1
|
Cheng FJ, Wang CH, Pan HY, Chen CC, Huang WT, Li SH, Wang LJ, Wang CC, Lee WC, Tsai KF, Ou YC, Kung CT. Levels of organophosphate flame retardants and their metabolites among 391 volunteers in Taiwan: difference between adults and children. Front Public Health 2023; 11:1186561. [PMID: 37711251 PMCID: PMC10499440 DOI: 10.3389/fpubh.2023.1186561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Background Organophosphate flame retardants (OPFRs) are ubiquitous in the environment. The compositions and concentrations of different OPFRs metabolites vary in different environments depending on different human activities. The objective of the present study was to evaluate the exposure of different age groups to OPFRs in Taiwan. Methods Volunteers provided urine samples and responded to questionnaires including demographic factors, underlying disease, lifestyle information, and occupation from October 2021 to January 2022. OPFR measurements were performed using a Waters Acquity Ultra-Performance Liquid Chromatography system coupled with a Waters Xevo TQ-XS mass spectrometer. Results A total of 391 volunteers (74 children and 317 adults) were enrolled in this study. The concentrations (presented as μg/g creatinine) of bis(1,3-dichloro-2-propyl) phosphate (BDCPP, p = 0.029) and tri-n-butyl phosphate (TNBP, p = 0.008) were higher in the adult group, while the concentrations of bis-2-chloroethyl phosphate (BCEP, p = 0.024), diphenyl phosphate (DPHP, p < 0.001), tris(1,3-dichloro-2-propyl) phosphate (TDCPP, p = 0.009), and Tris(2-butoxyethyl) phosphate (TBEP, p = 0.007) were higher in the child group. Compared with school age children (>6 years), the concentration of di(2-n-butoxyethyl) phthalate (DBEP, 1.14 vs. 0.20 μg/g creatinine, p = 0.001), DPHP (1.23 vs. 0.54 μg/g creatinine, p = 0.036), TBEP (1.63 vs. 0.29 μg/g creatinine, p < 0.001), and the sum of OPFR metabolites (ΣOPFRs, 6.58 vs. 2.04 μg/g creatinine, p < 0.001) were statistically higher in preschool-aged children. After adjusting for confounding factors, pre-school age [odds ratio (OR): 4.579, 95% confidence interval (CI): 1.389-13.115] and current smoker (OR: 5.328, 95%CI: 1.858-14.955) were independently associated with the risk of ΣOPFRs higher than 90 percentile. Conclusion This study revealed the distribution of different OPFRs metabolites in children and adults. DBEP, DPHP, TBEP, and ΣOPFR were higher in preschool-aged children. Pre-school age and current smoking status were independent risk factors for ΣOPFRs higher than 90 percentile.
Collapse
Affiliation(s)
- Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hwa Wang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Pediatrics Department, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Barhoumi B, Metian M, Oberhaensli F, Mourgkogiannis N, Karapanagioti HK, Bersuder P, Tolosa I. Extruded polystyrene microplastics as a source of brominated flame retardant additives in the marine environment: long-term field and laboratory experiments. ENVIRONMENT INTERNATIONAL 2023; 172:107797. [PMID: 36773563 DOI: 10.1016/j.envint.2023.107797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) in the environment have become a global concern, not only for the physical effects of the plastic particles themselves but also for being vectors of chemical additives. In this context, little is known about the ability of MPs, particularly extruded polystyrene microplastics (XPS-MPs), to release organic chemical additives in the marine environment. In this study, a series of field and laboratory experiments were carried out to determine the leaching behaviour of organic additives including brominated flame retardants from XPS-MPs into seawater. The conducted experiments confirmed a rapid release of bisphenol A (BPA), 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and hexabromocyclododecane diastereoisomers (α-, β-, and γ-HBCDD) from the studied MPs followed by a slower rate of release over time. The effects of environmental factors on the leaching rates of these additives were also examined. Increasing Dissolved Organic Matter (DOM) concentrations and the temperature of the seawater enhanced the release of additives by increasing their solubility and polymer flexibility. In contrast, pH tested at 7, 7.5 and 8 was found to have a minor effect on additives leaching; and salinity negatively affected the leaching rate likely due to their reduced solubility and reduced diffusion from the MPs. The present study provides empirical evidence of the behaviour of XPS-MPs as a source of organic additives in the marine environment that merit further investigation.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000 Monaco, Principality of Monaco.
| | - Marc Metian
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000 Monaco, Principality of Monaco
| | - François Oberhaensli
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000 Monaco, Principality of Monaco
| | | | | | - Philippe Bersuder
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000 Monaco, Principality of Monaco
| | - Imma Tolosa
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000 Monaco, Principality of Monaco.
| |
Collapse
|
3
|
Al-Omran LS, Stubbings WA, Harrad S. Concentrations and isomer profiles of hexabromocyclododecanes (HBCDDs) in floor, elevated surface, and outdoor dust samples from Basrah, Iraq. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:910-920. [PMID: 35662304 DOI: 10.1039/d2em00133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concentrations of the α, β, and γ- diastereomers of hexabromocyclododecane (α-, β-, and γ-HBCDD) were measured in 60 dust samples from 20 homes across Basrah, Iraq. From each home, two indoor dust (ID) samples (specifically one collected from elevated surfaces (ESD) and one from the floor (FD)) were collected from the living room, with one outdoor dust (OD) sample collected from the front yard of the house. Concentrations of HBCDDs decreased in the following sequence ESD > FD > OD. For ID, ΣHBCDD concentrations varied from 5.3 ng g-1 in FD to 150 ng g-1 in ESD, with median levels of 60 and 40 ng g-1 in ESD and FD respectively. Concentrations of γ-HBCDD, and consequently of ΣHBCDDs in ESD, significantly (p < 0.05) exceeded those in FD. For adults, this implies that exposure assessments based on FD only may underestimate exposure, as adults are more likely to ingest ESD. Concentrations of ΣHBCDDs in OD ranged between 7.4 and 120 ng g-1 with a median of 35 ng g-1 and were significantly exceeded (p < 0.05) by those in ID samples. Concentrations of ΣHBCDDs in OD from houses with car parking areas exceeded (p < 0.05) those in OD from other homes, implying vehicles as potential emission sources of HBCDDs. Simultaneously, there was moderate correlation (R = 0.510-0.609, p < 0.05) between concentrations in ID and OD, implying that the indoor environment is an important source of OD contamination. The isomer pattern of HBCDDs in dust samples displayed a predominance of α-HBCDD, which represented 56%, 52% and 59% ΣHBCDD in ESD, FD and OD samples respectively. Derived from the concentrations reported in this study, the median and 95th percentile estimated daily intakes (EDI) for Iraqi adults and toddlers through house dust ingestion did not exceed the reference dose (RfD) value for HBCDD.
Collapse
Affiliation(s)
- Layla Salih Al-Omran
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment: A critical review with particular focus on outdoor air and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150747. [PMID: 34619188 DOI: 10.1016/j.scitotenv.2021.150747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Extensive use of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) has generated great concern about their adverse effects on environmental and ecological safety and human health. As well as emissions during use of products containing such chemicals, there are mounting concerns over emissions when such products reach the waste stream. Here, we review the available data on contamination with HFRs and OPEs arising from formal waste treatment facilities (including but not limited to e-waste recycling, landfill, and incinerators). Evidence of the transfer of HFRs and OPEs from products to the environment shows that it occurs via mechanisms such as: volatilisation, abrasion, and leaching. Higher contaminant vapour pressure, increased temperature, and elevated concentrations of HFRs and OPEs in products contribute greatly to their emissions to air, with highest emission rates usually observed in the early stages of test chamber experiments. Abrasion of particles and fibres from products is ubiquitous and likely to contribute to elevated FR concentrations in soil. Leaching to aqueous media of brominated FRs (BFRs) is likely to be a second-order process, with elevated dissolved humic matter and temperature of leaching fluids likely to facilitate such emissions. However, leaching characteristics of OPEs are less well-understood and require further investigation. Data on the occurrence of HFRs and OPEs in outdoor air and soil in the vicinity of formal e-waste treatment facilities suggests such facilities exert a considerable impact. Waste dumpsites and landfills constitute a potential source of HFRs and OPEs to soil, and improper management of waste disposal might also contribute to HFR contamination in ambient air. Current evidence suggests minimal impact of waste incineration plants on BFR contamination in outdoor air and soil, but further investigation is required to confirm this.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Aminot Y, Lanctôt C, Bednarz V, Robson WJ, Taylor A, Ferrier-Pagès C, Metian M, Tolosa I. Leaching of flame-retardants from polystyrene debris: Bioaccumulation and potential effects on coral. MARINE POLLUTION BULLETIN 2020; 151:110862. [PMID: 32056644 DOI: 10.1016/j.marpolbul.2019.110862] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 05/13/2023]
Abstract
Marine plastic debris can act as a reservoir of chemical additives that can pose a potential threat to sensitive ecosystems such as coral reefs. A survey of foam macrodebris collected on beaches indeed revealed high concentrations of hexabromocyclododecanes (ΣHBCDD) in polystyrene (PS) samples (up to 1940 μg g-1). Results also showed that PS fragments can still leach over 150 ng g-1 d-1 of ΣHBCDD (primarily as the α-isomer) for relatively long durations, and that these additives are readily bioaccumulated and well-retained by corals. Despite significant HBCDD bioaccumulation in coral tissue, short-term exposure to HBCDD or PS leachate had no considerable effect on coral photosynthetic activity, symbiont concentration and chlorophyll content. Exposure to the PS leachate did however cause consistent polyp retraction in nubbins over the 5-day exposure. This response was not observed in animals exposed to HBCDD alone, suggesting that another constituent of the leachate stressed corals.
Collapse
Affiliation(s)
- Yann Aminot
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, 98000, Monaco; IFREMER, Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France.
| | - Chantal Lanctôt
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, 98000, Monaco; Australian Rivers Institute, Griffith University, Southport, QLD 4215, Australia
| | - Vanessa Bednarz
- CSM - Centre Scientifique de Monaco, Equipe Ecophysiologie corallienne, 8 Quai Antoine 1er, 98000, Monaco
| | - William J Robson
- Biogeochemistry Research Centre, University of Plymouth, United Kingdom
| | - Angus Taylor
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, 98000, Monaco
| | - Christine Ferrier-Pagès
- CSM - Centre Scientifique de Monaco, Equipe Ecophysiologie corallienne, 8 Quai Antoine 1er, 98000, Monaco
| | - Marc Metian
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, 98000, Monaco
| | - Imma Tolosa
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, 98000, Monaco
| |
Collapse
|
6
|
Harrad S, Drage DS, Sharkey M, Berresheim H. Brominated flame retardants and perfluoroalkyl substances in landfill leachate from Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133810. [PMID: 31416038 DOI: 10.1016/j.scitotenv.2019.133810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Between June and November 2017, leachate samples were collected from 40 landfills across the Republic of Ireland. Concentrations of perfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs), and hexabromocyclododecane (HBCDD) determined in these samples were within the range previously reported in other countries. Average concentrations of PFASs exceeded those of PBDEs and HBCDD; likely due to the higher water solubility of PFASs. Log-transformed concentrations of BDEs-47, 100, 153, and 183, as well as perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorobutane sulfonate (PFBS) were significantly (p < 0.05) higher in leachate from newer, lined landfills than in samples from unlined landfills. These higher concentrations in lined landfills are likely related to the fact that lined landfills are found to retain organic matter leading to a higher organic content of leachate from such landfills. This is evidenced by the significant (p < 0.05) correlation between log-transformed concentrations in leachate of most of the same contaminants and those of chemical oxygen demand (COD). Concentrations of the less water-soluble, higher molecular weight BDE-209 were not correlated with leachate COD, nor landfill age or the presence of a landfill liner. This suggests that the presence of BDE-209 in landfill leachate is driven more by physical abrasion of particles and fibres from waste articles, than dissolution into the aqueous phase. The higher concentrations of some PFASs and PBDEs in leachate from lined landfills present a challenge with respect to leachate disposal, when leachate is sent to wastewater treatment plants that do not necessarily have mechanisms in place to remove or destroy these chemicals prior to discharge into the environment. Moreover, the presence of these persistent organic chemicals in leachate from unlined landfills raises concerns about releases to the environment including groundwater over the lifetime of such landfills and beyond.
Collapse
Affiliation(s)
- Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Sharkey
- School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Harald Berresheim
- School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
7
|
Ruan Y, Zhang K, Wu C, Wu R, Lam PKS. A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:171-178. [PMID: 31004893 DOI: 10.1016/j.scitotenv.2019.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 05/23/2023]
Abstract
Hexabromocyclododecane (HBCD), a commonly used flame retardant, causes public concern due to its potential negative effects on organisms. Microplastics are suspected to contain certain amounts of HBCD. Wastewater treatment plants (WWTPs) are believed to be one of the largest sources of microplastics and a sink for micropollutants, providing opportunities for interactions between them, especially for hydrophobic micropollutants such as HBCD. There is a lack of studies focusing on the prevalence of microplastics and HBCD they carry. The present study investigated two typical WWTPs in Hong Kong, Stonecutters Island WWTP (SCI) and Shek Wu Hui WWTP (SWH), which employ different treatment technologies. The abundance of microplastics decreased with the treatment flow, and the microplastic concentrations in effluent were at intermediate levels (0.40 and 0.27particles/L) compared with the levels reported in previous studies. The concentrations of HBCD transported by microplastics reached 4184.4 ng/g in the effluent, whereas that in sewage water (dissolved phase) was 0.8 pg/L. For microplastics, 7.32 × 107 and 2.24 × 107 particles per day were estimated to be released from SCI and SWH, respectively into the environment; the release of HBCD carried by microplastics potentially reached 15.5 g per day, whereas the dissolved HBCD in the effluent may reach 0.067 g per day. A preliminary risk assessment of HBCD transported by microplastics showed that HBCD posed negligible risk; nevertheless, attention should be paid to the continual discharge of microplastics from WWTPs.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Stubbings WA, Schreder ED, Thomas MB, Romanak K, Venier M, Salamova A. Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:1056-1068. [PMID: 29703676 DOI: 10.1016/j.envpol.2018.03.083] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 05/06/2023]
Abstract
We assessed exposure to 39 brominated and 16 organophosphate ester flame retardants (FRs) from both dust and indoor air at seven childcare centres in Seattle, USA, and investigated the importance of nap mats as a source of these chemicals. Many childcare centres serving young children use polyurethane foam mats for the children's naptime. Until recently, the vast majority of these mats sold in the United States contained flame-retarded polyurethane foam to meet California Technical Bulletin 117 (TB117) requirements. With the 2013 update of TB117, allowing manufacturers to meet flammability standards without adding FRs to filling materials, FR-free nap mats have become widely available. We conducted an intervention study by actively switching out FR-treated nap mats with FR-free nap mats and measuring FR levels in indoor air and dust before and after the switch-out. The predominant FRs found in dust and indoor air were 2-ethylhexyl tetrabromobenzoate (EHTBB) and tris(1-chloro-2-propyl) phosphate (TCIPP), respectively. Nap mat samples analysed from four of the six centres contained a Firemaster® mixture, while one mat was predominantly treated with tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and the other contained no detectable target FRs. After replacement, there was a significant decrease (p = 0.03-0.09) in median dust concentrations for bis(2-ethylhexyl) tetrabromophthalate (BEHTBP), EHTBB, tris(4-butylphenyl) phosphate (TBPP), and TDCIPP with reductions of 90%, 79%, 65%, and 42%, respectively. These findings suggest that the nap mats were an important source of these FRs to dust in the investigated childcare environments and that a campaign of swapping out flame-retarded mats for FR-free ones would reduce exposure to these chemicals. While calculated exposure estimates to the investigated FRs via inhalation, dust ingestion, and dermal absorption were below established reference dose values, they are likely underestimated when considering the toddlers' direct contact to the mats and personal cloud effects.
Collapse
Affiliation(s)
- W A Stubbings
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - E D Schreder
- Toxic-free Future, 4649 Sunnyside Ave N., Suite 540, Seattle, WA, 98103, United States
| | - M B Thomas
- Toxic-free Future, 4649 Sunnyside Ave N., Suite 540, Seattle, WA, 98103, United States
| | - K Romanak
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - M Venier
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - A Salamova
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States.
| |
Collapse
|
9
|
Abdallah MAE, Sharkey M, Berresheim H, Harrad S. Hexabromocyclododecane in polystyrene packaging: A downside of recycling? CHEMOSPHERE 2018; 199:612-616. [PMID: 29459351 DOI: 10.1016/j.chemosphere.2018.02.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
While there are no regulatory fire safety obligations for polystyrene (PS) when used as packaging material, concerns exist that such packaging material may contain the flame retardant hexabromocyclododecane (HBCDD) as a result of uncontrolled recycling activities. To evaluate these concerns, we collected 50 samples of PS packaging materials from the UK and 20 from Ireland. HBCDD was detected in 63 (90%) of samples, with concentrations in 4 samples from Ireland exceeding the EU's low POP concentration limit (LPCL) of 0.1% above which articles may not be recycled. Moreover, 2 further samples contained HBCDD >0.01%. While our samples were obtained in the 12 month period prior to the March 2016 introduction of the EU's 0.01% concentration limit above which articles may not be placed on the market, our data suggest that continued monitoring is required to assess compliance with this limit value. Ratios of α vs. γ-HBCDD in our EPS packaging samples (average = 0.63) exceeded significantly (p = 0.025) those in EPS building insulation material samples (average = 0.24) reported previously for Ireland. This shift towards α-HBCDD in packaging EPS is consistent with the additional thermal processing experienced by recycled PS and suggests the source of HBCDD in PS packaging is recycled PS insulation foam. This is of concern owing to the higher bioavailability and lower metabolic clearance of α-HBCDD compared to the β- and γ-isomers.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth & Environmental Sciences, University of Birmingham, UK; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Martin Sharkey
- School of Physics, National University of Ireland Galway, Ireland
| | | | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, UK.
| |
Collapse
|
10
|
Stubbings WA, Harrad S. Leaching of TCIPP from furniture foam is rapid and substantial. CHEMOSPHERE 2018; 193:720-725. [PMID: 29175399 DOI: 10.1016/j.chemosphere.2017.11.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
A series of laboratory experiments were conducted, in which waste furniture polyurethane foam samples containing tris (1-chloro-2-propyl) phosphate (TCIPP) were contacted with a range of leaching fluids, formulated to simulate the composition of landfill leachate. Leaching was examined under a number of different scenarios, such as: dissolved humic matter concentration, pH, and temperature, as well as the effect of agitation, and waste:leaching fluid contact duration. In addition to single batch (no replenishment of leaching fluid), serial batch (draining of leachate and replenishment with fresh leaching fluid at various time intervals) experiments were conducted. Leaching of TCIPP from PUF appears to be a first order process. Concentrations of TCIPP in leachate generated by the experiments in this study ranged from 13 mg L-1 to 130 mg L-1. In serial batch leaching experiments, >95% of TCIPP was depleted from PUF after 168 h total contact with leaching fluid. Our experiments indicate leaching is potentially a very significant pathway of TCIPP emissions to the environment.
Collapse
Affiliation(s)
- William A Stubbings
- School of Geography, Earth, & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Stuart Harrad
- School of Geography, Earth, & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
Abdallah MAE, Drage DS, Sharkey M, Berresheim H, Harrad S. A rapid method for the determination of brominated flame retardant concentrations in plastics and textiles entering the waste stream. J Sep Sci 2017; 40:3873-3881. [DOI: 10.1002/jssc.201700497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences; University of Birmingham; Edgbaston West Midlands United Kingdom
- Department of Analytical Chemistry, Faculty of Pharmacy; Assiut University; Assiut Egypt
| | - Daniel S. Drage
- School of Geography, Earth and Environmental Sciences; University of Birmingham; Edgbaston West Midlands United Kingdom
| | - Martin Sharkey
- School of Physics; National University of Ireland Galway, University Road; Galway Ireland
| | - Harald Berresheim
- School of Physics; National University of Ireland Galway, University Road; Galway Ireland
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences; University of Birmingham; Edgbaston West Midlands United Kingdom
| |
Collapse
|
12
|
Stubbings WA, Harrad S. Factors influencing leaching of PBDEs from waste cathode ray tube plastic housings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1004-1012. [PMID: 27436776 DOI: 10.1016/j.scitotenv.2016.06.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Samples of waste cathode ray tube (CRT) plastic housings were exposed to Milli-Q® water containing dissolved humic matter at concentrations of 0, 100 and 1000mgL(-1) as leaching fluid under laboratory conditions, and polybrominated diphenyl ethers (PBDEs) determined in the resulting leachate. Despite the relatively hydrophobic physicochemical properties of PBDEs, concentrations of ƩPBDEs in the leachate from the leaching experiments in this study ranged from 14,000 to 200,000ngL(-1). PBDE leaching appears to be a second order process, whereby a period of initially intense dissolution of more labile PBDEs is followed by a slower stage corresponding to external diffusion of the soluble residue in the material. The bulk of transfer of PBDEs to the leaching fluid occurs within the first 6h of contact, during which time we suggest that the most labile PBDEs are "washed" off the surface of the CRT plastics. The predominant congeners in the chips were BDE-209 (2600mgkg(-1)) and BDE 183 (220mgkg(-1)). The impacts on PBDE leaching of leachate pH and temperature were also examined. Increasing the temperature of leaching fluids from 20 to 80°C, enhances the leachability of BDE-209 and BDE-99 from plastics. In all cases, the alkaline pH8.5 examined, resulted in the greatest PBDE concentrations in leachate. Agitation of the waste/leachate mixture enhances PBDE leaching from CRT plastics. Potential evidence for debromination of heavy congeners to the lower brominated and more bioavailable BDEs was observed. Specifically, BDEs-47, -85 and -100 were detected in the leachates, but were absent from the CRT plastics themselves.
Collapse
Affiliation(s)
- William A Stubbings
- School of Geography, Earth, & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Stuart Harrad
- School of Geography, Earth, & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|