1
|
Carmen S. Microbial capability for the degradation of chemical additives present in petroleum-based plastic products: A review on current status and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123534. [PMID: 33254737 DOI: 10.1016/j.jhazmat.2020.123534] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Plastic additives are present as pollutants in the environment because they are released from plastics and have been reported to be toxic to mammals. Due to this toxicity, it is crucial to develop ecofriendly tools to decontaminate the environment. Microorganisms are a promising alternative for efficient and effective plastic additive removal. This review describes the current knowledge and significant advances in the microbial degradation of plastic additives (i.e. plasticizers, flame retardants, stabilizers and antioxidants) and biotechnological research strategies that are being used to accelerate the biodegradation process of these additives. It is expected that further research supported by advances in genomics, proteomics, gene expression, enzyme immobilization, protein design, and nanotechnology can substantially increase our knowledge to enhance the enzymatic degradation efficiency, which will accelerate plastic additive degradation and establish successful and cost-effective bioremediation processes. Investigations should also address the identification of the enzymes involved in the degradation process and their catalytic mechanisms to achieve full metabolization of organopollutants (i.e. plastic additives) while avoiding harmful plastic additive biodegradation products. Microorganisms and their enzymes undoubtedly represent a potential resource for developing promising environmental biotechnologies, as they have the best systems for pollutant degradation, and their actions are essential for decontaminating the environment.
Collapse
Affiliation(s)
- Sánchez Carmen
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, C.P.90120, Tlaxcala, Mexico.
| |
Collapse
|
2
|
Ojeda AS, Phillips E, Sherwood Lollar B. Multi-element (C, H, Cl, Br) stable isotope fractionation as a tool to investigate transformation processes for halogenated hydrocarbons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:567-582. [PMID: 31993605 DOI: 10.1039/c9em00498j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a powerful tool to evaluate transformation processes of halogenated compounds. Many halogenated hydrocarbons allow for multiple stable isotopic systems (C, H, Cl, Br) to be measured for a single compound. This has led to a large body of literature describing abiotic and biotic transformation pathways and reaction mechanisms for contaminants such as chlorinated alkenes and alkanes as well as brominated hydrocarbons. Here, the current literature is reviewed and a new compilation of Λ values for multi-isotopic systems for halogenated hydrocarbons is presented. Case studies of each compound class are discussed and thereby the current strengths of multi-element isotope analysis, continuing challenges, and gaps in our current knowledge are identified for practitioners of multi-element CSIA to address in the near future.
Collapse
Affiliation(s)
- Ann Sullivan Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, USA.
| | | | | |
Collapse
|
3
|
The Spatial Distribution of the Microbial Community in a Contaminated Aquitard below an Industrial Zone. WATER 2019. [DOI: 10.3390/w11102128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The industrial complex Neot Hovav, in Israel, is situated above an anaerobic fractured chalk aquitard, which is polluted by a wide variety of hazardous organic compounds. These include volatile and non-volatile, halogenated, organic compounds. In this study, we characterized the indigenous bacterial population in 17 boreholes of the groundwater environment, while observing the spatial variations in the population and structure as a function of distance from the polluting source. In addition, the de-halogenating potential of the microbial groundwater population was tested through a series of lab microcosm experiments, thus exemplifying the potential and limitations for bioremediation of the site. In all samples, the dominant phylum was Proteobacteria. In the production plant area, the non-obligatory organo-halide respiring bacteria (OHRB) Firmicutes Phylum was also detected in the polluted water, in abundancies of up to 16 %. Non-metric multidimensional scaling (NMDS) analysis of the microbial community structure in the groundwater exhibited clusters of distinct populations following the location in the industrial complex and distance from the polluting source. Dehalogenation of halogenated ethylene was demonstrated in contrast to the persistence of brominated alcohols. Persistence is likely due to the chemical characteristics of brominated alcohols, and not because of the absence of active de-halogenating bacteria.
Collapse
|
4
|
Chen D, Shen J, Jiang X, Su G, Han W, Sun X, Li J, Mu Y, Wang L. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. WATER RESEARCH 2019; 157:8-18. [PMID: 30947080 DOI: 10.1016/j.watres.2019.03.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Due to highly recalcitrant and toxicological nature of halogenated organic compounds, conventional anaerobic dehalogenation is often limited by low removal rate and poor process stability. Besides, the reduction intermediates or products formed during dehalogenation process, which are still toxic, required further energy-intensive aerobic post-treatment. In this study, an up-flow electricity-stimulated anaerobic system (ESAS) was developed by installing cathode underneath and anode above to realize simultaneous anaerobic debromination and mineralization of 4-bromophenol (4-BP). When cathode potential was -600 mV, high TOC removal efficiency (98.78 ± 0.96%), complete removal of 4-BP and phenol could be achieved at 4-BP loading rate of 0.58 mol m-3 d-1, suggesting debrominated product of 4-BP from cathode (i.e., phenol) would be utilized as the fuel by the bioanode of ESAS. Under high 4-BP loading rate (2.32 mol m-3 d-1) and low electron donor dosage (4.88 mM), 4-BP could be completely removed at acetate usage ratio as low as 4.21 ± 1.42 mol acetate mol-1 4-BP removal in ESAS, whereas only 13.45 ± 1.38% of 4-BP could be removed at acetate usage ratio as high as 31.28 ± 3.38 mol acetate mol-1 4-BP removal in control reactor. Besides, electrical stimulation distinctly facilitated the growth of various autotrophic dehalogenation species, phenol degradation related species, fermentative species, homoacetogens and electrochemically active species in ESAS. Moreover, based on the identified intermediates and the bacterial taxonomic analysis, possible metabolism mechanism involved in enhanced anaerobic debromination and mineralization of 4-BP in ESAS was proposed.
Collapse
Affiliation(s)
- Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Kuder T, Bernstein A, Gelman F. Derivatization-free method for compound-specific isotope analysis of nonexchangeable hydrogen of 4-bromophenol. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:667-677. [PMID: 30512206 DOI: 10.1002/rcm.8361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Compound-specific isotope analysis (CSIA) is a valuable tool in environmental chemistry and in other fields of science. Currently, hydrogen CSIA of polar compounds containing exchangeable hydrogen is uncommon. To extend the scope of CSIA applications, we present an alternative method of analysis, bypassing the typical step of derivatization. The method is demonstrated for two environmental contaminants, 4-bromophenol (4BP) and 2,4,6-tribromophenol (TBP). METHODS Net isotope ratios obtained by CSIA combine the isotope composition of nonexchangeable, carbon-bound hydrogen and the exchangeable hydroxyl hydrogen. To constrain the isotope composition of the latter, an ethyl acetate solution of 4BP or TBP injected into the IRMS instrument was amended with excess water of known isotope composition. The results were calibrated using bracketing control samples analyzed in sequence with the unknown samples and the known isotope ratios of water present in ethyl acetate solution. RESULTS The analytical precision was comparable to the precision for halogenated compounds without exchangeable hydrogen, analyzed using similar instrumentation. The isotope ratios of the bromophenols correlated with the isotope composition of the water in the sample matrix, suggesting that the hydroxyl group of the target compound remained close to the equilibrium with the sample water during the passage through the instrument. Based on this relationship, the signatures of the nonexchangeable hydrogen were obtained using the isotope composition of sample water as the proxy for the isotope composition of the target compound hydroxyl group. CONCLUSIONS The developed method could be adopted to analysis of other low molecular weight compounds amenable to gas chromatography without the absolute need for derivatization. Currently, the method can be used for samples from laboratory experiments, with high concentrations of the target compound to provide mechanistic insight into the degradation mechanisms. Further work would be required to optimize the method to low concentration environmental samples.
Collapse
Affiliation(s)
- Tomasz Kuder
- School of Geology and Geophysics, University of Oklahoma, 100 E. Boyd Street, SEC 710, Norman, OK, 73019, USA
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Faina Gelman
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel
| |
Collapse
|
6
|
Manna RN, Grzybkowska A, Gelman F, Dybala-Defratyka A. Carbon-bromine bond cleavage - A perspective from bromine and carbon kinetic isotope effects on model debromination reactions. CHEMOSPHERE 2018; 193:17-23. [PMID: 29126061 DOI: 10.1016/j.chemosphere.2017.10.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
In this work, we explore the effect of solvent on 13C and 81Br kinetic isotope effects (KIEs) during elimination of bromine substituent from brominated organic compounds promoted by hydroxyl anion. In the present study, we investigate HBr elimination from 2-bromoethylbenzene in three different polar media (water, ethanol, and acetonitrile) as well as bromide ion elimination from 1,2-dibromoethane upon nucleophilic substitution by the hydroxyl ion in aqueous solution using carbon and bromine isotope analysis as mechanistic tools. We reconsider the hypothesis that the magnitude of leaving group halide KIE should visibly depend on the solvent and bond-breaking in a protic solvent should be accompanied by hydrogen bonding which would result in less zero-point energy loss than in an aprotic solvent. Modeling the elimination reaction using the available popular theoretical methods along with different approaches for including environment effects we demonstrate in the presented study no interpretable effect of the solvent on the transition state structure and hence on the theoretically predicted KIEs. The comparison of the magnitudes of carbon and bromine kinetic isotope effects for two different mechanistic pathways (elimination vs substitution) is also discussed.
Collapse
Affiliation(s)
- Rabindra Nath Manna
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; Indian Association for the Cultivation of Science, Physical Chemistry, 2A and 2B Raja S C Mullick Road, Kolkata, West Bengal, 700032, India
| | - Anna Grzybkowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Faina Gelman
- Geological Survey of Israel, Malkhei Israel St. 30, 95501 Jerusalem, Israel
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
7
|
Chen L, Shouakar-Stash O, Ma T, Wang C, Liu L. Significance of stable carbon and bromine isotopes in the source identification of PBDEs. CHEMOSPHERE 2017; 186:160-166. [PMID: 28772183 DOI: 10.1016/j.chemosphere.2017.07.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Typical brominated organic pollutants poly brominated diphenyl ethers (PBDEs) might be characterized by their stable carbon and bromine isotopic compositions. Currently, there are no published reports concerning the two-dimensional isotopic (δ13C and δ81Br) values of PBDEs. To assess the significance of carbon and bromine isotopes in the source identification of PBDEs, EA-IRMS and off-line-IRMS methods were employed to measure the δ13C and δ81Br values of the typical PBDE congeners, 2,2',4,4'-tetrabromodiphenyl ethers (BDE-47) and decabromodiphenyl ether (BDE-209) from different suppliers. The results show that individual PBDE congeners (three BDE-47 samples and three BDE-209 samples) have unique δ13C and δ81Br values, possibly due to differences in the precursors and manufacturing processes, indicating that the isotope composition is a promising probe to determine the source of PBDEs in the environment. While it is worth noting that some challenges might exist during practical application of this method, such as the similar isotopic compositions of PBDEs from different source. Thus, source identification associated with isotopic signatures should be used cautiously. This study provides a basis for further research into the source identification of PBDEs in the environment by examining their isotopic characteristics.
Collapse
Affiliation(s)
- Liuzhu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo N2L 3G1, Canada; Isotope Tracer Technologies Inc., Waterloo N2V 1Z5, Canada
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Chunlei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Lu Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|