1
|
Dube N, Smolarz K, Sokołowski A, Świeżak J, Øverjordet IB, Ellingsen I, Wielogórska E, Sørensen L, Walecka D, Kwaśniewski S. Human pharmaceuticals in the arctic - A review. CHEMOSPHERE 2024; 364:143172. [PMID: 39182731 DOI: 10.1016/j.chemosphere.2024.143172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Pharmaceuticals have been deemed as 'contaminants of emerging concern' within the Arctic and are a potentially perennial form of pollution. With recent innovations in detection technology for organic compounds, researchers have been able to find substantial evidence of the presence and accumulation of pharmaceutical pollution within the Arctic marine ecosystem. The pharmaceuticals, which are biologically active substances used in diagnosis, treatment or prevention of diseases, may persist in the Arctic environment and may have an impact on the resident marine biota. Thus, to understand the standing of current research on the origin, transport, bioaccumulation and impacts of pharmaceutical pollution on the Arctic marine ecosystem, this study collates research from the early 2000s to the end of 2023 to act as a baseline for future research. The study highlights the fact that there is an evident threat to the Arctic marine ecosystem due to pharmaceutical pollution. It also shows that the impacts of pharmaceuticals within the Arctic ocean are not well studied.
Collapse
Affiliation(s)
- Neil Dube
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Adam Sokołowski
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Ida Beathe Øverjordet
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ingrid Ellingsen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ewa Wielogórska
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Dominika Walecka
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Sławomir Kwaśniewski
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
2
|
Zhang S, Wang Z, Chen J, Luo X, Mai B. Multimodal Model to Predict Tissue-to-Blood Partition Coefficients of Chemicals in Mammals and Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1944-1953. [PMID: 38240238 DOI: 10.1021/acs.est.3c08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Tissue-to-blood partition coefficients (Ptb) are key parameters for assessing toxicokinetics of xenobiotics in organisms, yet their experimental data were lacking. Experimental methods for measuring Ptb values are inefficient, underscoring the urgent need for prediction models. However, most existing models failed to fully exploit Ptb data from diverse sources, and their applicability domain (AD) was limited. The current study developed a multimodal model capable of processing and integrating textual (categorical features) and numerical information (molecular descriptors/fingerprints) to simultaneously predict Ptb values across various species, tissues, blood matrices, and measurement methods. Artificial neural network algorithms with embedding layers were used for the multimodal modeling. The corresponding unimodal models were developed for comparison. Results showed that the multimodal model outperformed unimodal models. To enhance the reliability of the model, a method considering categorical features, weighted molecular similarity density, and weighted inconsistency in molecular activities of structure-activity landscapes was used to characterize the AD. The model constrained by the AD exhibited better prediction accuracy for the validation set, with the determination coefficient, root mean-square error, and mean absolute error being 0.843, 0.276, and 0.213 log units, respectively. The multimodal model coupled with the AD characterization can serve as an efficient tool for internal exposure assessment of chemicals.
Collapse
Affiliation(s)
- Shuying Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhongyu Wang
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100029, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Matthee C, Brown AR, Lange A, Tyler CR. Factors Determining the Susceptibility of Fish to Effects of Human Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8845-8862. [PMID: 37288931 PMCID: PMC10286317 DOI: 10.1021/acs.est.2c09576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The increasing levels and frequencies at which active pharmaceutical ingredients (APIs) are being detected in the environment are of significant concern, especially considering the potential adverse effects they may have on nontarget species such as fish. With many pharmaceuticals lacking environmental risk assessments, there is a need to better define and understand the potential risks that APIs and their biotransformation products pose to fish, while still minimizing the use of experimental animals. There are both extrinsic (environment- and drug-related) and intrinsic (fish-related) factors that make fish potentially vulnerable to the effects of human drugs, but which are not necessarily captured in nonfish tests. This critical review explores these factors, particularly focusing on the distinctive physiological processes in fish that underlie drug absorption, distribution, metabolism, excretion and toxicity (ADMET). Focal points include the impact of fish life stage and species on drug absorption (A) via multiple routes; the potential implications of fish's unique blood pH and plasma composition on the distribution (D) of drug molecules throughout the body; how fish's endothermic nature and the varied expression and activity of drug-metabolizing enzymes in their tissues may affect drug metabolism (M); and how their distinctive physiologies may impact the relative contribution of different excretory organs to the excretion (E) of APIs and metabolites. These discussions give insight into where existing data on drug properties, pharmacokinetics and pharmacodynamics from mammalian and clinical studies may or may not help to inform on environmental risks of APIs in fish.
Collapse
Affiliation(s)
- Chrisna Matthee
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Andrew Ross Brown
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Anke Lange
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R. Tyler
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
4
|
Manjarrés-López DP, Peña-Herrera JM, Benejam L, Montemurro N, Pérez S. Assessment of wastewater-borne pharmaceuticals in tissues and body fluids from riverine fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121374. [PMID: 36858105 DOI: 10.1016/j.envpol.2023.121374] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Riverine fish in densely populated areas is constantly exposed to wastewater-borne contaminants from effluent discharges. These can enter the organism through the skin, gills or by ingestion. Whereas most studies assessing the contaminant burden in exposed fish have focused either on muscle or a limited set of tissues. Here we set out to generate a more comprehensive overview of the distribution of pollutants across tissues by analyzing a panel of matrices including liver, kidney, skin, brain, muscle, heart, plasma and bile. To achieve a broad analyte coverage with a minimal bias towards a specific contaminant class, sample extracts from four fish species were analyzed by High-Performance Liquid Chromatography (HPLC) - high-resolution mass spectrometry (HRMS) for the presence of 600 wastewater-borne pharmaceutically active compounds (PhACs) with known environmental relevance in river water through a suspect-screening analysis. A total of 30 compounds were detected by suspect screening in at least one of the analyzed tissues with a clear prevalence of antidepressants. Of these, 15 were detected at confidence level 2.a (Schymanski scale), and 15 were detected at confidence level 1 following confirmation with authentic standards, which furthermore enabled their quantification. The detected PhACs confirmed with level 1 of confidence included acridone, acetaminophen, caffeine, clarithromycin, codeine, diazepam, diltiazem, fluoxetine, ketoprofen, loratadine, metoprolol, sertraline, sotalol, trimethoprim, and venlafaxine. Among these substances, sertraline stood out as it displayed the highest detection frequency. The values of tissue partition coefficients for sertraline in the liver, kidney, brain and muscle were correlated with its physicochemical properties. Based on inter-matrix comparison of detection frequencies, liver, kidney, skin and heart should be included in the biomonitoring studies of PhACs in riverine fish.
Collapse
Affiliation(s)
| | | | - L Benejam
- Aquatic Ecology Group, University of Vic - Central University of Catalonia, c/de la Laura. 13, 08500, Vic, Barcelona, Spain
| | - N Montemurro
- ONHEALTH, IDAEA-CSIC, c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez
- ONHEALTH, IDAEA-CSIC, c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
Van Nguyen T, Bořík A, Velíšek J, Kouba A, Žlábek V, Koubová A. Integrated biomarker response in signal crayfish Pacifastacus leniusculus exposed to diphenhydramine. CHEMOSPHERE 2022; 308:136382. [PMID: 36088977 DOI: 10.1016/j.chemosphere.2022.136382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Diphenhydramine (DPH) is a pharmaceutical with multiple modes of action, primarily designed as an antihistamine therapeutic drug. Among antihistamines, DPH is a significant contaminant in the environment, frequently detected in surface waters, sediments, and tissues of aquatic biota. In the present study, signal crayfish Pacifastacus leniusculus was used as a model organism because of their prominent ecological roles in freshwater ecosystems. The biochemical effects were investigated in crayfish exposed to the environmental (low: 2 μg L-1), ten times elevated (medium: 20 μg L-1), and the sublethal (high: 200 μg L-1) nominal concentrations of DPH in water for 96 h. Lipid peroxidation, antioxidant enzyme activities, and acetylcholinesterase activity were assessed as toxicological biomarkers in crayfish hepatopancreas, gills, and muscles. Low and medium DPH exposure caused imbalances only in glutathione-like enzyme activities. Integrated biomarker response showed the absolute DPH toxicity effects on all tested tissues under high exposure. This study identified that high, short-term DPH exposure induced oxidative stress in crayfish on multiple tissue levels, with the most considerable extent in muscles.
Collapse
Affiliation(s)
- Tuyen Van Nguyen
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Josef Velíšek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Anna Koubová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| |
Collapse
|
6
|
Glover CN, Klaczek CE, Goss GG, Saari GN. Factors Affecting the Binding of Diltiazem to Rainbow Trout Plasma: Implications for the Risk Assessment of Pharmaceuticals in Aquatic Systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3125-3133. [PMID: 36177769 DOI: 10.1002/etc.5493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The accumulation of organic toxicants in fish plasma, and how they partition between the bound and unbound fraction once absorbed, are important metrics in models that seek to predict the risk of such contaminants in aquatic settings. Rapid equilibrium dialysis of diltiazem, an ionizable weak base and important human pharmaceutical contaminant of freshwaters, was conducted with rainbow trout (Oncorhynchus mykiss) plasma. The effect of fed state, fish sex, fish strain/size, and dialysis buffer pH on the binding of radiolabeled diltiazem (9 ng ml-1 ) was assessed. In fed fish, 24.6%-29.5% of diltiazem was free, unbound to plasma proteins. Although starvation of fish resulted in a decrease in plasma protein, the bound fraction of diltiazem remained relatively constant. Consequently, the protein-bound concentration of diltiazem increased with length of starvation. In general, rainbow trout strain was a significant factor affecting plasma binding, although the two strains tested also differed markedly in size. Dialysis buffer pH significantly influenced plasma binding, with a higher unbound diltiazem fraction at pH 6.8 than pH 8.0. These data indicate that empirical measures of plasma binding in fish are important for accurate risk assessment and that the physiological status of a fish is likely to impact its sensitivity to toxicants such as diltiazem. Environ Toxicol Chem 2022;41:3125-3133. © 2022 SETAC.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chantelle E Klaczek
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin N Saari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Upper Midwest Environmental Science Center, United States Geological Survey, La Crosse, Wisconsin, USA
| |
Collapse
|
7
|
Koubová A, Van Nguyen T, Grabicová K, Burkina V, Aydin FG, Grabic R, Nováková P, Švecová H, Lepič P, Fedorova G, Randák T, Žlábek V. Metabolome adaptation and oxidative stress response of common carp (Cyprinus carpio) to altered water pollution levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119117. [PMID: 35276249 DOI: 10.1016/j.envpol.2022.119117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Treated wastewater ponds (TWPs) serve as recipients and passive tertiary treatment mediators for recycled water. These nutrient-rich habitats are increasingly utilised in aquaculture, nevertheless multiple loads of various contaminants with adverse effects on aquatic fauna, including fish, have been recorded. In the present study, we investigated the effects of fish transfer in response to altered levels of pollution on liver metabolic profiles and tissue-specific oxidative stress biomarkers during short- and long-term exposure. In a field experiment, common carp (Cyprinus carpio) originating in severely polluted TWP were restocked after one year to a reference pond with a background pollutant concentration typical of the regional river. In contrast, fish that originated in the reference pond were restocked to TWP. Fish were sampled 0, 7, 14, 60, and 180 days after restocking and fish liver, kidney, intestine, and gill tissues were subjected to biomarker analysis. Pharmaceutically active compounds (PhACs) and metabolic profiles were determined in fish liver using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Fish transferred from reference to polluted pond increased the antioxidant response and absorbed PhACs into metabolism within seven days. Fish liver metabolic profiles were shifted rapidly, but after 180 days to a lesser extent than profiles in fish already adapted in polluted water. Restocked fish from polluted to reference pond eliminated PhACs during the short phase within 14 days, and the highest antioxidant response accompanied the depuration process. Numerous elevated metabolic compounds persisted in such exposed fish for at least 60 days. The period of two weeks was suggested as sufficient for PhACs depuration, but more than two months after restocking is needed for fish to stabilise their metabolism. This study contributed to determining the safe handling with marketed fish commonly restocked to wastewaters and clarified that water pollution irreversibly altered fish metabolic profile.
Collapse
Affiliation(s)
- Anna Koubová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Tuyen Van Nguyen
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Viktoriia Burkina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Farah Gönül Aydin
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Ankara University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Diskapi, 06110, Altindag, Ankara, Turkey
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Pavel Lepič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
8
|
Pihlaja TLM, Niemissalo SM, Sikanen TM. Cytochrome P450 Inhibition by Antimicrobials and Their Mixtures in Rainbow Trout Liver Microsomes In Vitro. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:663-676. [PMID: 34255900 DOI: 10.1002/etc.5160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobials are ubiquitous in the environment and can bioaccumulate in fish. In the present study, we determined the half-maximal inhibitory concentrations (IC50) of 7 environmentally abundant antimicrobials (ciprofloxacin, clarithromycin, clotrimazole, erythromycin, ketoconazole, miconazole, and sulfamethoxazole) on the cytochrome P450 (CYP) system in rainbow trout (Oncorhynchus mykiss) liver microsomes, using 7-ethoxyresorufin O-deethylation (EROD, CYP1A) and 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD, CYP3A) as model reactions. Apart from ciprofloxacin and sulfamethoxazole, all antimicrobials inhibited either EROD or BFCOD activities or both at concentrations <500 µM. Erythromycin was the only selective and time-dependent inhibitor of BFCOD. Compared with environmental concentrations, the IC50s of individual compounds were generally high (greater than milligrams per liter); but as mixtures, the antimicrobials resulted in strong, indicatively synergistic inhibitions of both EROD and BFCOD at submicromolar (~micrograms per liter) mixture concentrations. The cumulative inhibition of the BFCOD activity was detectable even at picomolar (~nanograms per liter) mixture concentrations and potentiated over time, likely because of the strong inhibition of CYP3A by ketoconazole (IC50 = 1.7 ± 0.3 µM) and clotrimazole (IC50 = 1.2 ± 0.2 µM). The results suggest that if taken up by fish, the mixtures of these antimicrobials may result in broad CYP inactivation and increase the bioaccumulation risk of any other xenobiotic normally cleared by the hepatic CYPs even at biologically relevant concentrations. Environ Toxicol Chem 2022;41:663-676. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Tea L M Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Sanna M Niemissalo
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Lari E, Burket SR, Steinkey D, Brooks BW, Pyle GG. Interaction of the Olfactory System of Rainbow Trout (Oncorhynchus mykiss) with Diltiazem. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:544-550. [PMID: 33463738 DOI: 10.1002/etc.4854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Diltiazem is ubiquitously prescribed and has been reported in many effluents and freshwater bodies. Being a calcium channel blocker, diltiazem could disrupt the function of the sensory and central nervous systems. In the present study, using electro-olfactography (EOG), we investigated the interaction of diltiazem with the olfactory sensory neurons (OSNs) of rainbow trout by looking into the detection threshold and effects of immediate (~5 min) and acute (24 h) exposure to diltiazem at 6.6, 66, and 660 µg/L. We also studied the accumulation of the drug in fish plasma and whole body. Brief exposure to diltiazem impaired the OSN response to a chemosensory stimulus in a concentration-dependent manner at 6.6 µg/L and higher, whereas OSNs exposed for 24 h only displayed an impairment at 660 µg/L. Chemical analysis showed that the accumulation of diltiazem in fish plasma and body correlated with the EOG response because it was 10 times higher in the group that displayed a significant impairment (660 µg/L) compared to the other 2 groups (6.6, 66 µg/L). This correlation suggests that the impact of diltiazem on OSNs might partially be through the accumulated molecules in the fish bloodstream. Fish did not detect diltiazem as a sensory stimulus even at concentrations as high as 660 µg/L; thus, fish could potentially swim toward or fail to escape harmful concentrations of diltiazem. Environ Toxicol Chem 2022;41:554-550. © 2020 SETAC.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - S Rebekah Burket
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Dylan Steinkey
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
10
|
Bioaccumulation of Pyraoxystrobin and Its Predictive Evaluation in Zebrafish. TOXICS 2021; 10:toxics10010005. [PMID: 35051047 PMCID: PMC8780168 DOI: 10.3390/toxics10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
This paper aims to understand the bioaccumulation of pyraoxystrobin in fish. Using a flow-through bioconcentration method, the bioconcentration factor (BCF) and clearance rate of pyraoxystrobin in zebrafish were measured. The measured BCF values were then compared to those estimated from three commonly used predication models. At the exposure concentrations of 0.1 μg/L and 1.0 μg/L, the maximum BCF values for pyraoxystrobin in fish were 820.8 and 265.9, and the absorption rate constants (K1) were 391.0 d−1 and 153.2 d−1, respectively. The maximum enrichment occurred at 12 d of exposure. At the two test concentrations, the clearance rate constant (K2) in zebrafish was 0.5795 and 0.4721, and the half-life (t1/2) was 3.84 d and 3.33 d, respectively. The measured BCF values were close to those estimated from bioconcentration predication models.
Collapse
|
11
|
Grabicová K, Grabic R, Fedorova G, Vojs Staňová A, Bláha M, Randák T, Brooks BW, Žlábek V. Water reuse and aquaculture: Pharmaceutical bioaccumulation by fish during tertiary treatment in a wastewater stabilization pond. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115593. [PMID: 33254619 DOI: 10.1016/j.envpol.2020.115593] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
With increasing demand for aquaculture products, water reuse is likely to increase for aquaculture operations around the world. Herein, wastewater stabilization ponds (WSP) represents low cost and sustainable treatment technologies to reduce nutrients and various contaminants of emerging concern from effluent. In the present study, we examined bioaccumulation of selected pharmaceuticals from several therapeutic classes by two important fish species in aquaculture with different feeding preferences (Cyprinus carpio and Sander lucioperca) and their common prey to test whether species specific accumulation occurs. Forty and nineteen from 66 selected pharmaceuticals and their metabolites were positively found in water and sediment samples, respectively from the representative WSP. After a six-month study, which corresponds to aquaculture operations, fourteen pharmaceuticals and their metabolites were detected (at a frequency of higher than 50% of samples) in at least one fish tissue collected from the WSP. We observed striking differences for species and organ specific BAFs among study compounds. Though muscle tissues consistently accumulated lower levels of the target analytes, several substances were elevated in brain, liver and kidney tissues (e.g., sertraline) of both species. Low residual concentrations of these target analytes in aquaculture products (fish fillets) suggest WSPs are promising to support the water-food nexus in aquaculture.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Bláha
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
12
|
Burkina V, Sakalli S, Giang PT, Grabicová K, Staňová AV, Zamaratskaia G, Zlabek V. In Vitro Metabolic Transformation of Pharmaceuticals by Hepatic S9 Fractions from Common Carp (Cyprinus carpio). Molecules 2020; 25:molecules25112690. [PMID: 32531944 PMCID: PMC7321103 DOI: 10.3390/molecules25112690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022] Open
Abstract
Water from wastewater treatment plants contains concentrations of pharmaceutically active compounds as high as micrograms per liter, which can adversely affect fish health and behavior, and contaminate the food chain. Here, we tested the ability of the common carp hepatic S9 fraction to produce the main metabolites from citalopram, metoprolol, sertraline, and venlafaxine. Metabolism in fish S9 fractions was compared to that in sheep. The metabolism of citalopram was further studied in fish. Our results suggest a large difference in the rate of metabolites formation between fish and sheep. Fish hepatic S9 fractions do not show an ability to form metabolites from venlafaxine, which was also the case for sheep. Citalopram, metoprolol, and sertraline were metabolized by both fish and sheep S9. Citalopram showed concentration-dependent N-desmethylcitalopram formation with Vmax = 1781 pmol/min/mg and Km = 29.7 μM. The presence of ellipticine, a specific CYP1A inhibitor, in the incubations reduced the formation of N-desmethylcitalopram by 30-100% depending on the applied concentration. These findings suggest that CYP1A is the major enzyme contributing to the formation of N-desmethylcitalopram. In summary, the results from the present in vitro study suggest that common carp can form the major metabolites of citalopram, metoprolol, and sertraline.
Collapse
Affiliation(s)
- Viktoriia Burkina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodňany, Czech Republic; (S.S.); (P.T.G.); (K.G.); (A.V.S.); (G.Z.); (V.Z.)
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
- Correspondence: ; Tel.: +420-777318672; Fax: +420-387774634
| | - Sidika Sakalli
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodňany, Czech Republic; (S.S.); (P.T.G.); (K.G.); (A.V.S.); (G.Z.); (V.Z.)
| | - Pham Thai Giang
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodňany, Czech Republic; (S.S.); (P.T.G.); (K.G.); (A.V.S.); (G.Z.); (V.Z.)
- Research Institute for Aquaculture No 1, Dinh Bang 220000, Tu Son, Bac Ninh, Vietnam
| | - Kateřina Grabicová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodňany, Czech Republic; (S.S.); (P.T.G.); (K.G.); (A.V.S.); (G.Z.); (V.Z.)
| | - Andrea Vojs Staňová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodňany, Czech Republic; (S.S.); (P.T.G.); (K.G.); (A.V.S.); (G.Z.); (V.Z.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Galia Zamaratskaia
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodňany, Czech Republic; (S.S.); (P.T.G.); (K.G.); (A.V.S.); (G.Z.); (V.Z.)
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Vladimir Zlabek
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodňany, Czech Republic; (S.S.); (P.T.G.); (K.G.); (A.V.S.); (G.Z.); (V.Z.)
| |
Collapse
|
13
|
Grabicová K, Grabic R, Fedorova G, Kolářová J, Turek J, Brooks BW, Randák T. Psychoactive pharmaceuticals in aquatic systems: A comparative assessment of environmental monitoring approaches for water and fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114150. [PMID: 32062094 DOI: 10.1016/j.envpol.2020.114150] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Environmental monitoring and surveillance studies of pharmaceuticals routinely examine occurrence of substances without current information on human consumption patterns. We selected 10 streams with diverse annual flows and differentially influenced by population densities to examine surface water occurrence and fish accumulation of select psychoactive medicines, for which consumption is increasing in the Czech Republic. We then tested whether passive sampling can provide a useful surrogate for exposure to these substances through grab sampling, body burdens of young of year fish, and tissue specific accumulation of these psychoactive contaminants. We identified a statistically significant (p < 0.05) relationship between ambient grab samples and passive samplers in these streams when psychoactive contaminants were commonly quantitated by targeted liquid chromatography with tandem mass spectrometry, though we did not observe relationships between passive samplers and tissue specific pharmaceutical accumulation. We further observed smaller lotic systems with elevated contamination when municipal effluent discharges from more highly populated cities contributed a greater extent of instream flows. These findings identify the importance of understanding age and species specific differences in fish uptake, internal disposition, metabolism and elimination of psychoactive drugs across surface water quality gradients.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Tomáš Randák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| |
Collapse
|
14
|
Yang X, Liu H, Jia M, Wang J, Wu J, Song J, Liu Y. Evaluation of pyraoxystrobin bioconcentration in zebrafish ( Danio rerio) using modified QuEChERS extraction. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:477-483. [PMID: 32449480 DOI: 10.1080/03601234.2020.1722558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pyraoxystrobin is a novel strobilurin fungicide that is widely used on many crops. The high log Kow of pyraoxystrobin implies that it tends to accumulate in aquatic organisms. This study optimized the sorbents of QuEChERS (quick, easy, cheap, effective, rugged, and safe) using 13C-labelled pyraoxystrobin as the internal standard (IS). It has been established a QuEChERS-LC-MS/MS IS method to study the bioconcentration and elimination of pyraoxystrobin in zebrafish (Danio rerio). The results indicated that the method had satisfactory linearity between 0.234 and 15 μg L-1 (R2 = 0.9996). The limits of detection (LOD) and quantification (LOQ) for pyraoxystrobin were 0.01 and 0.03 μg L-1, respectively. The LOQs of the method for water and zebrafish were 0.05 μg L-1 and 0.01 mg/kg, respectively. The mean recovery of pyraoxystrobin in zebrafish and water at fortification levels of 0.01-0.3 mg kg-1 and 0.05-1.5 μg L-1 ranged from 98.31 to 105.61% and 101.87 to 108.48%, respectively, with a % RSD (relative standard deviation) of 0.94-3.57%. The bioconcentration has been evaluated. The bioconcentration factors for pyraoxystrobin in zebrafish were 1,792 and 3,505 after exposure to 0.5 μg L-1 for 168 h and 0.05 μg L-1 for 216 h, respectively. The half-life of pyraoxystrobin in zebrafish was 9.0-9.5 d.
Collapse
Affiliation(s)
- Xiaohong Yang
- Food Science and Engineering College, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, China
| | - Huijun Liu
- Food Science and Engineering College, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, China
| | - Minghong Jia
- Food Science and Engineering College, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, China
| | - Jiangfei Wang
- Beijing Yunong High Quality Cultivation of Agricultural Products Company, Beijing, China
| | - Jinlong Wu
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Junhua Song
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Yixuan Liu
- Tianjin Jiantong Biotechnology Inc., Tianjin, China
| |
Collapse
|
15
|
Saari GN, Haddad SP, Mole RM, Hill BN, Steele WB, Lovin LM, Chambliss CK, Brooks BW. Low dissolved oxygen increases uptake of a model calcium channel blocker and alters its effects on adult Pimephales promelas. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108719. [PMID: 31987992 DOI: 10.1016/j.cbpc.2020.108719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Human population growth accompanied with urbanization is urbanizing the water cycle in many regions. Urban watersheds, particularly with limited upstream dilution of effluent discharges, represent worst case scenarios for exposure to multiple environmental stressors, including down the drain chemicals (e.g., pharmaceuticals) and other stressors (e.g., dissolved oxygen (DO)). We recently identified the calcium channel blocker diltiazem (DZM) to accumulate in fish plasma exceeding human therapeutic doses (e.g., Cmin) in coastal estuaries impaired due to nonattainment of DO water quality standards. Thus, we examined whether DO influences DZM uptake by fish, and if changes in DO-dependent upatke alter fish physiological and biochemical responses. Low DO (3.0 mg DO/L) approximately doubled diltiazem uptake in adult fathead minnows relative to normoxic (8.2 mg DO/L) conditions and were associated with significant (p < 0.05) increases in fish ventilation rate at low DO levels. Decreased burst swim performance (Uburst) of adult fathead minnows were significantly (p < 0.05) altered by low versus normal DO levels. DO × DZM studies reduced Uburst by 13-31% from controls, though not significantly (p = 0.06). Physiological responses in fish exposed to DZM alone were minimal; however, in co-exposure with low DO, decreasing trends in Uburst appeared inversely related to plasma lactate levels. Such physiological responses to multiple stressors, when paired with internal tissue concentrations, identify the utility of employing biological read across approaches to identify adverse outcomes of heart medications and potentially other cardiotoxicants impacting fish cardiovascular function across DO gradients.
Collapse
Affiliation(s)
- Gavin N Saari
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Samuel P Haddad
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Rachel M Mole
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bridgett N Hill
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - W Baylor Steele
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Department of Chemistry, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Saari GN, Corrales J, Haddad SP, Chambliss CK, Brooks BW. Influence of Diltiazem on Fathead Minnows Across Dissolved Oxygen Gradients. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2835-2850. [PMID: 30055012 DOI: 10.1002/etc.4242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/24/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Water resources in many arid to semi-arid regions are stressed by population growth and drought. Growing populations and climatic changes are influencing contaminant and water chemistry dynamics in urban inland waters, where flows can be dominated by, or even dependent on, wastewater effluent discharge. In these watersheds, interacting stressors such as dissolved oxygen and environmental contaminants (e.g., pharmaceuticals) have the potential to affect fish physiology and populations. Recent field observations from our group identified the calcium channel blocker (CCB) diltiazem in fish plasma exceeding human therapeutic doses (e.g., Cmin ) in aquatic systems impaired because of nonattainment of dissolved oxygen water quality standards. Therefore our study objectives examined: 1) standard acute and chronic effects of dissolved oxygen and diltiazem to fish, 2) influences of dissolved oxygen at criteria levels deemed protective of aquatic life on diltiazem toxicity to fish, and 3) whether sublethal effects occur at diltiazem water concentrations predicted to cause a human therapeutic level (therapeutic hazard value [THV]) in fish plasma. Dissolved oxygen × diltiazem co-exposures significantly decreased survival at typical stream, lake, and reservoir water quality standards of 5.0 and 3.0 mg dissolved oxygen/L. Dissolved oxygen and diltiazem growth effects were observed at 2 times and 10 times lower than median lethal concentration (LC50) values (1.7 and 28.2 mg/L, respectively). Larval fathead minnow (Pimephales promelas) swimming behavior following low dissolved oxygen and diltiazem exposure generally decreased and was significantly reduced in light-to-dark bursting distance traveled, number of movements, and duration at concentrations as low as the THV. Individual and population level consequences of such responses are not yet understood, particularly in older organisms or other species; however, these findings suggest that assessments with pharmaceuticals and other cardioactive contaminants may underestimate adverse outcomes in fish across dissolved oxygen levels considered protective of aquatic life. Environ Toxicol Chem 2018;37:2835-2850. © 2018 SETAC.
Collapse
Affiliation(s)
- Gavin N Saari
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Jone Corrales
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Samuel P Haddad
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Chemistry, Baylor University, Waco, Texas, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
17
|
Koba O, Grabicova K, Cerveny D, Turek J, Kolarova J, Randak T, Zlabek V, Grabic R. Transport of pharmaceuticals and their metabolites between water and sediments as a further potential exposure for aquatic organisms. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:401-407. [PMID: 28854392 DOI: 10.1016/j.jhazmat.2017.08.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 05/24/2023]
Abstract
Although pharmaceuticals are frequently studied contaminants, their fate in the environment is still not completely clear. During a one year study, a complex approach including water, sediment and fish sampling was used to describe the behaviour of pharmaceuticals and their metabolites (PTMs) in the environment. Eighteen pharmaceuticals and seven of their metabolites were determined in a pond used for the tertiary treatment of wastewater effluent. A liquid chromatography-tandem mass spectrometry method was applied to determine the PTMs concentrations in all matrices. Seasonal variations in concentrations were evaluated. The partitioning of contaminants between pond compartments was estimated by means of solid water distribution coefficients (Kd) and bioaccumulation factors (BAF) for the livers of fish. Kd values were almost stable throughout the year, which may be a sign of the continuous transport of PTMs between water and sediment under the experimental conditions. Almost all of the studied compounds, with exception of sertraline (BAF of 6200), were found to not be bioaccumulative in fish livers. The pond removal efficiency was calculated for all PTMs, and favourable conditions for natural pharmaceutical removal were proposed. Further aspects regarding fish pharmaceutical exposure need to be studied.
Collapse
Affiliation(s)
- Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Daniel Cerveny
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Jitka Kolarova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| |
Collapse
|
18
|
Tanoue R, Margiotta-Casaluci L, Huerta B, Runnalls TJ, Nomiyama K, Kunisue T, Tanabe S, Sumpter JP. Uptake and Metabolism of Human Pharmaceuticals by Fish: A Case Study with the Opioid Analgesic Tramadol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12825-12835. [PMID: 28977743 DOI: 10.1021/acs.est.7b03441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent species-extrapolation approaches to the prediction of the potential effects of pharmaceuticals present in the environment on wild fish are based on the assumption that pharmacokinetics and metabolism in humans and fish are comparable. To test this hypothesis, we exposed fathead minnows to the opiate pro-drug tramadol and examined uptake from the water into the blood and brain and the metabolism of the drug into its main metabolites. We found that plasma concentrations could be predicted reasonably accurately based on the lipophilicity of the drug once the pH of the water was taken into account. The concentrations of the drug and its main metabolites were higher in the brain than in the plasma, and the observed brain and plasma concentration ratios were within the range of values reported in mammalian species. This fish species was able to metabolize the pro-drug tramadol into the highly active metabolite O-desmethyl tramadol and the inactive metabolite N-desmethyl tramadol in a similar manner to that of mammals. However, we found that concentration ratios of O-desmethyl tramadol to tramadol were lower in the fish than values in most humans administered the drug. Our pharmacokinetic data of tramadol in fish help bridge the gap between widely available mammalian pharmacological data and potential effects on aquatic organisms and highlight the importance of understanding drug uptake and metabolism in fish to enable the full implementation of predictive toxicology approaches.
Collapse
Affiliation(s)
- Rumi Tanoue
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Luigi Margiotta-Casaluci
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Belinda Huerta
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Kei Nomiyama
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Kunisue
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - John P Sumpter
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| |
Collapse
|
19
|
Grabicova K, Grabic R, Fedorova G, Fick J, Cerveny D, Kolarova J, Turek J, Zlabek V, Randak T. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. WATER RESEARCH 2017; 124:654-662. [PMID: 28825984 DOI: 10.1016/j.watres.2017.08.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 05/14/2023]
Abstract
The treated effluent from sewage treatment plants (STP) is a major source of active pharmaceutical ingredients (APIs) that enter the aquatic environment. Bioaccumulation of 11 selected psychoactive pharmaceuticals (citalopram, clomipramine, haloperidol, hydroxyzine, levomepromazine, mianserin, mirtazapine, paroxetine, sertraline, tramadol and venlafaxine) was examined in Zivny Stream (tributary of the Blanice River, the Czech Republic), which is a small stream highly affected by effluent from the Prachatice STP. Six of the 11 pharmaceuticals were detected in grab water samples and in passive samplers. All pharmaceuticals were found in fish exposed to the stream for a defined time. The organs with highest presence of the selected pharmaceuticals were the liver and kidney; whereas only one pharmaceutical (sertraline) was detected in the brain of exposed fish. Fish plasma and muscle samples were not adequate in revealing exposure because the number of hits was much lower than that in the liver or kidney. Using the criterion of a bioaccumulation factor (BAF) ≥ 500, citalopram, mianserin, mirtazapine and sertraline could be classified as potential bioaccumulative compounds. In combination, data from integrative passive samplers and fish liver or kidney tissue samples were complimentary in detection of target compounds and simultaneously helped to distinguish between bioconcentration and bioaccumulation.
Collapse
Affiliation(s)
- Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Jerker Fick
- Department of Chemistry, Umea University, SE-901 87 Umea, Sweden
| | - Daniel Cerveny
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Jitka Kolarova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| |
Collapse
|
20
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R. Toxicity associated to uptake and depuration of carbamazepine in the clam Scrobicularia plana under a chronic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1129-1145. [PMID: 28040214 DOI: 10.1016/j.scitotenv.2016.12.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Carbamazepine (CBZ) is an antiepileptic drug commonly detected in aquatic systems, with toxic effects to inhabiting organisms. Limited information is known on stress response biomarkers associated to bioconcentration and depuration of CBZ in aquatic organisms. Moreover, few studies addressed if the response and recovery of organisms to a contaminant can change when they are collected in a contaminated site. This study intended to understand the bioconcentration and depuration of CBZ combined with its toxicological impact in Scrobicularia plana clams collected from two contrasting areas (MIRA, Mira channel, non-contaminated and LAR, Laranjo bay, anthropogenically impacted) from the Ria de Aveiro (Portugal). The clams were exposed for 14days to environmentally relevant CBZ concentrations (0.0, 4.0 and 8.0μg/L), followed by a 14day depuration period. CBZ concentrations in S. plana tissues were rapidly bioconcentrated during the exposure period. In the depuration period CBZ was eliminated, in some extent. The main toxic effects occurred at the highest concentration (8.0μg/L) after 14days of exposure in which the clams from LAR accumulated a higher CBZ concentration (LAR: ~10ng/g FW) than clams from MIRA (MIRA: ~7ng/g FW). LAR clams exhibited higher oxidative damage at this concentration, demonstrated by higher LPO levels over time (increase of ~1.4% relative to control) and, in comparison with MIRA clams (LAR: 17.7nmol/g FW; MIRA: 11.4nmol/g FW). After the depuration period, LAR clams recovered from the stress induced by CBZ. A decrease in LPO for LAR (decrease of ~40% in relation to the end of the exposure period) was accompanied by a decrease in CBZ tissue concentrations (decrease of ~61% relative to the end of the exposure period). MIRA clams were not oxidatively injured (low LPO levels remained unchanged after the depuration and CBZ decreased ~80% relative to the end of the exposure period).
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Steinbach C, Burkina V, Schmidt-Posthaus H, Stara A, Kolarova J, Velisek J, Randak T, Kroupova HK. Effect of the human therapeutic drug diltiazem on the haematological parameters, histology and selected enzymatic activities of rainbow trout Oncorhynchus mykiss. CHEMOSPHERE 2016; 157:57-64. [PMID: 27208646 DOI: 10.1016/j.chemosphere.2016.04.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 05/20/2023]
Abstract
Diltiazem is a pharmaceutical belonging to a group of calcium channel blockers (CCB) that is widely used in the treatment of angina pectoris and hypertension. The objective of the present study was to assess the effect of diltiazem on rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed for 21 and 42 days to three nominal concentrations of diltiazem: 0.03 μg L(-1) (environmentally relevant concentration), 3 μg L(-1), and 30 μg L(-1) (sub-lethal concentrations). The number of mature neutrophilic granulocytes was significantly increased by 450 and 400% in fish exposed to 3 μg L(-1) and 30 μg L(-1) diltiazem compared to the control, respectively. Antioxidant enzyme activity was affected in liver and gills of fish exposed to all tested concentrations of diltiazem but the changes were mostly transient and not concentration dependent. Creatine kinase activity was markedly increased (ranging from 520 to 845%) at all tested diltiazem concentrations at the end of the exposure indicating muscle and/or kidney damage. The highest concentration was associated with histological changes in heart, liver, and kidney. These alterations can be attributed to the effects of diltiazem on the cardiovascular system, similar to those observed in the human body, as well as to its metabolism. At the environmentally relevant concentration, diltiazem was found to induce some alterations in the blood, gills, and liver of fish, indicating its potential for adverse effects on non-target organisms in the aquatic environment.
Collapse
Affiliation(s)
- Christoph Steinbach
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Viktoriia Burkina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department for Infectious Diseases and Pathobiology, University of Bern, Länggass-Strasse 122, 3001 Bern, Switzerland
| | - Alzbeta Stara
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jitka Kolarova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Tomas Randak
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Hana Kocour Kroupova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
22
|
Puckowski A, Mioduszewska K, Łukaszewicz P, Borecka M, Caban M, Maszkowska J, Stepnowski P. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. J Pharm Biomed Anal 2016; 127:232-55. [DOI: 10.1016/j.jpba.2016.02.049] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/28/2016] [Accepted: 02/28/2016] [Indexed: 12/17/2022]
|
23
|
Koba O, Steinbach C, Kroupová HK, Grabicová K, Randák T, Grabic R. Investigation of diltiazem metabolism in fish using a hybrid quadrupole/orbital trap mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1153-1162. [PMID: 27060844 DOI: 10.1002/rcm.7543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 01/13/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE Diltiazem, a calcium channel blocker drug, is widespread in the environment because of its incomplete elimination during water treatment. It can cause negative effects on aquatic organisms; thus, a rapid and sensitive liquid chromatography/mass spectrometry (LC/MS) method to detect its presence was developed. Our approach is based on accurate mass measurements using a hybrid quadrupole-orbital trap mass spectrometer that was used to measure diltiazem and its metabolites in fish tissue. METHODS Blood plasma, muscle, liver, and kidney tissues of rainbow trout (Oncorhynchus mykiss), exposed for 42 days to 30 μg L(-1) diltiazem, were used for the method development. No metabolite standards were required to identify the diltiazem biotransformation products in the fish tissue. RESULTS Overall, 17 phase I diltiazem metabolites (including isomeric forms) were detected and tentatively identified using the MassFrontier spectral interpretation software. A semi-quantitative approach was used for organ-dependent comparison of the metabolite concentrations. CONCLUSIONS These data increase our understanding about diltiazem and its metabolites in aquatic organisms, such as fish. These encompass desmethylation, desacetylation and hydroxylation as well as their combinations. This study represents the first report of the complex diltiazem phase I metabolic pathways in fish.
Collapse
Affiliation(s)
- Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|