1
|
Diogo BS, Rodrigues S, Golovko O, Antunes SC. From bacteria to fish: ecotoxicological insights into sulfamethoxazole and trimethoprim. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52233-52252. [PMID: 39138731 PMCID: PMC11374860 DOI: 10.1007/s11356-024-34659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Sulfamethoxazole (SMX) and trimethoprim (TRIM) are two of the most used antibiotics in the last 50 years, to prevent and treat bacterial infections; however, the available literature about toxicity to non-target organisms is quite discrepant and incomplete. This study aims to assess the SMX and TRIM ecotoxicological effects in standard species: Aliivibrio fischeri (bioluminescence inhibition), Escherichia coli ATCC 25922 (growth inhibition), Lemna minor (growth inhibition and biochemical biomarkers), Daphnia magna (immobilization/mortality, life history traits, and biochemical biomarkers), and Danio rerio (survival, hatching, abnormalities, and biochemical biomarkers). The species tested showed different acute sensitivities to SMX (A. fischeri < D. magna < E. coli < L. minor) and TRIM (L. minor < A. fischeri < D. magna < E. coli). Overall, TRIM reveals less toxicity than SMX, except for E. coli (Ecotoxicological approach based on Antimicrobial Susceptibility Testing - EcoAST procedure). Both antibiotics affect individually (e.g., growth and survival) and sub-individually (e.g., antioxidant defenses) L. minor, D. magna, and D. rerio. This study allowed us to generate relevant data and fill gaps in the literature regarding the effects of SMX and TRIM in aquatic organisms. The here-obtained results can be used to (i) complete and re-evaluate the Safety Data Sheet to improve the assessment of environmental safety and management of national and international entities; (ii) clarify the environmental risks of these antibiotics in aquatic ecosystems reinforcing the inclusion in the 4th Watch List of priority substances to be monitored in whole inland waters by the Water Framework Directive; and (iii) combat the development of antimicrobial resistance, as well as supporting the definition of environmental measurements in the context of European One Health Action Plan. However, it is essential to continue studying these antibiotics to better understand their toxicity at ecologically relevant concentrations and their long-term effects under different climatic change scenarios.
Collapse
Affiliation(s)
- Bárbara S Diogo
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara Rodrigues
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Sara C Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
Li Z, Lu T, Li M, Mortimer M, Guo LH. Direct and gut microbiota-mediated toxicities of environmental antibiotics to fish and aquatic invertebrates. CHEMOSPHERE 2023; 329:138692. [PMID: 37059203 DOI: 10.1016/j.chemosphere.2023.138692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The accumulation of antibiotics in the environment has ecological impacts that have received less attention than the human health risks of antibiotics, although the effects could be far-reaching. This review discusses the effects of antibiotics on the health of fish and zooplankton, manifesting in direct or dysbiosis-mediated physiological impairment. Acute effects of antibiotics in these organism groups are usually induced at high concentrations (LC50 at ∼100-1000 mg/L) that are not commonly present in aquatic environments. However, when exposed to sub-lethal, environmentally relevant levels of antibiotics (ng/L-μg/L) disruption of physiological homeostasis, development, and fecundity can occur. Antibiotics at similar or lower concentrations can induce dysbiosis of gut microbiota which can affect the health of fish and invertebrates. We show that the data about molecular-level effects of antibiotics at low exposure concentrations are limited, hindering environmental risk assessment and species sensitivity analysis. Fish and crustaceans (Daphnia sp.) were the two groups of aquatic organisms used most often for antibiotic toxicity testing, including microbiota analysis. While low levels of antibiotics impact the composition and function of gut microbiota in aquatic organisms, the correlation and causality of these changes to host physiology are not straightforward. In some cases, negative or lack of correlation have occurred, and, unexpectedly, gut microbial diversity has been unaffected or increased upon exposure to environmental levels of antibiotics. Efforts to incorporate functional analyses of gut microbiota are beginning to provide valuable mechanistic information, but more data is needed for ecological risk assessment of antibiotics.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
3
|
Gunathilaka MDKL, Bao S, Liu X, Li Y, Pan Y. Antibiotic Pollution of Planktonic Ecosystems: A Review Focused on Community Analysis and the Causal Chain Linking Individual- and Community-Level Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1199-1213. [PMID: 36628989 DOI: 10.1021/acs.est.2c06787] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibiotic pollution has become one of the most challenging environmental issues in aquatic ecosystems, with adverse effects on planktonic organisms that occupy the base of the aquatic food chain. However, research regarding this topic has not been systematically reviewed, especially in terms of community-level responses. In this review, we provide an overview of current antibiotic pollution in aquatic environments worldwide. Then, we summarize recent studies concerning the responses of planktonic communities to antibiotics, ranging from individual- to community-level responses. Studies have shown that extremely high concentrations of antibiotics can directly harm the growth and survival of plankton; however, such concentrations are rarely found in natural freshwater. It is more likely that environmentally relevant concentrations of antibiotics will affect the physiological, morphological, and behavioral characteristics of planktonic organisms; influence interspecific interactions among plankton species via asymmetrical responses in species traits; and thus alter the structure and function of the entire planktonic ecosystem. This review highlights the importance of community analysis in revealing antibiotic toxicity. We also encourage the establishment of the causal relationships between impacts at multiple scales in the future for predicting the community-level consequences of antibiotics based on the currently available individual-level evidence.
Collapse
Affiliation(s)
- M D K Lakmali Gunathilaka
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Department of Geography, University of Colombo, Colombo 00300, Sri Lanka
| | - Siyi Bao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Xiaoxuan Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China
| | - Ya Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| |
Collapse
|
4
|
Fernandez R, Colás-Ruiz NR, Martínez-Rodríguez G, Lara-Martín PA, Mancera JM, Trombini C, Blasco J, Hampel M. The antibacterials ciprofloxacin, trimethoprim and sulfadiazine modulate gene expression, biomarkers and metabolites associated with stress and growth in gilthead sea bream (Sparus aurata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106243. [PMID: 35872527 DOI: 10.1016/j.aquatox.2022.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The high consumption and subsequent input of antibacterial compounds in marine ecosystems has become a worldwide problem. Their continuous presence in these ecosystems allows a direct interaction with aquatic organisms and can cause negative effects over time. The objective of the present study was to evaluate the effects of exposure to three antibacterial compounds of high consumption and presence in marine ecosystems (Ciprofloxacin CIP, Sulfadiazine SULF and Trimethoprim TRIM) on the physiology of the gilthead sea bream, Sparus aurata. Plasma parameters, enzymatic biomarkers of oxidative stress and damage and expression of genes related to stress and growth were assessed in exposed S. aurata specimens. For this purpose, sea bream specimens were exposed to individual compounds at concentrations of 5.2 ± 2.1 μg L-1 for CIP, 3.8 ± 2.7 μg L-1 for SULF and 25.7 ± 10.8 μg L-1 for TRIM during 21 days. Exposure to CIP up-regulated transcription of genes associated with the hypothalamic-pituitary-thyroid (HPT) (thyrotropin-releasing hormone, trh) and hypothalamic-pituitary-interrenal (HPI) axes (corticotropin-releasing hormone-binding protein, crhbp) in the brain, as well as altering several hepatic stress biomarkers (catalase, CAT; glutathione reductase, GR; and lipid peroxidation, LPO). Similar alterations at the hepatic level were observed after exposure to TRIM. Overall, our study indicates that S. aurata is vulnerable to environmentally relevant concentrations of CIP and TRIM and that their exposure could lead to a stress situation, altering the activity of antioxidant defense mechanisms as well as the activity of HPT and HPI axes.
Collapse
Affiliation(s)
- Ronield Fernandez
- Microbiology Research Laboratory, University Simon Bolivar, Carrera 59 No. 59-65 Barranquilla, Colombia.
| | - Nieves R Colás-Ruiz
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University Institute for Marine Research (INMAR), International Excellence Campus of the Sea (CEI-MAR), University of Cádiz, 11510 Puerto Real, Spain
| | - Chiara Trombini
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| |
Collapse
|
5
|
Chandel N, Ahuja V, Gurav R, Kumar V, Tyagi VK, Pugazhendhi A, Kumar G, Kumar D, Yang YH, Bhatia SK. Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153895. [PMID: 35182616 DOI: 10.1016/j.scitotenv.2022.153895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Worldwide demand for antibiotics and pharmaceutical products is continuously increasing for the control of disease and improvement of human health. Poor management and partial metabolism of these compounds result in the pollution of aquatic systems, leading to hazardous effects on flora, fauna, and ecosystems. In the past decade, the importance of microalgae in micropollutant removal has been widely reported. Microalgal systems are advantageous as their cultivation does not require additional nutrients: they can recover resources from wastewater and degrade antibiotics and pharmaceutical pollutants simultaneously. Bioadsorption, degradation, and accumulation are the main mechanisms involved in pollutant removal by microalgae. Integration of microalgae-mediated pollutant removal with other technologies, such as biodiesel, biochemical, and bioelectricity production, can make this technology more economical and efficient. This article summarizes the current scenario of antibiotic and pharmaceutical removal from wastewater using microalgae-mediated technologies.
Collapse
Affiliation(s)
- Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | | | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, 03722 Seoul, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Afsa S, De Marco G, Giannetto A, Parrino V, Cappello T, Ben Mansour H, Maisano M. Histological endpoints and oxidative stress transcriptional responses in the Mediterranean mussel Mytilus galloprovincialis exposed to realistic doses of salicylic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103855. [PMID: 35342010 DOI: 10.1016/j.etap.2022.103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the availability of analytic data, little is known about the toxicity of salicylic acid (SA) on aquatic non-target organisms. The present study aimed at evaluating the impact of SA through a short-term exposure of the Mediterranean mussel Mytilus galloprovincialis to five environmentally relevant concentrations of SA. A set of suitable biomarkers was applied at selected time-points on mussel digestive glands, including histological observations and expression of oxidative stress related genes. The obtained results showed a conspicuous hemocytic infiltration among mussel digestive tubules, as confirmed also by a flow cytometric approach that revealed an increase of halinocytes and granulocytes. Interestingly, a significant dose and time dependent decrease in the expression levels of oxidative stress related genes was found in mussels exposed to SA except for the glutathione S-transferase gene that was significantly up-regulated in a time-dependent manner confirming its important role against oxidant species and in the metabolism of pharmaceuticals.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| |
Collapse
|
7
|
Han J, Park Y, Jeong H, Park JC. Effects of particulate matter (PM 2.5) on life history traits, oxidative stress, and defensome system in the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2022; 178:113588. [PMID: 35358891 DOI: 10.1016/j.marpolbul.2022.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter (PM2.5) generated in large cities creates new problems in marine ecosystems and may adversely affect its inhabitants. However, the mechanisms underlying the same remain unclear; hence, we investigated the effects of PM2.5 on life history traits (e.g., mortality, development, and fecundity), cellular reactive oxygen species (ROS) levels, antioxidant enzyme (e.g., glutathione peroxidase [GPx], superoxide dismutase [SOD], and catalase [CAT]) activities, and the transcript levels of detoxification-related genes (cytochrome P450s [CYPs]) and antioxidant (glutathione S-transferases [GSTs]) in the copepod Tigriopus japonicus. Among the life history traits, developmental time was the only trait to significantly deviate (P < 0.05) in response to PM2.5 (compared to that in the controls). Significant changes in ROS levels and antioxidant enzymatic activities (P < 0.05) in response to PM2.5, suggested that PM2.5 can induce oxidative stress, leading to adverse effects on the T. japonicus life history. In addition, PM2.5 induced a differential regulation of various CYP and GST genes, particularly CYP307E1, GST-kappa, and GST-sigma were significantly upregulated (P < 0.05), suggesting that these genes likely play crucial roles in detoxification mechanisms and could be useful as reliable biomarkers for PM2.5 toxicity. Overall, the results of this study provide new insights into the potential toxicity of PM2.5.
Collapse
Affiliation(s)
- Jeonghoon Han
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea.
| | - Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyeryeong Jeong
- Marine Environmental Research Center, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| |
Collapse
|
8
|
Choi BS, Kim DH, Kim MS, Park JC, Lee YH, Kim HJ, Jeong CB, Hagiwara A, Souissi S, Lee JS. The genome of the European estuarine calanoid copepod Eurytemora affinis: Potential use in molecular ecotoxicology. MARINE POLLUTION BULLETIN 2021; 166:112190. [PMID: 33711609 DOI: 10.1016/j.marpolbul.2021.112190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, we sequenced and assembled the genome of a European estuarine calanoid copepod using Oxford Nanopore PromethION and Illumina HiSeq 2500 platforms. The length of the assembled genome was 776.1 Mb with N50 = 474.9 kb (BUSCO 85.9%), and the genome consisted of 2473 contigs. A total of 18,014 genes were annotated and orthologous gene clusters were analyzed in comparison to other copepods. In addition, genome-wide identification of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette transporters in E. affinis was performed to determine gene repertoire of these detoxification-related gene families. Results revealed the presence of species-specific gene inventories, indicating that these gene families have evolved through species-specific gene loss/expansion processes, possibly due to adaptation to different environmental stressors. Our study provides a new inventory of the European estuarine calanoid copepod E. affinis genome with emphasis on phase I, II, and III detoxification systems.
Collapse
Affiliation(s)
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Chang-Bum Jeong
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sami Souissi
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Han J, Park JS, Park Y, Lee J, Shin HH, Lee KW. Effects of paralytic shellfish poisoning toxin-producing dinoflagellate Gymnodinium catenatum on the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2021; 163:111937. [PMID: 33341583 DOI: 10.1016/j.marpolbul.2020.111937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
To understand how the marine copepod Tigriopus japonicus responds to the toxic marine dinoflagellate Gymnodinium catenatum, we assessed acute toxicity and investigated swimming behavior parameters (e.g., swimming speed, swimming path trajectory, and swimming distance) in response to G. catenatum exposure. In addition, the mRNA expression levels of detoxification-related genes (e.g., phase I cytochrome P450 [CYP] and phase II glutathione-S transferase [GST]) were measured in G. catenatum-exposed copepods. No significant change in survival was observed in response to G. catenatum, but swimming speed was significantly decreased (P < 0.05) at a high concentration of G. catenatum (600 cells/mL). Furthermore, the swimming distance was significantly decreased (P < 0.05) compared to that of the control at 600 cells/mL G. catenatum, while no significant change in swimming path trajectory was observed, suggesting that G. catenatum potentially has adverse effects on the swimming behavior of T. japonicus. In addition, the transcriptional regulation of T. japonicus CYPs and -GSTs were significantly upregulated and downregulated (P < 0.05), respectively, in response to G. catenatum. In particular, certain genes (e.g., CYPs [CYP307E1, CYP3041A1, and CYP3024A2] and GSTs [GST-kappa, GST-mu5, and GST-omega]) were significantly induced (P < 0.05) by G. catenatum, suggesting that these genes likely play a critical role in detoxification mechanisms and might be useful as potential molecular biomarkers in response to G. catenatum exposure. Overall, these results elucidate the potential impacts of the dinoflagellate G. catenatum on the swimming behavior and detoxification system of the marine copepod T. japonicus.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Yeun Park
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jihoon Lee
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Hyun Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kyun-Woo Lee
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea.
| |
Collapse
|
10
|
Zhou R, Lu G, Yan Z, Jiang R, Bao X, Lu P. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139222. [PMID: 32438173 DOI: 10.1016/j.scitotenv.2020.139222] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
PPCPs (pharmaceutical and personal care products) and microplastics (MPs) are two types of emerging pollutants that are ubiquitous and widely concerned in the environment. Both of them can accumulate in fish or aquatic invertebrates and transfer to offspring, thereby producing toxic effects on both parents and offspring, in which the characteristics of MPs also enable them to adsorb PPCPs thus producing carrier effects. In this study, we have conducted a comprehensive review of MPs and PPCPs and found that MPs can act as a carrier of PPCPs to influence the bioaccumulation of PPCPs. MPs and PPCPs have toxicity and transgenerational effects on both fish and aquatic invertebrates in many aspects, and MPs can also affect the toxicity and transgenerational effects of PPCPs due to their carrier effects. This paper revealed that MPs may have an important impact on the bioavailability of PPCPs and the interaction between MPs and PPCPs is a hot topic in future research. This study also puts forward the shortcomings of the current research and related suggestions, and relevant research should be carried out as soon as possible to provide the basis for the prevention and treatment of fresh water.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ping Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
11
|
Byeon E, Park JC, Hagiwara A, Han J, Lee JS. Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105337. [PMID: 31739108 DOI: 10.1016/j.aquatox.2019.105337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
To understand effects of two widely used antidepressant on the antioxidant defense mechanism in the marine rotifer Brachionus koreanus, we assessed acute toxicity and measured population growth, reactive oxygen species (ROS) levels, glutathione (GSH) levels, and antioxidant enzymatic activities (GST, GR, and SOD) in response to fluoxetine hydrochloride (FLX) and sertraline hydrochloride (SER). The no observed effect concentration-24 h of fluoxetine and sertraline were 1000 μg/L and 450 μg/L, respectively, whereas the median lethal concentration (LC50)-24 h of fluoxetine and sertraline were 1560 μg/L and 507 μg/L, respectively. Both fluoxetine and sertraline caused significant reduction (P < 0.05) in the population growth rate indicating that both antidepressants have a potential adverse effect on life cycle parameters of B. koreanus. The intracellular ROS level and GSH level were significantly modulated (P < 0.05) in response to fluoxetine and sertraline. In addition, antioxidant enzymatic activities have shown significant modulation (P < 0.05) in response to FLX and SER in B. koreanus. Furthermore, transcriptional profiles of antioxidant genes (GSTs, SODs, and GR) have shown modulation in response to FLX compared to SER-exposed B. koreanus. Our results indicate that fluoxetine and sertraline induce oxidative stress, leading to reduction in the population density and modulation of antioxidant defense mechanism in the marine rotifer B. koreanus.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
12
|
Tolboom SN, Carrillo-Nieves D, de Jesús Rostro-Alanis M, de la Cruz Quiroz R, Barceló D, Iqbal HMN, Parra-Saldivar R. Algal-based removal strategies for hazardous contaminants from the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:358-366. [PMID: 30772566 DOI: 10.1016/j.scitotenv.2019.02.129] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023]
Abstract
Owing to the controlled or uncontrolled industrial wastewater disposal, pharmaceutical-based hazardous emerging contaminants (ECs) can be found in the environment all over the world. With ever-increasing socioeconomic aspects and environmental awareness, people are now more concerns about the widespread occurrences of hazardous and persistent contaminants, around the globe. In this context, several studies have already shown that various types of emerging and/or re-emerging contaminants, regardless the source, type and concentration, are of supreme threat to the living system of flora and fauna. Recently, algae-based bioreactors have gained special research interest as a promising way to remove pharmaceuticals-based ECs from the wastewater either partially or completely. This paper covers the progress on the removal of selected pharmaceuticals using bioreactors. In laboratory scale studies, high removal percentages have been reached for most selected pharmaceuticals, but data on full-scale bioreactors is limited. In this paper, two types of bioreactors are discussed, i.e., (1) open pond and (2) bubble column photobioreactor, which are considered sustainable and an effective alternative to remove ECs. In these bioreactors, high removal percentages (>90%) have been found for metoprolol, triclosan, and salicylic acid, moderate (50-90%) for carbamazepine and tramadol and very low (<10%) for trimethoprim and ciprofloxacin by inoculating different microalgae. This technique may open new opportunities for the treatment of wastewater and reduce the environmental pollution that can have adverse effects on the ecosystem and human health. In summary, the present review focuses on the microalgae for wastewater remediation. An effort has also been made to describe the generalities of the photobioreactor.
Collapse
Affiliation(s)
- Stefan Noël Tolboom
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Reynaldo de la Cruz Quiroz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Damià Barceló
- ICRA, Catalan Institute for Water Research, Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101, 17003 Girona, Spain
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico.
| |
Collapse
|
13
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
14
|
Zhou J, Kang HM, Lee YH, Jeong CB, Park JC, Lee JS. Adverse effects of a synthetic pyrethroid insecticide cypermethrin on life parameters and antioxidant responses in the marine copepods Paracyclopina nana and Tigriopus japonicus. CHEMOSPHERE 2019; 217:383-392. [PMID: 30419392 DOI: 10.1016/j.chemosphere.2018.10.217] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
To find the adverse effects induced by cypermethrin, the ecotoxicological model copepods Tigriopus japonicus and Paracyclopina nana were exposed under cypermethrin, which is a widely used type-II pyrethroid insecticide in agriculture. Despite its large-scale application as insecticide in agriculture, little information is available on its adverse effects on aquatic invertebrates. In this study, the toxicity of cypermethrin on two copepods was assessed based on life parameters (growth rate and reproduction), oxidative stress and consequent antioxidant enzymatic activities, and gene expression profiles of antioxidants. The acute toxicity alone demonstrated that P. nana is less tolerant and sensitive against cypermethrin, compared to T. japonicus. However, under chronic exposure, life parameters of both P. nana and T. japonicus were severely affected by cypermethrin. Among antioxidant enzymatic activities, superoxide dismutase (SOD) and glutathione S-transferase (GST), in particular, demonstrated significant increase in response to cypermethrin. Furthermore, temporal-mRNA expression profile showed modulations in antioxidant related genes in response to cypermethrin. Our results provide the underlying toxic mechanism of cypermethrin and the oxidative stress defense mechanism and species-specific tolerance against cypermethrin in two model copepods species.
Collapse
Affiliation(s)
- Jiaying Zhou
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Han J, Won EJ, Kang HM, Lee MC, Jeong CB, Kim HS, Hwang DS, Lee JS. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. MARINE POLLUTION BULLETIN 2017; 124:953-961. [PMID: 27686823 DOI: 10.1016/j.marpolbul.2016.09.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Marine Chemistry and Geochemistry Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
16
|
Identification of 28 cytochrome P450 genes from the transcriptome of the marine rotifer Brachionus plicatilis and analysis of their expression. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:1-7. [DOI: 10.1016/j.cbd.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 02/02/2023]
|
17
|
Han J, Kim DH, Kim HS, Nelson DR, Lee JS. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:49-57. [PMID: 28709111 DOI: 10.1016/j.cbd.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
18
|
Ren X, Wang Z, Gao B, Liu P, Li J. Toxic responses of swimming crab (Portunus trituberculatus) larvae exposed to environmentally realistic concentrations of oxytetracycline. CHEMOSPHERE 2017; 173:563-571. [PMID: 28152408 DOI: 10.1016/j.chemosphere.2017.01.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Oxytetracycline (OTC) is the most commonly used antibiotics for bacterial treatment in crustacean farming in China, and because of their intensive use, the potential harmful effects on aquatic organisms are of great concern. The aim of this study was to investigate the effects of oxytetracycline (OTC) on the antioxidant system, detoxification progress, and biomolecule damage in Portunus trituberculatus larvae. In this study, larvae that belonged to four zoeal stages were exposed to four different concentrations of OTC (0, 0.3, 3, and 30 μg/L) for 3 days. The results showed that the exposure to OTC significantly suppressed the antioxidant system of, especially, zoea I (Z1) and zoea II (Z2) larvae. OTC inhibited the transcriptional expression of phase I (CYP2 and CYP3) and phase II detoxification genes (GST) in a dose-dependent manner and altered the expressions of their corresponding enzymes, namely, aminopyrine N-demethylase, erythromycin N-demethylase, and glutathione S-transferase. Moreover, 0.3 μg/L OTC activated the transcription of ATP-binding cassette (ABC) transporter subfamily B (ABCB) and subfamily G (ABCG) in the Z1 and Z2 larvae, while 3 and 30 μg/L OTC suppressed all of them. Additionally, malondialdehyde content exhibited a dose- and zoea-effect relationship to some extent, but no significant differences were observed in the F values of the Z3 and Z4 larvae, except for the 30 μg/L OTC treatment. Thus, the Z3 and Z4 larvae were less sensitive to OTC exposure than the Z1 and Z2 larvae.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Zhuqing Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Baoquan Gao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
19
|
Puthumana J, Lee MC, Park JC, Kim HS, Hwang DS, Han J, Lee JS. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:116-122. [PMID: 28131078 DOI: 10.1016/j.aquatox.2017.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m2) induced developmental delays, and higher doses (6-18kJ/m2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.
Collapse
Affiliation(s)
- Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
20
|
Han J, Kim DH, Seo JS, Kim IC, Nelson DR, Puthumana J, Lee JS. Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:42-49. [PMID: 28088650 DOI: 10.1016/j.cbpc.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 01/28/2023]
Abstract
CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an "orphan" gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jung Soo Seo
- Pathology Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Hwang DS, Lee MC, Kyung DH, Kim HS, Han J, Kim IC, Puthumana J, Lee JS. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:9-17. [PMID: 27939724 DOI: 10.1016/j.cbpc.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023]
Abstract
Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus.
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Do-Hyun Kyung
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 04763, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|