 10.3390/polym13223899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
There is an urgent environmental need to remediate waste water. In this study, the use of surface-modified nanocrystalline cellulose (CNC) to remove polluting drugs or chemicals from waste water and oil sands tailing ponds has been investigated. CNC was modified by either surface adsorbing cationic or hydrophobic species or by covalent methods and integrated into membrane water filters. The removal of either diclofenac or estradiol from water was studied. Similar non-covalently modified CNC materials were used to flocculate clays from water or to bind naphthenic acids which are contaminants in tailing ponds. Estradiol bound well to hydrophobically modified CNC membrane filter systems. Similarly, diclofenac (anionic drug) bound well to covalently cationically modified CNC membranes. Non-covalent modified CNC effectively flocculated clay particles in water and bound two naphthenic acid chemicals (negatively charged and hydrophobic). Modified CNC integrated into water filter membranes may remove drugs from waste or drinking water and contaminants from tailing ponds water. Furthermore, the ability of modified CNC to flocculate clays particles and bind naphthenic acids may allow for the addition of modified CNC directly to tailing ponds to remove both contaminants. CNC offers an environmentally friendly, easily transportable and disposable novel material for water remediation purposes.
Collapse
|
13
|
Alves PDCC, Rodrigues-Silva C, Ribeiro AR, Rath S. Removal of low-calorie sweeteners at five Brazilian wastewater treatment plants and their occurrence in surface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112561. [PMID: 33865021 DOI: 10.1016/j.jenvman.2021.112561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The consumption of low-calorie sweeteners (LCSs) such as acesulfame (ACE), sucralose (SUC), saccharin (SAC), cyclamate (CYC), aspartame (ASP), neotame (NEO), and stevioside (STV) is increasing worldwide to meet the demand for reduced-calorie foods and beverages. However, there are no consumption data available in Brazil, as well as their concentration in sewage and removal on wastewater treatment plants (WWTPs). In the present study, ACE, SUC, SAC, CYC, ASP, NEO, and STV were assessed at five WWTPs located in the metropolitan region of Campinas (São Paulo State, Brazil), in operation with different treatment processes. Surface water was also analyzed. Analyses were carried out by on-line solid-phase extraction ultra-high performance liquid chromatography-tandem mass spectrometry. The major points are the following: LCS concentrations in the influents ranged from 0.25 to 189 μg L-1 and followed the order CYC > ACE > SAC > SUC. NEO, ASP, and STV were not detected at any sampling site. Sweetener concentrations in the WWTP outputs differed mainly due to the different treatment setups employed. CYC and SAC were completely removed by biodegradation-based processes, while ACE removal was favored by the anaerobic-anoxic-aerobic process. SUC presented the highest concentration in the treated sewage, even at the WWTP operating with ultrafiltration membranes and therefore could be a marker compound for evaluation of the efficiency of removal of contaminants in WWTPs. Risk quotient estimation, using the PNEC and MEC values, indicated that the levels of the LCS reported here were harmless to the biota. The consumption of ACE, CYC, SAC, and SUC was estimated to be 2634 t year-1.
Collapse
Affiliation(s)
- Priscilla da Costa Cunha Alves
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Caio Rodrigues-Silva
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Alyson Rogério Ribeiro
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil; Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Minas Gerais, 31270-901, Brazil.
| | - Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| |
Collapse
|
14
|
Checa-Artos M, Sosa del Castillo D, Vanegas ME, Ruiz-Barzola O, Barcos-Arias M. Remoción de cinco productos farmacéuticos catalogados como contaminantes emergentes en medio acuoso utilizando la especie vetiver (Chrysopogon zizanioides). BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los productos farmacéuticos constituyen un grupo único de contaminantes emergentes de gran interés, debido a que se ha determinado su presencia frecuente en aguas superficiales, subterráneas y agua potable. Debido al metabolismo y la absorción incompletos en el organismo humano, una cantidad significativa de estos fármacos se excretan y liberan al ambiente a través de las aguas residuales. Por lo que el objetivo de este trabajo fue evaluar el potencial de la especie vetiver (Chrysopogon zizanioides) para eliminar del medio acuoso cinco productos farmacéuticos comúnmente recetados y de venta libre como ciprofloxacina, ibuprofeno, sulfametaxazol, diclofenaco y acetaminofén. La especie fue aclimatada en invernado, donde se llevó a cabo los experimentos en condiciones controladas de temperatura y a un pH de 6,5. Las muestras fueron analizadas utilizando espectrofotometría UV-Vis para leer en forma directa las absorbancias de cada producto farmacéutico. Para el análisis estadístico de los datos se empleó la metodología de superficies de respuesta con el fin de encontrar los modelos que ayuden a determinar tiempos y concentraciones óptimas donde se maximiza la absorción de cada fármaco, así como la obtención de las pendientes de crecimiento para determinar hacia donde se deberá buscar el óptimo. Se utilizó el software estadístico R versión 3.6.0 y RStudio versión 1.1.453.
Los resultados obtenidos indican que C. zizanioides removió de manera más eficiente ciprofloxacina (98,3%) a una concentración de 3mg/L en un tiempo de 149h, seguido por ibuprofeno y diclofenaco con un máximo de remoción de 73,33% y sulfametaxazol con 66,53%, obteniéndose el menor porcentaje de remoción para acetaminofén de 38,49% a las 192h, donde se realizó toma de muestras cada 48 horas de las soluciones de cada fármaco a diferentes concentraciones (3 mg/L, 6 mg/L, 9 mg/L, 12 mg/L).
En este trabajo de investigación se demostró la capacidad removedora de Chrysopogon zizanioides de los cinco fármacos estudiados en medio acuoso en condiciones controladas, vislumbrando un gran potencial en el ámbito de la biotecnología ambiental para el tratamiento terciario de aguas residuales.
Collapse
Affiliation(s)
- Miriam Checa-Artos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Daynet Sosa del Castillo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - María Eulalia Vanegas
- Centro de Estudios Ambientales, Departamento de Química Aplicada y Sistemas de Producción, Facultad de Ciencias Químicas, Universidad de Cuenca, Av 12 de Abril y Agustín Cueva, Cuenca, Ecuador
| | - Omar Ruiz-Barzola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Milton Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
15
|
Checa Artos M, Sosa del Castillo D, Ruiz Barzola O, Barcos-Arias M. Presencia de productos farmacéuticos en el agua y su impacto en el ambiente. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los productos farmacéuticos (PFs) constituyen un grupo importante de los contaminantes emergentes (CE), debido a su potencial para inducir efectos fisiológicos adversos a bajas concentraciones en humanos y animales. Muchos estudios alrededor del mundo han reportado la presencia de un sin número de estos compuestos en diferentes medios acuáticos, lo que genera preocupación por los posibles efectos negativos que se producen en el agua, en la salud humana y la vida silvestre. En este contexto, este artículo tiene por objetivo presentar una revisión de los aspectos más relevantes sobre la presencia de PFs en el agua en un ámbito global desde el año 2010 hasta el 2019. El mayor número de estudios reportan presencia de contaminantes emergentes incluyendo fármacos de diferentes tipos en aguas superficiales, aguas subterráneas, aguas residuales y agua potable. Las principales fuentes de ingreso de fármacos en los sistemas acuáticos provienen de las aguas residuales que recogen aguas domésticas, efluentes hospitalarios y efluentes de fábricas sin tratamiento o inadecuadamente tratadas antes de ser liberadas a ríos y mares. La presencia de PFs en el ambiente acuático preocupa por su persistencia, la bioacumulación, la toxicidad y la generación de resistencia a antibióticos de muchos microorganismos, entre otras consecuencias aún no estudiadas en el ambiente.
Collapse
Affiliation(s)
- Miriam Checa Artos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Daynet Sosa del Castillo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Omar Ruiz Barzola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Milton Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
16
|
Surma R, Wojcieszyńska D, Karcz J, Guzik U. Effect of Pseudomonas moorei KB4 Cells' Immobilisation on Their Degradation Potential and Tolerance towards Paracetamol. Molecules 2021; 26:820. [PMID: 33557429 PMCID: PMC7915102 DOI: 10.3390/molecules26040820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas moorei KB4 is capable of degrading paracetamol, but high concentrations of this drug may cause an accumulation of toxic metabolites. It is known that immobilisation can have a protective effect on bacterial cells; therefore, the toxicity and degradation rate of paracetamol by the immobilised strain KB4 were assessed. Strain KB4 was immobilised on a plant sponge. A toxicity assessment was performed by measuring the concentration of ATP using the colony-forming unit (CFU) method. The kinetic parameters of paracetamol degradation were estimated using the Hill equation. Toxicity analysis showed a protective effect of the carrier at low concentrations of paracetamol. Moreover, a pronounced phenomenon of hormesis was observed in the immobilised systems. The obtained kinetic parameters and the course of the kinetic curves clearly indicate a decrease in the degradation activity of cells after their immobilisation. There was a delay in degradation in the systems with free cells without glucose and immobilised cells with glucose. However, it was demonstrated that the immobilised systems can degrade at least ten succeeding cycles of 20 mg/L paracetamol degradation. The obtained results indicate that the immobilised strain may become a useful tool in the process of paracetamol degradation.
Collapse
Affiliation(s)
| | | | | | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (R.S.); (D.W.); (J.K.)
| |
Collapse
|
17
|
Wu Q. Fabrication of black TiO 2-x /NiFe 2O 4 supported on diatomaceous earth with enhanced sonocatalytic activity for ibuprofen mitigation. NANOTECHNOLOGY 2021; 32:055706. [PMID: 33065561 DOI: 10.1088/1361-6528/abc20c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports a facile fabrication of black TiO2-x /NiFe2O4 (Ti3+ self-doped titania coupled with nickel ferrite), an efficient sonocatalyst for ibuprofen (IBP) mitigation. Compared with TiO2-x or NiFe2O4, TiO2-x /NiFe2O4 heterojunction displayed higher sonocatalytic activity, and their immobilization onto diatomaceous earth further enhanced mitigation efficiency due to the synergy between adsorption and sonocatalysis. About 96.7% of 10 mg l-1 IBP was removed in 100 min using 0.7 g l-1 catalyst at pH = 6, with the ultrasonic power of 144 W and frequency of 60 KHz. Quenching experiment results demonstrated the roles of reactive species. The intermediates during IBP sono-oxidation were determined by HPLC-MS method, and the acute toxicity was evaluated. Furthermore, the reaction mechanism was proposed. The sonocatalyst revealed excellent reusability, suggesting itself promising for wastewater treatment.
Collapse
Affiliation(s)
- Qiong Wu
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| |
Collapse
|
18
|
Pivetta RC, Rodrigues-Silva C, Ribeiro AR, Rath S. Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138661. [PMID: 32334225 DOI: 10.1016/j.scitotenv.2020.138661] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 05/06/2023]
Abstract
According to the World Health Organization, >360 million people worldwide suffer from mental diseases such as depression, anxiety, or bipolar disorder, for which psychotropic drugs are frequently prescribed. Despite being highly metabolized in the human organism, non-metabolized portions of these drugs are excreted, subsequently reaching wastewater treatment plants (WWTPs), where they may be incompletely removed during treatment, leading to the contamination of surface waters. In this work, ten psychotropic drugs widely consumed in Brazil (alprazolam, amitriptyline, bupropion, carbamazepine, clonazepam, escitalopram, fluoxetine, nortriptyline, sertraline, and trazadone) were monitored at five WWTPs located in the metropolitan region of Campinas (São Paulo State, Brazil). The drugs were determined in the influents, at different stages of the treatments, and in the effluents. Surface waters from the Atibaia River and the Anhumas Creek were also monitored. Quantitation of the pharmaceuticals was carried out by online solid-phase extraction coupled with ultra-high performance liquid chromatography and tandem mass spectrometry. The method was validated and presented a limit of quantitation of 50 ng L-1 for all the drugs assessed. Six of the substances monitored were quantified in the samples collected from the different treatment processes employed at the WWTPs. These technologies were unable to act as barriers for these psychotropics drugs. The concentrations ranged from 50 to 3000 ng L-1 in the WWTP effluents, while the main contaminants were found in surface waters at concentrations from 25 to 3530 ng L-1. The levels of the psychotropic detected in this work did not appear to present risks to the aquatic biota.
Collapse
Affiliation(s)
- Rhannanda Copetti Pivetta
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil
| | - Caio Rodrigues-Silva
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil.
| | - Alyson Rogério Ribeiro
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil
| | - Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil.
| |
Collapse
|
19
|
Thalla AK, Vannarath AS. Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:193. [PMID: 32080766 DOI: 10.1007/s10661-020-8161-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Municipal wastewater treatment plants (MWWTPs) are considered to reduce the amount of pollutants that enter water reservoirs as a result of wastewater disposal. An assessment of the occurrence and removal of pharmaceutical compounds, mainly nonsteroidal anti-inflammatory drugs (NSAIDs), in wastewater from the Kavoor MWWTP (southwest monsoon region), India, is presented in this paper. The performance of the MWWTP was monitored in the summer (May) and monsoon (September) periods. The highest inlet concentrations of diclofenac, naproxen, ibuprofen, ketoprofen, and acetylsalicylic acid in the wastewater were observed in May and were 721.37, 2132.48, 2109.875, 2747.29, and 2213.36 μg/L, respectively. The ketoprofen content was found to be higher than that of other NSAIDs in the influent in both seasons, whereas the diclofenac content was found to be the lowest. The removal efficiency (RE) of the target NSAIDs in the Kavoor secondary treatment plant varied from 81.82-98.92% during the summer season. During the monsoon season, the influent NSAID concentration level dropped, probably because of infiltration in old sewer pipes. In addition, a 100% RE was achieved for all the target NSAIDs in the wastewater of the MWWTP. The results showed that secondary treatment plants have the potential to remove NSAID compounds from municipal sewage with consistent performance. The environmental hazards caused by the accumulation of such compounds in water reservoirs are due to open discharge. The environmental risk levels of these compounds were also studied by the environmental risk assessment (ERA) using the European Agency for Evaluation of Medicines approach.
Collapse
Affiliation(s)
- Arun Kumar Thalla
- Department of Civil Engineering, National Institute of Technology Karnataka Surathkal, Mangalore, Karnataka, 575025, India.
| | - Adhira Shree Vannarath
- Department of Civil Engineering, National Institute of Technology Karnataka Surathkal, Mangalore, Karnataka, 575025, India
| |
Collapse
|
20
|
Neves AC, Mol MPG. Theoretical environmental risk assessment of ten used pharmaceuticals in Belo Horizonte, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:275. [PMID: 30976940 DOI: 10.1007/s10661-019-7386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
An evaluation of the environmental risk assessment (ERA) proposed by European Medicines Agency (EMA) and its applicability in Brazil was performed on ten of Belo Horizonte's most pharmaceuticals by the Brazilian National Health Service (SUS). The predicted environmental concentrations (PECs) was proposed, with some refinements to a better representation of the city of study. All PECs obtained were compared only to measured environmental concentrations around the world, due to the lack available data in the city of study and in Brazil. During the performance of EMA's guideline, the risk quotient (RQ) of impact was established through the ratio of PECs and predicted no-effect concentrations (PNECs). The PECs obtained in more refined phases show the initial evaluation of EMA's guideline, possible subdimensions, and the potential risks. The RQ for all studied pharmaceuticals ranges from clonazepam (1.26) to losartan (5457.45). These results indicate potential risks to the aquatic life present in the streams that receive the wastewater treatment plant's effluent. This risk can be spread since the streams carry these contaminants to other water bodies that undergo to multiple cities of Brazil, and even after dilutions, it can still be potentially toxic to the biotic life. ERA shows that it can be a useful tool for a better understanding and modeling of pharmaceuticals fate in the environment, specifically in water bodies. In addition, the usage of this model shows to be a useful tool that determines which contaminant should follow a more thorough study since the detection and analysis of pharmaceuticals in environmental samples are costly and technically challenging.
Collapse
Affiliation(s)
- Arthur Couto Neves
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - FUNED, Rua Conde Pereira Carneiro, 80. Bairro Gameleira, Cidade Belo Horizonte, Estado Minas Gerais, 30510-010, Brazil.
- Centro Federal de Educação Tecnológica de Minas Gerais - CEFET-MG, Belo Horizonte, Brazil.
| | - Marcos Paulo Gomes Mol
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - FUNED, Rua Conde Pereira Carneiro, 80. Bairro Gameleira, Cidade Belo Horizonte, Estado Minas Gerais, 30510-010, Brazil
| |
Collapse
|
21
|
Toma A, Crişan O. Green pharmacy - a narrative review. ACTA ACUST UNITED AC 2018; 91:391-398. [PMID: 30564014 PMCID: PMC6296717 DOI: 10.15386/cjmed-1129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 11/23/2022]
Abstract
Introduction Active pharmaceutical ingredients are present in various sections of the environment, because of both the human and veterinary use of medicinal products. Ways of minimizing the risk of environmental contamination should be observed during all pharmaceutical activities (research, manufacturing, prescribing, dispensing and disposal of medicinal products). Methods For the present study we searched specific literature on this subject, using the main international databases (Thomson Reuters – Web of Science, SCOPUS and Science Direct). Results This narrative review focuses on the main aspects concerning environmental contamination with medicinal products. Consequently, the present study is structured on four different topics: environmental research on medicinal products, minimizing environmental contamination, waste disposal management and towards a greener community pharmacy. Conclusion Waste management activities are important for reducing the presence of active pharmaceutical ingredients in the environment. Pharmacists should inform patients on proper pharmaceutical waste disposal and organize collection programs for unused and expired medicines, in order to develop a greener pharmacy for the future.
Collapse
Affiliation(s)
- Alexandra Toma
- Department of Pharmaceutical Legislation and Management, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ofelia Crişan
- Department of Pharmaceutical Legislation and Management, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Abstract
Bismuth oxyhalides have recently gained attention for their promise as photocatalysts. Due to their layered structure, these materials present fascinating and highly desirable physicochemical properties including visible light photocatalytic capability and improved charge separation. While bismuth oxyhalides have been rigorously evaluated for the photocatalytic degradation of dyes and many synthesis strategies have been employed to enhance this property, relatively little work has been done to test them against pharmaceuticals and pesticides. These persistent organic pollutants are identified as emerging concerns by the EPA and effective strategies must be developed to combat them. Here, we review recent work directed at characterizing the nature of the interactions between bismuth oxyhalides and persistent organic pollutants using techniques including LC-MS/MS for the determination of photocatalytic degradation intermediates and radical scavenging to determine active species during photocatalytic degradation. The reported investigations indicate that the high activity of bismuth oxyhalides for the breakdown of persistent organic pollutants from water can be largely attributed to the strong oxidizing power of electron holes in the valence band. Unlike conventional catalysts like TiO2, these catalysts can also function in ambient solar conditions. This suggests a much wider potential use for these materials as green catalysts for industrial photocatalytic transformation, particularly in flow chemistry applications.
Collapse
|
23
|
Arthur RB, Bonin JL, Ardill LP, Rourk EJ, Patterson HH, Stemmler EA. Photocatalytic degradation of ibuprofen over BiOCl nanosheets with identification of intermediates. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:1-9. [PMID: 29945020 DOI: 10.1016/j.jhazmat.2018.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Photocatalysis directed at the removal of persistent organic pollutants, including pharmaceuticals, has been the subject of intense recent research. Bismuth oxychloride (BiOCl) has emerged as a potential alternative to traditional photocatalysts and has shown competitive removal efficiencies. However, pathways responsible for BiOCl photodegradation have not been well characterized. The present work is the first to determine, using LC-MS/MS analysis, the pathways by which BiOCl removes ibuprofen (IBP) from water. HPLC-DAD and LC-MS/MS analyses show that BiOCl converts IBP to two primary photochemical products, 4-isobutylacetophenone (IBAP) and 1-(4-isobutylphenyl)ethanol (IBPE). The reactivity for BiOCl is attributed to interactions of the carboxylic acid group of IBP with holes in the valence band. Hydroxylated-IBP was not detected in BiOCl photocatalytic degradation experiments which would be expected in a process driven by the formation and reactivity of reactive oxygen species. These data were used to formulate a photocatalytic degradation pathway for IBP and highlight the importance of studying both primary and secondary degradation reactions for photocatalytic studies.
Collapse
Affiliation(s)
- Robert B Arthur
- Department of Chemistry, University of Maine, Orono, ME, 04469, United States
| | - Jesse L Bonin
- Department of Chemistry, University of Maine, Orono, ME, 04469, United States
| | - Luke P Ardill
- Department of Chemistry, University of Maine, Orono, ME, 04469, United States
| | - Ellery J Rourk
- Department of Chemistry, Bowdoin College, Brunswick, ME, 04011, United States
| | - Howard H Patterson
- Department of Chemistry, University of Maine, Orono, ME, 04469, United States.
| | | |
Collapse
|
24
|
Xia L, Zheng L, Zhou JL. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio). CHEMOSPHERE 2017; 182:416-425. [PMID: 28511137 DOI: 10.1016/j.chemosphere.2017.05.054] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) which are widely used as pain relief medicines are causing increasing environmental concern due to their incomplete removal in wastewater treatment plant and potential toxicity on endocrine, kidney and reproduction in teleost fish. This study focused on the effects of widely used ibuprofen, diclofenac and paracetamol on the hatch and motor ability of early-stage zebrafish, by exposing embryos to the target chemicals at 5, 50 and 500 μg/L starting from 6 h postfertilization (hpf). A significant reduction in hatch rate at 55 hpf was caused by both ibuprofen (-63%) and diclofenac (-58%) at 500 μg/L. Exposure to high concentration of ibuprofen significantly decreased the spontaneous movement by 25%, and reduced the free swimming distance, duration and speed under dark condition by 41%, 29% and 30%, respectively. High concentration of diclofenac also caused 23% decrease in spontaneous movement, and reduced the swimming distance as well as active duration by 17% and 13% under light stimulation. In comparison, the exposure to paracetamol did not cause any notable effect. Among neuron related genes tested, the expression of neurog1 was down-regulated from ibuprofen and diclofenac exposure by 19% and 26%, while the expression of neurod1 was up-regulated only by ibuprofen (31%). These findings indicated that ibuprofen and diclofenac significantly affected embryo locomotivity and were potentially neurotoxic, thus posing threats to zebrafish development.
Collapse
Affiliation(s)
- Liang Xia
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhangshan Road, Shanghai, 200062, China
| | - Liang Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhangshan Road, Shanghai, 200062, China
| | - Jun Liang Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhangshan Road, Shanghai, 200062, China.
| |
Collapse
|
25
|
Initial Evaluation of Provincial-Level Environmental Risks from the Perspective of Human Settlements. SUSTAINABILITY 2016. [DOI: 10.3390/su8121259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Fallou H, Cimetière N, Giraudet S, Wolbert D, Le Cloirec P. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 166:544-555. [PMID: 26606322 DOI: 10.1016/j.jenvman.2015.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude.
Collapse
Affiliation(s)
- Hélène Fallou
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226,11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | - Nicolas Cimetière
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226,11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | - Sylvain Giraudet
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226,11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | - Dominique Wolbert
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226,11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | - Pierre Le Cloirec
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226,11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| |
Collapse
|