1
|
Zhang R, He X, Liu J, Xiong J. VOC transport in an occupied residence: Measurements and predictions via deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164559. [PMID: 37263430 DOI: 10.1016/j.scitotenv.2023.164559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Monitoring and prediction of volatile organic compounds (VOCs) in realistic indoor settings are essential for source characterization, apportionment, and exposure assessment, while it has seldom been examined previously. In this study, we conducted a field campaign on ten typical VOCs in an occupied residence, and obtained the time-resolved VOC dynamics. Feature importance analysis illustrated that air change rate (ACR) has the greatest impact on the VOC concentration levels. We applied three multi-feature (temperature, relative humidity, ACR) deep learning models to predict the VOC concentrations over ten days in the residence, indicating that the long short-term memory (LSTM) model owns the best performance, with predictions the closest to the observed data, compared with the other two models, i.e., recurrent neural network (RNN) model and gated recurrent unit (GRU) model. We also found that human activities could significantly affect VOC emissions in some observed erupted peaks. Our study provides a promising pathway of estimating long-term transport characteristics and exposures of VOCs under varied conditions in realistic indoor environments via deep learning.
Collapse
Affiliation(s)
- Rui Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinglei He
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jialong Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Khoshakhlagh AH, Yazdanirad S, Saberi HR, Liao PC. Health risk assessment of exposure to various vapors and fumes in a factory of automobile manufacturing. Heliyon 2023; 9:e18583. [PMID: 37576203 PMCID: PMC10413063 DOI: 10.1016/j.heliyon.2023.e18583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
This study aimed to comprehensively evaluate the health risk of exposure to various vapors and fumes in a factory of automobile manufacturing. This study was performed in 2021 on 115 workers. Vapors and fumes were gathered by the adsorbent tubes of activated charcoal and mixed cellulose esters (MCE) membrane filter, respectively. The flow rate for vapors and fumes were between 0.05 and 0.20 L per min and 1 to 4 L per min, respectively. After preparing, samples were analyzed. To assess the non-cancer and cancer risk of the pollutants, the method proposed environmental protection agency (EPA) was applied. The total concentration of copper (1.031 ppm), manganese (0.114), and 2-butoxyethanol (91.767 ppm) were found to be higher than The threshold limit values (TLVs). The values of non-cancer risk (HQ) due to exposure to vapors of benzene (6.583), toluene (1.396), ethyl benzene (1.212), xylene (31.148), 2-butoxyethanol (89.302), 2-propanol (4.695), 1,2,3-trimethylbenzene (1.923), copper (2.336), manganese (715.82), aluminum (3.772), and chromium (107.066) were higher than the acceptable limit. Moreover, the estimated LCR for benzene (2.15 × 10-4), ethyl benzene (3.97 × 10-4), vinyl chloride (1.25 × 10-4), and chromium (2.11 × 10-2) were higher than the threshold risk level set by EPA. It is emphasized that preventive measures are performed.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Yazdanirad
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Reza Saberi
- Occupational Health & Safety Department, Kashan University of Medical Sciences, Kashan, Iran
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 704, Taiwan
| |
Collapse
|
3
|
Chou L, Zhou C, Luo W, Guo J, Shen Y, Lin D, Wang C, Yu H, Zhang X, Wei S, Shi W. Identification of high-concern organic pollutants in tap waters from the Yangtze River in China based on combined screening strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159416. [PMID: 36244484 DOI: 10.1016/j.scitotenv.2022.159416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Recently, numerous organic pollutants have been detected in water environment. The safety of our drinking water has attracted widespread attention. Effective methods to screen and identify high-concern substances are urgently needed. In this study, the combined workflow for the detection and identification of high-concern organic chemicals was established and applied to tap water samples from the Yangtze River Basin. The solid phase extraction (SPE) sorbents were compared and evaluated and finally the HLB cartridge was selected as the best one for most of the contaminants. Based on target, suspect and non-target analysis, 3023 chemicals/peaks were detected. Thirteen substances such as diundecyl phthalate (DUP), 2-hydroxyatrazine, dioxoaminopyrine and diethyl-2-phenylacetamide were detected in drinking water in the Yangtze River Basin for the very first time. Based on three kinds of prioritization principles, 49 ubiquitous, 103 characteristic chemicals and 13 inefficiently removed chemicals were selected as high-concern substances. Among them, 8, 31, 9, 3, 4 substances overlapped with the toxic, risky or high-concern chemicals lists in China, America, European Union, Japan, Korea, respectively. Specific management and removal strategies were further recommended. The workflow is efficient for identification of key pollutants.
Collapse
Affiliation(s)
- Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengzhuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yanhong Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Die Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
4
|
Huang YQ, Zeng Y, Wang T, Chen SJ, Guan YF, Mai BX. PM 2.5-bound phthalates and phthalate substitutes in a megacity of southern China: spatioseasonal variations, source apportionment, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37737-37747. [PMID: 35075556 DOI: 10.1007/s11356-022-18784-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Plasticizers are ubiquitous pollutants in the environment, whereas few efforts have been made to elucidate their emission sources in the atmosphere. In this research, the spatioseasonal variations and sources of particle-bound (PM2.5) phthalates (PAEs) and their substitutes (APs) at residential sites in seven districts and at four potential point-source sites across a megacity in South China were revealed. The total concentrations of PAEs ranging from 10.7 to 528 ng/m3 were substantially higher than those of APs (1.45.58.5 ng/m3). Significant spatial variations in the concentrations of the pollutants were observed, which were generally higher at the sites with intensive industrial activities and the point-source sites. Most atmospheric plasticizer levels peaked in summer, probably due to the temperature-promoted volatilization. Seven sources of plasticizers were identified by the positive matrix factorization (PMF) model. The sources in less industrialized districts are mainly associated with domestic and commercial emissions and with industry in the industrialized districts. Specifically, plastics and personal care products together contributed 60% of the plasticizers in the atmosphere of this city, followed by solvents and polyester industry sources. The incremental lifetime cancer risk of inhalation exposure to bis(2-ethylhexyl) phthalate in the study city is below the acceptable level. Relatively higher risks were found for residents living around sites with intensive industrial activities and around wastewater treatment plant.
Collapse
Affiliation(s)
- Yu-Qi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Tao Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yu-Feng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
5
|
Zhu H, Yang J, Wu M, Wu Q, Liu J, Zhang J. Effect of ketal group in castor oil acid‐based plasticizer on the properties of poly(vinyl chloride). J Appl Polym Sci 2021. [DOI: 10.1002/app.51274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huichao Zhu
- School of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Jianjun Yang
- School of Chemistry and Chemical Engineering Anhui University Hefei China
- Anhui Province Key Laboratory of Environment‐friendly Polymer Materials Anhui University Hefei China
| | - Mingyuan Wu
- School of Chemistry and Chemical Engineering Anhui University Hefei China
- Anhui Province Key Laboratory of Environment‐friendly Polymer Materials Anhui University Hefei China
| | - Qingyun Wu
- School of Chemistry and Chemical Engineering Anhui University Hefei China
- Anhui Province Key Laboratory of Environment‐friendly Polymer Materials Anhui University Hefei China
| | - Jiuyi Liu
- School of Chemistry and Chemical Engineering Anhui University Hefei China
- Anhui Province Key Laboratory of Environment‐friendly Polymer Materials Anhui University Hefei China
| | - Jianan Zhang
- School of Chemistry and Chemical Engineering Anhui University Hefei China
- Anhui Province Key Laboratory of Environment‐friendly Polymer Materials Anhui University Hefei China
| |
Collapse
|
6
|
Hurtado-Fernández E, Velázquez-Gómez M, Lacorte S, Ramos L. Exhaustive characterization of (semi-)volatile organic contaminants in car dust using comprehensive two-dimensional gas chromatography ‒ Time-of-flight mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125058. [PMID: 33482505 DOI: 10.1016/j.jhazmat.2021.125058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This work represents the first reported effort to build an extensive database of the organic volatile and semi-volatile contaminants present in car dust as a result of migration from materials used in auto-manufacturing. Untargeted analysis of car dust samples has been performed using comprehensive two-dimensional gas chromatography combined with time-of-fight mass spectrometry (GC×GC ‒ToF MS) after generic sample preparation. The enhanced separation power and structural confirmation capabilities provided by this technique have been used for the either positive or tentative identification of 245 GC-amenable compounds, a number of them being identified for the first time in this type of matrix. Information concerning 5 compounds remaining unidentified has also been provided. Results have been summarised in a searchable database containing chromatographic, mass spectral and normalised abundances calculated for the detected analytes in the ten investigated car dusts used to discuss the main findings of the study. Results are expected to serve other researcher to take decisions concerning priority analytes for further evaluation in this research field and for car manufacturers who might search for safer materials.
Collapse
Affiliation(s)
- E Hurtado-Fernández
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Velázquez-Gómez
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L Ramos
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
7
|
Kotowska U, Kapelewska J, Sawczuk R. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115643. [PMID: 33254702 DOI: 10.1016/j.envpol.2020.115643] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
Collapse
Affiliation(s)
- Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Justyna Kapelewska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Róża Sawczuk
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland
| |
Collapse
|
8
|
Golestanzadeh M, Riahi R, Kelishadi R. Association of exposure to phthalates with cardiometabolic risk factors in children and adolescents: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35670-35686. [PMID: 31728953 DOI: 10.1007/s11356-019-06589-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Recent studies revealed controversial results on the association of exposure to phthalates with cardiometabolic risk factors in children and adolescents. Therefore, this systematic review and meta-analysis was conducted in this regard. At first, we searched English-language papers in Scopus, Web of Science, and PubMed databases, with no restriction of time, till the end of the year 2018. We performed a comprehensive literature search for association between phthalate exposure and cardiometabolic risk factors including obesity, hypertension, hyperglycemia, and dyslipidemia. Among 99 published papers found in scientific databases, 17 cohort, 15 cross-sectional, and three case-control studies were included in the meta-analysis. We observed a significant association between the concentrations of phthalates and their metabolites with body mass index (BMI), BMI z-score, waist circumference (WC), and low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and glucose in serum. In addition, significant association was observed between prenatal phthalate exposure and birth weight. To the best of our knowledge, this is the first meta-analysis of its kind. It shows positive association between phthalate exposure and some cardiometabolic risk factors in children and adolescents. Therefore, prevention of exposure to phthalates and reduction of their use should be underscored in strategies for primordial prevention of cardiovascular diseases. Recent studies revealed controversial results on the association of exposure to phthalates with cardiometabolic risk factors in children and adolescents. Therefore, this systematic review and meta-analysis was conducted in this regard.
Collapse
Affiliation(s)
- Mohsen Golestanzadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Yang T, He Z, Zhang S, Tong L, Cao J, Xiong J. Emissions of DEHP from vehicle cabin materials: parameter determination, impact factors and exposure analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1323-1333. [PMID: 31289797 DOI: 10.1039/c9em00200f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are widely used in materials employed in vehicle interiors, causing poor in-cabin air quality. The emission characteristics of SVOCs from vehicle cabin materials can be characterized by two key parameters: the gas-phase SVOC concentration adjacent to the material surface (y0) and the convective mass transfer coefficient across the material surface (hm). Accurate determination of y0 and hm is fundamental in investigating SVOC emission principles and health risks. Considering that the steady state SVOC concentration (y) in a ventilated chamber changes with the ventilation rate (Q), we developed a varied ventilation rate (VVR) method to simultaneously measure y0 and hm for typical vehicle cabin materials. Experimental results for di(2-ethylhexyl)phthalate (DEHP) emissions from test materials indicated that the VVR method has the merits of simple operation, short testing time, and high accuracy. We also examined the influence of temperature (T) on y0 and hm, and found that both y0 and hm increase with increasing temperature. A theoretical correlation between y0 and T was then derived, indicating that the logarithm of y0T is linearly related to 1/T. Analysis based on the data from this study and from the literature validates the effectiveness of the derived correlation. Moreover, preliminary exposure analysis was performed to assess the health risk of DEHP in a vehicular environment.
Collapse
Affiliation(s)
- Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
10
|
Zulauf N, Dröge J, Klingelhöfer D, Braun M, Oremek GM, Groneberg DA. Indoor Air Pollution in Cars: An Update on Novel Insights. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132441. [PMID: 31323996 PMCID: PMC6650813 DOI: 10.3390/ijerph16132441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 12/13/2022]
Abstract
From a global viewpoint, a lot of time is spent within the indoor air compartment of vehicles. A German study on mobility has revealed that, on average, people spend 45 minutes per day inside vehicles. In recent years the number of cars has increased to around 43 million vehicles in private households. This means that more than one car can be used in every household. The ratio has been growing, especially in eastern Germany and rural areas. "Overall and especially outside the cities, the car remains by far number one mode of transport, especially in terms of mileage". Therefore, numerous international studies have addressed different aspects of indoor air hygiene, in the past years. In this paper, meaningful original studies on car indoor air pollution, related to VOCs, COx, PMs, microbials, BFRs, OPFRs, cigarettes, electronic smoking devices, high molecular weight plasticizer, and NOx are summarized in the form of a review. This present review aimed to summarize recently published studies in this important field of environmental medicine and points to the need for further studies with special recommendations for optimizing the interior air hygiene.
Collapse
Affiliation(s)
- Nicole Zulauf
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, 60590 Frankfurt, Germany.
| | - Janis Dröge
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, 60590 Frankfurt, Germany
| | - Doris Klingelhöfer
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, 60590 Frankfurt, Germany
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, 60590 Frankfurt, Germany
| | - Gerhard M Oremek
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, 60590 Frankfurt, Germany
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, 60590 Frankfurt, Germany
| |
Collapse
|
11
|
Kumar S. Recent Developments of Biobased Plasticizers and Their Effect on Mechanical and Thermal Properties of Poly(vinyl chloride): A Review. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02080] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sudheer Kumar
- School for Advanced Research in Polymers (SARP), Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering & Technology (CIPET: IPT), B/25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
12
|
Chen J, Liu Z, Wang K, Huang J, Li K, Nie X, Jiang J. Epoxidized castor oil‐based diglycidyl‐phthalate plasticizer: Synthesis and thermal stabilizing effects on poly(vinyl chloride). J Appl Polym Sci 2018. [DOI: 10.1002/app.47142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Chen
- Institute of Chemical Industry of Forestry ProductsChinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Biomass Energy and Material Nanjing Jiangsu 210042 China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourceNanjing Forestry University Nanjing Jiangsu 210037 China
| | - Zengshe Liu
- USDA, ARS, National Center for Agricultural Utilization Research, Bio‐Oils Research Unit, 1815 N University St Peoria Illinois 61604
| | - Kui Wang
- Institute of Chemical Industry of Forestry ProductsChinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Biomass Energy and Material Nanjing Jiangsu 210042 China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourceNanjing Forestry University Nanjing Jiangsu 210037 China
| | - Jinrui Huang
- Institute of Chemical Industry of Forestry ProductsChinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Biomass Energy and Material Nanjing Jiangsu 210042 China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourceNanjing Forestry University Nanjing Jiangsu 210037 China
| | - Ke Li
- Institute of Chemical Industry of Forestry ProductsChinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Biomass Energy and Material Nanjing Jiangsu 210042 China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourceNanjing Forestry University Nanjing Jiangsu 210037 China
| | - Xiaoan Nie
- Institute of Chemical Industry of Forestry ProductsChinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Biomass Energy and Material Nanjing Jiangsu 210042 China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourceNanjing Forestry University Nanjing Jiangsu 210037 China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forestry ProductsChinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Biomass Energy and Material Nanjing Jiangsu 210042 China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourceNanjing Forestry University Nanjing Jiangsu 210037 China
| |
Collapse
|
13
|
|