1
|
Gregório BJR, Ramos II, Marques SS, Barreiros L, Magalhães LM, Schneider RJ, Segundo MA. Microcarrier-based fluorescent yeast estrogen screen assay for fast determination of endocrine disrupting compounds. Talanta 2024; 271:125665. [PMID: 38271840 DOI: 10.1016/j.talanta.2024.125665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
The presence of endocrine-disrupting compounds (EDCs) in water poses a significant threat to human and animal health, as recognized by regulatory agencies throughout the world. The Yeast Estrogen Screen (YES) assay is an excellent method to evaluate the presence of these compounds in water due to its simplicity and capacity to assess the bioaccessible forms/fractions of these compounds. In the presence of a compound with estrogenic activity, Saccharomyces cerevisiae cells, containing a lacZ reporter gene encoding the enzyme β-galactosidase, are induced, the enzyme is synthesised, and released to the extracellular medium. In this work, a YES-based approach encompassing the use of a lacZ reporter gene modified strain of S. cerevisiae, microcarriers as solid support, and a fluorescent substrate, fluorescein di-β-d-galactopyranoside, is proposed, allowing for the assessment of EDCs' presence after only 2 h of incubation. The proposed method provided an EC50 of 0.17 ± 0.03 nM and an LLOQ of 0.03 nM, expressed as 17β-estradiol. The assessment of different EDCs provided EC50 values between 0.16 and 1.2 × 103 nM. After application to wastewaters, similar results were obtained for EDCs screening, much faster, compared to the conventional 45 h spectrophotometric procedure using a commercial kit, showing potential for onsite high-throughput screening of environmental contamination.
Collapse
Affiliation(s)
- Bruno J R Gregório
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Inês I Ramos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara S Marques
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luísa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Luís M Magalhães
- Present affiliation: Research & Development, BIAL- Portela & C(a), S.A., Coronado (S. Mamede e S. Romão), Portugal
| | - Rudolf J Schneider
- Department of Analytical Chemistry, Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Fan Y, Tian X, Zheng L, Jin X, Zhang Q, Xu S, Liu P, Yang N, Bai H, Wang H. Yeast encapsulation in nanofiber via electrospinning: Shape transformation, cell activity and immobilized efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111747. [PMID: 33545889 DOI: 10.1016/j.msec.2020.111747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
To realize encapsulation of living microbial cells and easily evaluation of cell viability after immobilization, the yeast cells were encapsulated in water soluble PAAm nanofiber by a facile and effective electrospinning technology. Firstly, the conductivity, shear viscosity and surface tension of PAAm/yeast electrospinning solution as a function of mass ratios of yeast/PAAm were investigated to determine the optimum solution condition for electrospinning immobilization. After electrospinning, it is interesting to note that the original ellipsoidal structure of yeast cells turns to oblate spheroid structure. To distinguish immobilization structure from the bead appearing during general electrospinning process, immobilization structure and bead structure were compared and analyzed by FESEM and EDX. Free cell activity, the immediate cell activity after electrospinning and cell activity for seven days storage after immobilization were evaluated by dying methods of CTC and methylene blue, respectively. The results show that encapsulation efficiency maintained at about 40%, and immobilized yeast cells remain active even after seven days storage, which provides a promising application prospect for electrospinning immobilization.
Collapse
Affiliation(s)
- Yansheng Fan
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Xiaokang Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Linbao Zheng
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Xiao Jin
- Yantai Nanshan University, Nanshan Group, Shandong 265706, China
| | - Qingsong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shenyang Xu
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Pengfei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haihui Bai
- School of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Wangmo C, Jarque S, Hilscherová K, Bláha L, Bittner M. In vitro assessment of sex steroids and related compounds in water and sediments - a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:270-287. [PMID: 29251308 DOI: 10.1039/c7em00458c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detection of endocrine disrupting compounds in water and sediment samples has gained much importance since the evidence of their effects was reported in aquatic ecosystems in the 1990s. The aim of this review is to highlight the advances made in the field of in vitro analysis for the detection of hormonally active compounds with estrogenic, androgenic and progestogenic effects in water and sediment samples. In vitro assays have been developed from yeast, mammalian and in a few cases from fish cells. These assays are based either on the hormone-mediated proliferation of sensitive cell lines or on the hormone-mediated expression of reporter genes. In vitro assays in combination with various sample enrichment methods have been used with limits of detection as low as 0.0027 ng L-1 in water, and 0.0026 ng g-1 in sediments for estrogenicity, 0.1 ng L-1 in water, and 0.5 ng g-1 in sediments for androgenicity, and 5 ng L-1 in water for progestogenicity expressed as equivalent concentrations of standard reference compounds of 17β-estradiol, dihydrotestosterone and progesterone, respectively. The experimental results and limits of quantification, however, are influenced by the methods of sample collection, preparation, and individual laboratory practices.
Collapse
Affiliation(s)
- Chimi Wangmo
- Masaryk University, Research Centre for Toxic Compounds in the Environment - RECETOX, Kamenice 5, 625 00, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
4
|
Kong D, Wang Y, Wang J, Teng Y, Li N, Li J. Evaluation and characterization of thyroid-disrupting activities in soil samples along the Second Songhua River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:475-480. [PMID: 27526021 DOI: 10.1016/j.ecoenv.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
In this study, a recombinant thyroid receptor (TR) gene yeast assay combined with Monte Carlo simulation were used to evaluate and characterize soil samples collected from Jilin (China) along the Second Songhua River, for their ant/agonist effect on TR. No TR agonistic activity was found in soils, but many soil samples exhibited TR antagonistic activities, and the bioassay-derived amiodarone hydrochloride equivalents, which was calculated based on Monte Carlo simulation, ranged from not detected (N.D.) to 35.5μg/g. Hydrophilic substance fractions were determined to be the contributors to TR antagonistic activity in these soil samples. Our results indicate that the novel calculation method is effective for the quantification and characterization of TR antagonists in soil samples, and these data could provide useful information for future management and remediation efforts for contaminated soils.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yafei Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Na Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Yeast Biosensors for Detection of Environmental Pollutants: Current State and Limitations. Trends Biotechnol 2016; 34:408-419. [DOI: 10.1016/j.tibtech.2016.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/17/2023]
|
6
|
Jarque S, Bittner M, Hilscherová K. Freeze-drying as suitable method to achieve ready-to-use yeast biosensors for androgenic and estrogenic compounds. CHEMOSPHERE 2016; 148:204-210. [PMID: 26807940 DOI: 10.1016/j.chemosphere.2016.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
Recombinant yeast assays (RYAs) have been proved to be a suitable tool for the fast screening of compounds with endocrine disrupting activities. However, ready-to-use versions more accessible to less equipped laboratories and field studies are scarce and far from optimal throughputs. Here, we have applied freeze-drying technology to optimize RYA for the fast assessment of environmental compounds with estrogenic and androgenic potencies. The effects of different cryoprotectants, initial optical density and long-term storage were evaluated. The study included detailed characterization of sensitivity, robustness and reproducibility of the new ready-to-use versions, as well as comparison with the standard assays. Freeze-dried RYAs showed similar dose-responses curves to their homolog standard assays, with Lowest Observed Effect Concentration (LOEC) and Median effective Concentration (EC50) of 1 nM and 7.5 nM for testosterone, and 0.05 nM and 0.5 nM for 17β-estradiol, respectively. Freeze-dried cells stored at 4 °C retained maximum sensitivity up to 2 months, while cells stored at -18 °C showed no decrease in sensitivity throughout the study (10 months). This ready-to-use RYA is easily accessible and may be potentially used for on-site applications.
Collapse
Affiliation(s)
- Sergio Jarque
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, Brno CZ62500, Czech Republic
| | - Michal Bittner
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, Brno CZ62500, Czech Republic
| | - Klára Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, Brno CZ62500, Czech Republic.
| |
Collapse
|