1
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Cunha M, Nardi A, Botelho MJ, Sales S, Pereira E, Soares AMVM, Regoli F, Freitas R. Can exposure to Gymnodinium catenatum toxic blooms influence the impacts induced by Neodymium in Mytilus galloprovincialis mussels? What doesn't kill can make them stronger? JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134220. [PMID: 38636232 DOI: 10.1016/j.jhazmat.2024.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
The presence in marine shellfish of toxins and pollutants like rare earth elements (REEs) poses a major threat to human well-being, coastal ecosystems, and marine life. Among the REEs, neodymium (Nd) stands out as a widely utilized element and is projected to be among the top five critical elements by 2025. Gymnodinum catenatum is a phytoplankton species commonly associated with the contamination of bivalves with paralytic shellfish toxins. This study evaluated the biological effects of Nd on the mussel species Mytilus galloprovincialis when exposed to G. catenatum cells for fourteen days, followed by a recovery period in uncontaminated seawater for another fourteen days. After co-exposure, mussels showed similar toxin accumulation in the Nd and G. catenatum treatment in comparison with the G. catenatum treatment alone. Increased metabolism and enzymatic defenses were observed in organisms exposed to G. catenatum cells, while Nd inhibited enzyme activity and caused cellular damage. Overall, this study revealed that the combined presence of G. catenatum cells and Nd, produced positive synergistic effects on M. galloprovincialis biochemical responses compared to G. catenatum alone, indicating that organisms' performance may be significantly modulated by the presence of multiple co-occurring stressors, such those related to chemical pollution and harmful algal blooms. ENVIRONMENTAL IMPLICATIONS: Neodymium (Nd) is widely used in green technologies like wind turbines, and this element's potential threats to aquatic environments are almost unknown, especially when co-occurring with other environmental factors such as blooms of toxic algae. This study revealed the cellular impacts induced by Nd in the bioindicator species Mytilus galloprovincialis but further demonstrated that the combination of both stressors can generate a positive defense response in mussels. The present findings also demonstrated that the impacts caused by Nd lasted even after a recovery period while a previous exposure to the toxins generated a faster biochemical improvement by the mussels.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Sabrina Sales
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Raposo M, Soreto S, Moreirinha C, Gomes MTSR, Costa ST, Botelho MJ, Melo BMG, Costa LC, Rudnitskaya A. Carbamoylase-based impedimetric electronic tongue for rapid detection of paralytic shellfish toxins. Anal Bioanal Chem 2024; 416:1983-1995. [PMID: 38358533 PMCID: PMC11461580 DOI: 10.1007/s00216-024-05199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Phytotoxins produced by marine microalgae, such as paralytic shellfish toxins (PSTs), can accumulate in bivalve molluscs, representing a human health concern due to the life-threatening symptoms they cause. To avoid the commercialization of contaminated bivalves, monitoring programs were established in the EU. The purpose of this work is the implementation of a PST transforming enzyme-carbamoylase-in an impedimetric test for rapid simultaneous detection of several carbamate and N-sulfocarbamoyl PSTs. Carbamoylase hydrolyses carbamate and sulfocarbamoyl toxins, which may account for up to 90% of bivalve toxicity related to PSTs. Conformational changes of carbamoylase accompanying enzymatic reactions were probed by Fourier transform mid-infrared spectroscopy (FT-MIR) and electrochemical impedance spectroscopy (EIS). Furthermore, a combination of EIS with a metal electrode and a carbamoylase-based assay was employed to harness changes in the enzyme conformation and adsorption on the electrode surface during the enzymatic reaction as an analytical signal. After optimization of the working conditions, the developed impedimetric e-tongue could quantify N-sulfocarbamoyl toxins with a detection limit of 0.1 µM. The developed e-tongue allows the detection of these toxins at concentration levels observed in bivalves with PST toxicity close to the regulatory limit. The quantification of a sum of N-sulfocarbamoyl PSTs in naturally contaminated mussel extracts using the developed impedimetric e-tongue has been demonstrated.
Collapse
Affiliation(s)
- Mariana Raposo
- CESAM and Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Silvia Soreto
- I3N and Department of Physics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Moreirinha
- CESAM and Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Sara T Costa
- IPMA, Portuguese Institute for the Sea and Atmosphere, 1449-006, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, 1449-006, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| | - Bruno M G Melo
- I3N and Department of Physics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Luís Cadillon Costa
- I3N and Department of Physics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Alisa Rudnitskaya
- CESAM and Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Raposo MIC, Gomes MTSR, Botelho MJ, Rudnitskaya A. Paralytic Shellfish Toxins (PST)-Transforming Enzymes: A Review. Toxins (Basel) 2020; 12:E344. [PMID: 32456077 PMCID: PMC7290730 DOI: 10.3390/toxins12050344] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
Paralytic shellfish toxins (PSTs) are a group of toxins that cause paralytic shellfish poisoning through blockage of voltage-gated sodium channels. PSTs are produced by prokaryotic freshwater cyanobacteria and eukaryotic marine dinoflagellates. Proliferation of toxic algae species can lead to harmful algal blooms, during which seafood accumulate high levels of PSTs, posing a health threat to consumers. The existence of PST-transforming enzymes was first remarked due to the divergence of PST profiles and concentrations between contaminated bivalves and toxigenic organisms. Later, several enzymes involved in PST transformation, synthesis and elimination have been identified. The knowledge of PST-transforming enzymes is necessary for understanding the processes of toxin accumulation and depuration in mollusk bivalves. Furthermore, PST-transforming enzymes facilitate the obtainment of pure analogues of toxins as in natural sources they are present in a mixture. Pure compounds are of interest for the development of drug candidates and as analytical reference materials. PST-transforming enzymes can also be employed for the development of analytical tools for toxin detection. This review summarizes the PST-transforming enzymes identified so far in living organisms from bacteria to humans, with special emphasis on bivalves, cyanobacteria and dinoflagellates, and discusses enzymes' biological functions and potential practical applications.
Collapse
Affiliation(s)
- Mariana I. C. Raposo
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| | - Maria Teresa S. R. Gomes
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| | - Maria João Botelho
- Portuguese Institute for the Sea and Atmosphere, 1449-006 Lisbon, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| | - Alisa Rudnitskaya
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| |
Collapse
|
5
|
A Carbamoylase-Based Bioassay for the Detection of Paralytic Shellfish Poisoning Toxins. SENSORS 2020; 20:s20020507. [PMID: 31963210 PMCID: PMC7014550 DOI: 10.3390/s20020507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Out of control proliferation of toxic phytoplankton, called harmful algal blooms (HABs), have a significant economic impact on bivalve aquaculture and harvesting in coastal waters. Some phytotoxins, such as paralytic shellfish toxins (PSTs), are of concern due to the life-threatening symptoms they can cause. Development of rapid and low-cost screening tools would be a welcome addition to the laboratory methodologies employed in routine monitoring programs. However, most of the assays and biosensors for the screening of PSTs, are restricted to a single target, saxitoxin (STX), which is the most potent PST. The present study aimed at developing an assay for the detection of N-sulfocarbamoyl PST—GTX5, which is one of the most abundant toxins in bivalves during G. catenatum blooms as found on the Portuguese coast. Enzymatic assay employing PSTs’ transforming enzyme—carbamoylase—was proposed. Carbamoylase was extracted and purified from the surf clam S. solida. Carbamoylase displayed similar specificity to both carbamate (STX) and N-sulfocarbamate toxins (GTX5 and C1+2) converting them into decarbamoyl saxitoxin (dcSTX) and decarbamoyl gonyautoxins 2+3 (dcGTX2+3), respectively. The enzymatic assay involved hydrolysis of GTX5 by carbamoylase and quantification of the product of enzymatic reaction, dcSTX, using a potentiometric chemical sensor. A potentiometric sensor with plasticized PVC membrane that displayed sensitivity to dcSTX and selectivity in the presence of GTX5 was employed. Enzymatic assay allowed determination of GTX5 in the concentration range from 0.43 to 3.30 µmolL−1, which encompasses levels of GTX5 in contaminated bivalve extracts with toxicities above PSTs regulatory limits. The feasibility of the carbamoylase-based potentiometric assay for detection of GTX5 was demonstrated.
Collapse
|
6
|
Yao J, Jin W, Li D, Xu D, Wen S, Liu R, Liang Y, Lu S. Geographical distribution and seasonal variation in paralytic shellfish toxins in the coastal water of the South China Sea. Toxicon 2019; 168:67-75. [DOI: 10.1016/j.toxicon.2019.06.221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/29/2022]
|
7
|
Wu HY, Luan QS, Guo MM, Gu HF, Zhai YX, Tan ZJ. Phycotoxins in scallops (Patinopecten yessoensis) in relation to source, composition and temporal variation of phytoplankton and cysts in North Yellow Sea, China. MARINE POLLUTION BULLETIN 2018; 135:1198-1204. [PMID: 30301019 DOI: 10.1016/j.marpolbul.2018.08.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
The North Yellow Sea is a major aquaculture production area for the scallop Patinopecten yessoensis. In this study, the temporal and spatial variation of phycotoxins in scallops, phytoplankton, and their cysts were analyzed during a survey conducted from June 2011 to April 2012 around Zhangzi Island. The study area is a semi-enclosed epicontinental sea surrounded by the Shandong Peninsula, the Liaodong Peninsula and the Korean Peninsula. The three main results of the study were as follows: (1) The saxitoxin-group toxins, okadaic acid and analogues, and pectenotoxins were the major phycotoxin residues found in scallops; (2) Six kinds of toxic microalgae were identified, Protoperidinium spp., Gonyaulax spp., and Alexandrium spp. were the dominant taxa; Seven types of potential marine toxin-producing dinoflagellates, A. tamarense, A. catenella, Dinophysis fortii, G. catenatum, Gambierdiscus toxicus, Azadinium poporum, and Pseudo-nitzschia pungen were identified as the primary source of phycotoxins and were present at relatively high density from June to October; and (3) azaspiracids and domoic acid might be new potential sources of toxin pollution. This study represents the first assessment to phycotoxins around Zhangzi Island in the North Yellow Sea.
Collapse
Affiliation(s)
- Hai-Yan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Carbon-sink Fisheries Laboratory, Qingdao 266071, China.
| | - Qing-Shan Luan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Carbon-sink Fisheries Laboratory, Qingdao 266071, China.
| | - Meng-Meng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Carbon-sink Fisheries Laboratory, Qingdao 266071, China.
| | - Hai-Feng Gu
- Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Yu-Xiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Carbon-sink Fisheries Laboratory, Qingdao 266071, China.
| | - Zhi-Jun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Carbon-sink Fisheries Laboratory, Qingdao 266071, China.
| |
Collapse
|
8
|
Qiu J, Meng F, Ding L, Che Y, McCarron P, Beach DG, Li A. Dynamics of paralytic shellfish toxins and their metabolites during timecourse exposure of scallops Chlamys farreri and mussels Mytilus galloprovincialis to Alexandrium pacificum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:233-240. [PMID: 29778932 DOI: 10.1016/j.aquatox.2018.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
New C-11 hydroxyl metabolites of paralytic shellfish toxins (PSTs) have been reported in shellfish. To gain further information on these metabolites, as well as the potential for formation of phase-II metabolites and acyl esters of PSTs, bivalves were fed with the PSTs-producing dinoflagellate Alexandrium pacificum (strain ATHK). Through independent experiments, scallops (Chlamys farreri) were fed for 9 days and mussels (Mytilus galloprovincialis) for 5 days plus an additional 5 days of depuration, with representative samples taken throughout. Several common PSTs (C1-4, GTX1-6 and NEO) and metabolites including M1, M3, M5, M7, M9, M2 and M8 were detected in the hepatopancreas of scallops during toxin accumulation and in the hepatopancreas of mussels during both toxin accumulation and elimination periods. The relative molar ratio of metabolites to precursor molecules was used to estimate relative metabolic conversion rates. Conversion rates of C1/2 and GTX2/3 were higher than those of C3/4 and GTX1/4, in scallops and mussels. The first metabolites observed in both bivalve species investigated were M1/3, which are formed from C1/2. However, the conversion of GTX2/3 to M2 was more complete than other biotransformation reactions in both mussels and scallops. In general, metabolic conversion of PSTs was observed after a shorter time and to a greater extent in mussels than in scallops in the exposure period. No acyl esters or conjugation products of PSTs with glucuronic acid, glutathione, cysteine and taurine were detected by liquid chromatography with high resolution tandem mass spectrometry in the samples investigated. Additionally, only GTX1/4 and GTX2/3 were detected in the kidney of scallops, which demonstrates that PSTs are mainly metabolized through the hepatic metabolism pathway in bivalves. This work improves the understanding of PST metabolism during toxin accumulation and depuration in commercially harvested shellfish.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ling Ding
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yijia Che
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford St, Halifax, NS, B3H 3Z1, Canada
| | - Daniel G Beach
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford St, Halifax, NS, B3H 3Z1, Canada
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
9
|
Lian Z, Wang J. Selective isolation of gonyautoxins 1,4 from the dinoflagellate Alexandrium minutum based on molecularly imprinted solid-phase extraction. MARINE POLLUTION BULLETIN 2017; 122:500-504. [PMID: 28662976 DOI: 10.1016/j.marpolbul.2017.06.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts.
Collapse
Affiliation(s)
- Ziru Lian
- Marine College, Shandong University, Weihai 264209, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100,China.
| |
Collapse
|