1
|
Peixoto-Rodrigues MC, Monteiro-Neto JR, Teglas T, Toborek M, Soares Quinete N, Hauser-Davis RA, Adesse D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136832. [PMID: 39689563 DOI: 10.1016/j.jhazmat.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens. A growing body of evidence obtained from clinical and experimental studies has increasingly indicated that these POPs may influence neurodevelopment through several cellular and molecular mechanisms. However, studies assessing their mechanisms of action are still incipient, requiring further research. Polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) are two of the main classes of POPs associated with disturbances in different human systems, mainly the nervous and endocrine systems. This narrative review discusses the main PCB and PFAS effects on the CNS, focusing on neuroinflammation and oxidative stress and their consequences for neural development and BBB integrity. Moreover, we propose which mechanisms could be involved in POP-induced neurodevelopmental defects. In this sense, we highlight potential cellular and molecular pathways by which these POPs can affect neurodevelopment and could be further explored to propose preventive therapies and formulate public health policies.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | - Timea Teglas
- Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Hungarian University of Sports Science, Budapest, Hungary
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, Blood-Brain Barrier Research Center, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Natalia Soares Quinete
- Departament of Chemistry and Biochemistry & Institute of Environment, Florida International University, Miami, Florida, United States
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratory of Ocular Immunology and Transplantation, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
2
|
Ning J, Ding C, Xu H, Liu Z, Guan Q, Xia Y, Xu Q. Effect of per- and polyfluoroalkyl substances on neurodevelopment: Evidence-based risk assessment in the TRAEC strategy context. ENVIRONMENT INTERNATIONAL 2024; 191:109003. [PMID: 39276591 DOI: 10.1016/j.envint.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Although emerging evidence on the association between per- and polyfluoroalkyl substances (PFASs) and neurodevelopment have been investigated, there is no consensus on the effect of maternal PFASs on neurodevelopment in offspring. Here, we assessed the risk of maternal PFASs exposure on the neurodevelopment of offspring using a novel Targeted Risk Assessment of Environmental Chemicals (TRAEC) strategy based on multiple evidence. The evidence from five online databases were analyzed the effect of PFASs on neurodevelopment. The potential neurodevelopment risk of PFASs was evaluated by the TRAEC strategy, which was conducted on a comprehensive scoring system with reliability, correlation, outcome fitness and integrity. The studies from five databases and additional researchers' experiments were included the present study to proceed following risk assessment. Based on the framework with TRAEC strategy, the comprehensive evaluation of health risks was classified as low (absolute value 0-4), medium (absolute value 4-8), high (absolute value 8-10). In the present study, the effect of PFASs exposure on neurodevelopment was a medium-risk level with 5.61 overall risk-score. The population-attributable risk (PAR) was 8.26 % for maternal PFASs exposure. The study identified a low-risk effect of prenatal PFASs exposure on ASD and behavioral disabilities. The chain length, type of PFASs and neurodevelopmental trajectories contributed to the risk of maternal PFASs on the neurodevelopment of offspring. Consistent with results of four criteria-based tools (ToxRTool, SciRAP, OHAT and IRIS), health risk assessment based on the TRAEC strategy demonstrated robustness and reliability in the present study. These results illustrated a medium-risk effect of maternal PFASs exposure on neurodevelopmental disorders of offspring. In addition, the TRAEC strategy provided a scientific and structured method for effect evaluation between prenatal PFASs and neurodevelopmental disorders, promoting the consistency and validation in risk assessment.
Collapse
Affiliation(s)
- Jie Ning
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoshun Ding
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoyi Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Zhang C, Jian H, Shang S, Lu L, Lou Y, Kang Y, Bai H, Fu Z, Lv Y, Kong X, Li X, Feng S, Zhou H. Crosstalk between m6A mRNAs and m6A circRNAs and the time-specific biogenesis of m6A circRNAs after OGD/R in primary neurons. Epigenetics 2023; 18:2181575. [PMID: 36861189 PMCID: PMC9988353 DOI: 10.1080/15592294.2023.2181575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Cerebral ischaemiareperfusion injury is an important pathological process in nervous system diseases during which neurons undergo oxygenglucose deprivation and reoxygenation (OGD/R) injury. No study has used epitranscriptomics to explore the characteristics and mechanism of injury. N6methyladenosine (m6A) is the most abundant epitranscriptomic RNA modification. However, little is known about m6A modifications in neurons, especially during OGD/R. m6A RNA immunoprecipitation sequencing (MeRIPseq) and RNA-sequencing data for normal and OGD/R-treated neurons were analysed by bioinformatics. MeRIP quantitative real-time polymerase chain reaction was used to determine the m6A modification levels on specific RNAs. We report the m6A modification profiles of the mRNA and circRNA transcriptomes of normal and OGD/R-treated neurons. Expression analysis revealed that the m6A levels did not affect m6A mRNA or m6A circRNA expression. We found crosstalk between m6A mRNAs and m6A circRNAs and identified three patterns of m6A circRNA production in neurons; thus, distinct OGD/R treatments induced the same genes to generate different m6A circRNAs. Additionally, m6A circRNA biogenesis during distinct OGD/R processes was found to be time specific. These results expand our understanding of m6A modifications in normal and OGD/R-treated neurons, providing a reference to explore epigenetic mechanisms and potential treatments for OGD/R-related diseases.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Hong Bai
- Key Laboratory of Immuno-Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Zheng Fu
- Key Laboratory of Immuno-Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Xiaohong Kong
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueying Li
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Sim KH, Oh HS, Lee C, Eun H, Lee YJ. Evaluation of the Effect of Perfluorohexane Sulfonate on the Proliferation of Human Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6868. [PMID: 37835138 PMCID: PMC10572997 DOI: 10.3390/ijerph20196868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Perfluorohexane sulfonate (PFHxS) is a widely detected replacement for legacy long-chain perfluoroalkyl substances (PFAS) in the environment and human blood samples. Its potential toxicity led to its recent classification as a globally regulated persistent organic pollutant. Although animal studies have shown a positive association between PFHxS levels and hepatic steatosis and hepatocellular hypertrophy, the link with liver toxicity, including end-stage liver cancer, remains inconclusive. In this study, we examined the effects of PFHxS on the proliferation of Hep3B (human hepatocellular carcinoma) and SK-Hep1 (human liver sinusoidal endothelial cells). Cells were exposed to different PFHxS concentrations for 24-48 h to assess viability and 12-14 days to measure colony formation. The viability of both cell lines increased at PFHxS concentrations <200 μM, decreased at >400 μM, and was highest at 50 μM. Colony formation increased at <300 μM and decreased at 500 μM PFHxS. Consistent with the effect on cell proliferation, PFHxS increased the expression of proliferating cell nuclear antigen (PCNA) and cell-cycle molecules (CDK2, CDK4, cyclin E, and cyclin D1). In summary, PFHxS exhibited a biphasic effect on liver cell proliferation, promoting survival and proliferation at lower concentrations and being cytotoxic at higher concentrations. This suggests that PFHxS, especially at lower concentrations, might be associated with HCC development and progression.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Hyeon Seo Oh
- Department of Neurology, Daegu Catholic University Medical Center, Daegu 42472, Republic of Korea;
| | - Chuhee Lee
- Department of Biochemistry & Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea;
| | - Heesoo Eun
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
5
|
Tian Y, Luan M, Zhang J, Yang H, Wang Y, Chen H. Associations of single and multiple perfluoroalkyl substances exposure with folate among adolescents in NHANES 2007-2010. CHEMOSPHERE 2022; 307:135995. [PMID: 35981617 DOI: 10.1016/j.chemosphere.2022.135995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The accumulation of perfluoroalkyl substances (PFAS) in human body has raised concerns about the potential health impacts on children and adolescents. However, no study has evaluated the associations of PFAS exposure with folate concentrations among adolescents. METHODS In the present study, we mainly used three statistical approaches, namely multiple linear regression, Bayesian Kernel Machine Regression (BKMR), and quantile-based g-computation (Q-gcomp) models, to evaluate associations of individual PFAS and their mixtures with serum and red blood cell (RBC) folate concentrations in a sample of 721 adolescents from the NHANES 2007-2010. RESULTS In multiple linear regression models, for per unit increase in ln-transformed perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) concentrations, RBC folate concentrations decreased by 72.4 (95% confidence interval (CI): -112.7, -32.2), 58.3 (95% CI: -115.0, -1.6), 60.7 (95% CI: -107.5, -13.8), and 76.5 (95% CI: -119.0, -33.9) nmol/L, respectively. A similar significant inverse association was also observed between ln-transformed PFDA and serum folate. BKMR models further confirmed inverse associations of serum PFOS and PFDA with RBC folate, and serum PFDA with serum folate. However, the inverse associations of PFOA and PFNA with RBC folate shown in multiple linear regression model were not observed or less evident in BKMR analyses. We observed interactions of PFOA with PFOS, PFNA, and PFDA on RBC folate in BKMR models, with the negative slopes for PFOS, PFNA, and PFDA increased when PFOA concentration increased from the 10th percentile to the 90th percentile. Both BKMR and Q-gcomp models suggested that the mixtures of five PFAS showed inverse overall associations with RBC folate concentration. CONCLUSIONS The present study revealed that adolescent exposure to PFAS might affect serum and RBC folate concentrations.
Collapse
Affiliation(s)
- Youping Tian
- National Management Office of Neonatal Screening Project for Congenital Heart Disease (CHD), Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Min Luan
- National Health Commission (NHC) Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200237, China
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 511430, China
| | - Haifeng Yang
- Department of Nutrition, Fuyang Hospital of Anhui Medical University, Fuyang, 23600, China
| | - Yuting Wang
- Department of Pediatrics, Fuyang Women and Children's Hospital, Fuyang, 23600, China
| | - Huimin Chen
- School of Public Health and Institute of Chronic Disease Prevention and Control, Wannan Medical College, Wuhu, 241002, China
| |
Collapse
|
6
|
Sim KH, Lee YJ. Perfluorohexane sulfonate induces memory impairment and downregulation of neuroproteins via NMDA receptor-mediated PKC-ERK/AMPK signaling pathway. CHEMOSPHERE 2022; 288:132503. [PMID: 34626661 DOI: 10.1016/j.chemosphere.2021.132503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Perfluorohexane sulfonate (PFHxS) is a widely used industrial chemical detected in human umbilical cord blood and breast milk, and has been suggested to exhibit developmental neurotoxicity. Previous studies on mice reported that neonatal exposure to PFHxS altered neuroprotein levels in the developing brain, and caused behavioral toxicity and cognitive dysfunction in the mature brain. However, the underlying mechanisms responsible for PFHxS-induced neuroprotein dysregulation are poorly understood. In this study, we examined the effect of neonatal exposure to PFHxS on memory function using an in vivo mice model. Furthermore, we examined the levels of growth associated protein-43 (GAP-43) and calcium/calmodulin dependent protein kinase II (CaMKII) (biomarkers of neuronal development) and the involved signaling pathways using differentiated neuronal PC12 cells. PFHxS decreased cell viability, GAP-43 and CaMKII levels, and neurite formation. These effects were mediated by the NMDA receptor, PKC-α, PKC-δ, AMPK and ERK pathways. MK801, an NMDA receptor antagonist, reduced the activation of PKC-α, PKC-δ, ERK and AMPK. The activation of ERK was suppressed by pharmacological and knockdown inhibition of PKC-α and -δ. Interestingly, the AMPK pathway was selectively inhibited by inhibiting PKC-δ but not PKC-ɑ. Consistent with PFHxS-induced neuronal death, and GAP-43 and CaMKII downregulation, neonatal exposure to PFHxS caused significant memory impairment in adult mice. Collectively, these results demonstrate that PFHxS induces persistent developmental neurotoxicity, as well as GAP-43 and CaMKII downregulation via the NMDA receptor-mediated PKCs (α and δ)-ERK/AMPK pathways.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Itoh S, Yamazaki K, Suyama S, Ikeda-Araki A, Miyashita C, Ait Bamai Y, Kobayashi S, Masuda H, Yamaguchi T, Goudarzi H, Okada E, Kashino I, Saito T, Kishi R. The association between prenatal perfluoroalkyl substance exposure and symptoms of attention-deficit/hyperactivity disorder in 8-year-old children and the mediating role of thyroid hormones in the Hokkaido study. ENVIRONMENT INTERNATIONAL 2022; 159:107026. [PMID: 34890903 DOI: 10.1016/j.envint.2021.107026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Disruption of thyroid hormone (TH) levels during pregnancy contributes to attention deficit hyperactivity disorder (ADHD). Exposure to perfluoroalkyl substances (PFAS) during gestation may affect levels of maternal and neonatal TH; however, little is known about the effect of PFAS on ADHD mediated by TH. OBJECTIVES We investigated the impact of maternal PFAS exposure on children's ADHD symptoms with the mediating effect of TH. METHODS In a prospective birth cohort (the Hokkaido study), we included 770 mother-child pairs recruited between 2002 and 2005 for whom both prenatal maternal and cord blood samples were available. Eleven PFAS were measured in maternal serum obtained at 28-32 weeks of gestation using ultra-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. TH and thyroid antibody, including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TgAb) were measured in maternal blood during early pregnancy (median 11 gestational weeks) and in cord blood at birth. ADHD symptoms in the children at 8 years of age were rated by their parents using the ADHD-Rating Scale (ADHD-RS). The cut-off value was set at the 80th percentile for each sex. RESULTS Significant inverse associations were found between some PFAS in maternal serum and ADHD symptoms among first-born children. Assuming causality, we found only one significant association: maternal FT4 mediated 17.6% of the estimated effect of perfluoroundecanoic acid exposure on hyperactivity-impulsivity among first-born children. DISCUSSION Higher PFAS levels in maternal serum during pregnancy were associated with lower risks of ADHD symptoms at 8 years of age. The association was stronger among first-born children in relation to hyperactivity-impulsivity than with regard to inattention. There was little mediating role of TH during pregnancy in the association between maternal exposure to PFAS and reduced ADHD symptoms at 8 years of age.
Collapse
Affiliation(s)
- Sachiko Itoh
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Suyama
- Funded Research Division of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyuki Masuda
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Houman Goudarzi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan; Center for Medical Education and International Relations, Hokkaido University, Sapporo, Japan
| | - Emiko Okada
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ikuko Kashino
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Saito
- Funded Research Division of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Vuong AM, Yolton K, Xie C, Dietrich KN, Braun JM, Webster GM, Calafat AM, Lanphear BP, Chen A. Childhood exposure to per- and polyfluoroalkyl substances (PFAS) and neurobehavioral domains in children at age 8 years. Neurotoxicol Teratol 2021; 88:107022. [PMID: 34438039 DOI: 10.1016/j.ntt.2021.107022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Toxicological studies have raised concerns regarding the neurotoxic effects of per- and polyfluoroalkyl substances (PFAS). However, observational evidence from human studies investigating the association between childhood PFAS and neurobehavior is limited and remains unclear. OBJECTIVES To examine whether childhood PFAS concentrations are associated with neurobehavior in children at age 8 years and whether child sex modifies this relationship. METHODS We used data from 208 mother-child dyads in the Health Outcomes and Measures of the Environment (HOME) Study, a prospective pregnancy and birth cohort (Cincinnati, OH, USA). We quantified PFAS in child serum at 3 and 8 years. We assessed neurobehavioral domains using the Behavior Assessment System for Children-2 at 8 years. We used multiple informant models to estimate score changes per ln-increase in repeated PFAS concentrations. RESULTS Childhood PFAS were not associated with Externalizing or Internalizing Problems at 8 years. However, we noted effect measure modification by sex, with higher scores in Externalizing Problems among males per ln-unit increase in perfluorononanoate (PFNA) at 3 years (β = 4.3 points, 95% CI: 1.0, 7.7) while females had lower scores (β = -2.8 points, 95% CI: -4.7, -1.0). More Internalizing Problems were observed among males per ln-unit increase in concurrent PFNA concentrations (β = 3.7 points, 95% CI: 0.7, 6.8), but not in females (β = -1.7 points, 95% CI: -4.6, 1.2). Childhood PFNA concentrations were associated with lower scores for attention problems and activity of daily living. CONCLUSION While findings do not consistently support an association between childhood PFAS serum concentrations and neurobehavior, child sex may play a role in this relationship.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, NV, USA.
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute, Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute, Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Cao J, Zhou H, Yang F, Fan D, Li H, Fan T, Sun P. Zinc Finger E-Box Binding Homeobox 1 Regulates the Biological Behavior of Glioma Cells via iNOS/NF- κB Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gliomas pathogenesis is complex and effective molecular targets are still unclear. ZEB1 regulates epithelial mesenchymal transition (EMT) and participates in tumors. Our study intends to analyze ZEB1’s role in glioma cells. qRT-PCR detected ZEB1 mRNA expression in normal group
and tumor group. ZEB1 siRNA was transfected into glioma cells followed by measuring ZEB1, E-cadherin and Vimentin expression, cell proliferation, Capase-3 activity as well as NF-κB and iNOS changes by immunoblotting. Upregulation of ZEB1 was found in glioma tumor tissue and correlated
with glioma clinicopathological characteristics. Interfering with ZEB1 by siRNA significantly down-regulated ZEB1, inhibited cell proliferation, increased Capase-3 activity, down regulated NF-κB and iNOS proteins in glioma cells, elevated E-cadherin and decreased Vimentin level
(P <0.05). ZEB1 down regulation in glioma cells can change the expression of NF-κB/iNOS, regulate cell apoptosis and inhibit cell proliferation, thereby delaying EMT process.
Collapse
Affiliation(s)
- Jing Cao
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, Hebei Province, 071000, China
| | - Haiyan Zhou
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, Hebei Province, 071000, China
| | - Fan Yang
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, Hebei Province, 071000, China
| | - Duojiao Fan
- Department of Science and Education, Baoding Second Hospital, Baoding City, Hebei Province, 071000, China
| | - Hengzhou Li
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, Hebei Province, 071000, China
| | - Tao Fan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital of Capital Medical University, Beijing, 100093, China
| | - Peng Sun
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, Hebei Province, 071000, China
| |
Collapse
|
11
|
Cr(VI) induces ROS-mediated mitochondrial-dependent apoptosis in neuronal cells via the activation of Akt/ERK/AMPK signaling pathway. Toxicol In Vitro 2020; 65:104795. [PMID: 32061800 DOI: 10.1016/j.tiv.2020.104795] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Hexavalent chromium (Cr(VI)), a well-known toxic industrial and environmental pollutant, has been shown to cause serious toxic and health effects. However, limited information is available on Cr(VI)-induced neurotoxic potential, with the underlying toxicological mechanisms remain mostly unclear. The present study demonstrated that the mitochondria-dependent apoptosis pathway was involved in Cr(VI)-induced SH-SY5Y cell (the human neuroblastoma cell line) death, which was accompanied by the appearance of cell shrinkage, increased mitochondrial membrane potential (MMP) depolarization and cytochrome c release, and the activation of caspase cascades and poly (ADP-ribose) polymerase (PARP). Cr(VI) treatment also increased the generation of intracellular reactive oxygen species (ROS). Pretreatment of SH-SY5Y cells with antioxidant N-acetylcysteine (NAC) effectively attenuated ROS production and reversed these Cr(VI)-induced cytotoxicity and apoptotic responses. Furthermore, exposure to Cr(VI) significantly increased the phosphorylation levels of Akt, extracellular regulated kinase (ERK)1/2, and AMP-activated protein kinase (AMPK)α. NAC and the pharmacological inhibitor of Akt (LY294002), ERK1/2 (PD980590), and AMPKα (Compound C) markedly abrogated the Cr(VI)-induced activation of Akt, ERK1/2, and AMPKα signal, respectively, with the concomitant inhibition of mitochondrial dysfunction and caspase activation. Additionally, all these inhibitors suppressed Cr(VI)-induced phosphorylation of Akt, ERK1/2, and AMPKα and of each other. Collectively, these results suggest that Cr(VI) exerts its cytotoxicity on neuronal cells by inducing mitochondria-dependent apoptosis through the interdependent activation of Akt, ERK1/2, and AMPKα, which are mainly mediated by ROS generation.
Collapse
|
12
|
Vuong AM, Yolton K, Xie C, Dietrich KN, Braun JM, Webster GM, Calafat AM, Lanphear BP, Chen A. Prenatal and childhood exposure to poly- and perfluoroalkyl substances (PFAS) and cognitive development in children at age 8 years. ENVIRONMENTAL RESEARCH 2019; 172:242-248. [PMID: 30818233 PMCID: PMC6511326 DOI: 10.1016/j.envres.2019.02.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Toxicological studies indicate that poly- and perfluoroalkyl substances (PFAS) may be neurotoxic, but human studies have yet to provide compelling evidence for PFAS' impact on cognitive abilities. OBJECTIVE To test whether prenatal and childhood PFAS are associated with cognitive abilities at 8 years and whether sex modifies these associations. METHODS We included 221 mother-child pairs from the Health Outcomes and Measures of the Environment (HOME) Study, a birth cohort in Cincinnati, OH (USA). We quantified PFAS in maternal serum at 16 ± 3 weeks gestation and in child serum at 3 and 8 years. We used the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) at age 8 years, assessing Full Scale IQ (FSIQ), verbal comprehension, perceptual reasoning, working memory, and processing speed. We used multiple informant models to estimate covariate-adjusted differences in WISC-IV scores by repeated ln-transformed PFAS. RESULTS Prenatal and childhood perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were not associated with WISC-IV measures. We observed an increase of 4.1-points (95% CI 0.3, 8.0) and 5.7-points (95% CI 1.2, 10.2) in working memory with 1-ln unit increase in prenatal perfluorooctanoate (PFOA) and perfluorononanoate (PFNA), respectively. In addition, PFNA at 3 years was associated with better FSIQ and perceptual reasoning. Child sex modified the relationship between prenatal PFOA and FSIQ; the association was positive in females only. Sex also modified the association between concurrent PFOS and FSIQ, with males having higher scores. CONCLUSION We did not observe adverse associations between prenatal and childhood PFAS and cognitive function at age 8 years.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA.
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| |
Collapse
|
13
|
Lee YJ. Potential health effects of emerging environmental contaminants perfluoroalkyl compounds. Yeungnam Univ J Med 2018; 35:156-164. [PMID: 31620588 PMCID: PMC6784697 DOI: 10.12701/yujm.2018.35.2.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/27/2022] Open
Abstract
Environmental contaminants are one of the important causal factors for development of various human diseases. In particular, the perinatal period is highly vulnerable to environmental toxicants and resultant dysregulation of fetal development can cause detrimental health outcomes potentially affecting life-long health. Perfluoroalkyl compounds (PFCs), emerging environmental pollutants, are man-made organic molecules, which are widely used in diverse industries and consumer products. PFCs are non-degradable and bioaccumulate in the environment. Importantly, PFCs can be found in cord blood and breast milk as well as in the general population. Due to their physicochemical properties and potential toxicity, many studies have evaluated the health effects of PFCs. This review summarizes the epidemiological and experimental studies addressing the association of PFCs with neurotoxicity and immunotoxicity. While the relationships between PFC levels and changes in neural and immune health are not yet conclusive, accumulative studies provide evidence for positive associations between PFC levels and the incidence of attention deficit hyperactivity disorder and reduced immune response to vaccination both in children and adults. In conclusion, PFCs have the potential to affect human health linked with neurological disorders and immunosuppressive responses. However, our understanding of the molecular mechanism of the effects of PFCs on human health is still in its infancy. Therefore, along with efforts to develop methods to reduce exposure to PFCs, studies on the mode of action of these chemicals are required in the near future.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
14
|
AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity. Apoptosis 2018. [PMID: 28643197 DOI: 10.1007/s10495-017-1389-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.
Collapse
|
15
|
Vuong AM, Braun JM, Yolton K, Wang Z, Xie C, Webster GM, Ye X, Calafat AM, Dietrich KN, Lanphear BP, Chen A. Prenatal and childhood exposure to perfluoroalkyl substances (PFAS) and measures of attention, impulse control, and visual spatial abilities. ENVIRONMENT INTERNATIONAL 2018; 119:413-420. [PMID: 30015313 PMCID: PMC7442289 DOI: 10.1016/j.envint.2018.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Despite evidence from toxicological studies describing the potential neurotoxicity of perfluoroalkyl substances (PFAS), their role in neurodevelopment remains uncertain amid inconsistent findings from epidemiological studies. METHODS Using data from 218 mother-child dyads from the Health Outcomes and Measures of the Environment Study, we examined prenatal and childhood (3 and 8 years) serum concentrations of four PFAS and inattention, impulsivity, and visual spatial abilities. At 8 years, we used the Conners' Continuous Performance Test-II to assess attention and impulse control and the Virtual Morris Water Maze (VMWM) to measure visual spatial abilities. RESULTS In multiple informant models, there was no evidence to indicate that prenatal or childhood PFAS are associated with attention. However, there was an inverse association between prenatal ln-perfluorooctanoate (PFOA) and errors of commission (β = -2.0, 95% Confidence Interval [CI] -3.8, -0.3). Ln-perfluorononanoate (PFNA) at 3 years was associated with longer (poorer) VMWM completion times of 3.6 seconds (CI 1.6, 5.6). However, higher concurrent concentrations of ln-perfluorohexane sulfonate (PFHxS) (β = -2.4 s, 95% CI -4.4, -0.3) were associated with shorter (better) times. Higher prenatal PFHxS was positively associated with percentage of traveling distance in the correct quadrant (β = 4.2%, 95% CI 0.8, 7.7), indicating better performance. CONCLUSION Findings were mixed for prenatal and childhood PFAS concentrations and visual spatial abilities. There is not enough evidence to support that PFAS are associated with visual spatial abilities as assessed by the VMWM or CPT-II measures of inattention or impulsivity in children at age 8 years.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Zhiyang Wang
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA.
| |
Collapse
|
16
|
Vuong AM, Yolton K, Wang Z, Xie C, Webster GM, Ye X, Calafat AM, Braun JM, Dietrich KN, Lanphear BP, Chen A. Childhood perfluoroalkyl substance exposure and executive function in children at 8 years. ENVIRONMENT INTERNATIONAL 2018; 119:212-219. [PMID: 29980044 PMCID: PMC7442288 DOI: 10.1016/j.envint.2018.06.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Toxicological studies highlight the potential neurotoxicity of perfluoroalkyl substances (PFAS) during fetal development. However, few epidemiological studies have examined the impact of childhood PFAS on neurodevelopment. METHODS We employed data from 208 children in the Health Outcomes and Measures of the Environment Study, a birth cohort (Cincinnati, OH), to examine associations of six serum PFAS concentrations measured at 3 and 8 years with executive function assessed at 8 years using the validated parent-completed Behavior Rating Inventory of Executive Function survey. We used multiple informant models to identify susceptible windows of neurotoxicity to PFAS and executive function. We investigated trajectories of PFAS concentrations and whether sex modified these associations. RESULTS Each ln-increase in perfluorononanoate (PFNA) at 8 years was associated with a 3.4-point increase (95% CI 0.4, 6.3) in metacognition score, indicating poorer function. Children with PFNA above the median at 8 years had poorer global executive functioning compared to children with concentrations consistently below median levels (β = 6.5, 95% CI 0.2, 12.9). Higher concurrent PFNA was associated with poorer behavior regulation among males, while associations among females were null (pPFNA×sex = 0.018). Children with higher concurrent perfluorooctanoate (PFOA) had increased odds of being at risk of having clinical impairments in metacognition (OR = 3.18, 95% CI 1.17, 8.60). There were no associations between perfluorooctane sulfonate and perfluorohexane sulfonate and executive function. CONCLUSIONS PFNA and PFOA at 8 years, but not 3 years, may be related to poorer executive function at 8 years. Results need to be confirmed in cohort studies with larger sample sizes.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Zhiyang Wang
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA.
| |
Collapse
|