1
|
Bortolon Ribas E, Colombo Dal-Pont G, Centa A, Bueno MO, Cervini R, Silva Ogoshi RC, Locatelli C. Effects of Low Concentration of Glyphosate-Based Herbicide on Genotoxic, Oxidative, Inflammatory, and Behavioral Meters in Danio rerio (Teleostei and Cyprinidae). Biochem Res Int 2024; 2024:1542152. [PMID: 39290786 PMCID: PMC11407887 DOI: 10.1155/2024/1542152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
The glyphosate herbicide is a pesticide widely used in the world and can contaminate soil, air, and water. The objective of this work was to evaluate the toxicity of a glyphosate-based herbicide (GBH) in zebrafish (Danio rerio). Fish were exposed to different concentrations of GBH (0, 50, 250, and 500 µg/L) for 96 hours. Brain, liver, and blood were collected for biochemical and genotoxicity analyses, and behavioral tests were performed. The results showed that there was a reduction in the activity of the antioxidant enzymes of catalase (CAT) and glutathione-S-transferase (GST) in the liver at all concentrations and at the highest concentration in the brain. There was also a reduction in lipid peroxidation in the liver at all concentrations of glyphosate. There was an increase in micronuclei in the blood at the 500 µg/L concentration. However, the count of nuclear abnormalities showed no differences from the control. Interleukin-1beta (IL-1β) generation was inhibited at all concentrations in the liver and at the highest concentration in the brain. No significant differences were found in the behavioral test compared to the control. The results showed that acute exposure to GBH promoted an inflammatory event, which reduced the efficiency of antioxidants, thus producing a disturbance in tissues, mainly in the liver, causing immunosuppression and generating genotoxicity.
Collapse
Affiliation(s)
- Eduardo Bortolon Ribas
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Gustavo Colombo Dal-Pont
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Ariana Centa
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Marcos Otávio Bueno
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Ricardo Cervini
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | | | - Claudriana Locatelli
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| |
Collapse
|
2
|
Lee JW, Shim I, Park K. Proposing Effective Ecotoxicity Test Species for Chemical Safety Assessment in East Asia: A Review. TOXICS 2023; 12:30. [PMID: 38250986 PMCID: PMC10819827 DOI: 10.3390/toxics12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
East Asia leads the global chemical industry, but environmental chemical risk in these countries is an emerging concern. Despite this, only a few native species that are representative of East Asian environments are listed as test species in international guidelines compared with those native to Europe and America. This review suggests that Zacco platypus, Misgurnus anguillicaudatus, Hydrilla verticillata, Neocaridina denticulata spp., and Scenedesmus obliquus, all resident to East Asia, are promising test species for ecotoxicity tests. The utility of these five species in environmental risk assessment (ERA) varies depending on their individual traits and the state of ecotoxicity research, indicating a need for different applications of each species according to ERA objectives. Furthermore, the traits of these five species can complement each other when assessing chemical effects under diverse exposure scenarios, suggesting they can form a versatile battery for ERA. This review also analyzes recent trends in ecotoxicity studies and proposes emerging research issues, such as the application of alternative test methods, comparative studies using model species, the identification of specific markers for test species, and performance of toxicity tests under environmentally relevant conditions. The information provided on the utility of the five species and alternative issues in toxicity tests could assist in selecting test species suited to study objectives for more effective ERA.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Research of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea; (I.S.); (K.P.)
| | | | | |
Collapse
|
3
|
Shan J, Xiaoqian D, Xia L, Yu W, Zhilong Z, Zhihui S, Yanjie Q. Oxidative stress, autophagy, and apoptosis induced by doxycycline in loach fin cells in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156379. [PMID: 35654185 DOI: 10.1016/j.scitotenv.2022.156379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxicity, molecular function disorder, mitophagy, and apoptosis were studied in loach fin cells in vitro after exposure to doxycycline (DOX). The semi-lethal concentration of DOX in loach cells was calculated as 668.96 ± 2.83 mol/L. Loss of cell viability and increases in vacuoles and autolysosomes were evident in cells exposed to DOX at 200 and 400 μmol/L, and apoptotic bodies occurred at 600 μmol/L. In addition, Superoxide Dismutase (SOD), catalase (CAT), Na+-K+-ATPase, and Ca2+-ATPase activities increased significantly in cells exposed to 200 μmol/L DOX, and dose-dependent inhibitory effects on activities were observed in cells exposed to 400 and 600 μmol/L DOX. Quantitative gene expression showed that 400 and 600 μmol/L DOX could induce caspase-3- and caspase-8-mediated apoptosis as well as caspase-activated DNase in loach cells. Transcriptome sequencing in DOX vs. control groups found 16,288 differentially expressed genes, among which protein binding (2633, 31.91%) was the most significant in Gene Ontology terms. Furthermore, 11,930 genes were enriched in 298 Kyoto Encyclopedia of Genes and Genomes (KEGG)pathways. The top three upregulated pathways included "lysosome", "protein processing in endoplasmic reticulum", and "proteasome". FPKM analysis indicated that most genes associated with autophagy and in "protein processing in the endoplasmic reticulum", "TNF signaling pathway", and "NF-kappa B signaling pathway" were upregulated. This suggests that at lower concentrations, DOX induces reactive oxidative species (ROS) in loach fin cells to reduce cell proliferation. ROS in turn stimulate oxidant stress, ion excretion capability and mitophagy to maintain cell homeostasis. Apoptosis was induced in cells subjected to higher concentrations of DOX. The transcriptome data and pathways determined in this study will provide a foundation for the analysis of DOX toxicity in loach cells, which must be examined thoroughly to further understand the cytotoxic mechanism of antibiotics in fish cells.
Collapse
Affiliation(s)
- Jiang Shan
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Ding Xiaoqian
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Li Xia
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Wang Yu
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zheng Zhilong
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Shi Zhihui
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Qin Yanjie
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
4
|
Ding X, Jiang S, Li X, Wang Y, Zheng Z, Qin Y. Cytotoxicity and apoptosis induced by enrofloxacin in loach fin cells in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109398. [PMID: 35753648 DOI: 10.1016/j.cbpc.2022.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxic effect and cell death were studied in loach fin cells in vitro after enrofloxacin (ENR) exposure. The semi-lethal concentration of ENR for loach cells was calculated as 1296.2 ± 3.11 mol/L (about 512.5 mg/L). Loss of cell viability, increase in vacuoles, disappearance of microvilli, and apoptotic bodies were evident in cells exposed to 400, 800, and 1200 μmol/L ENR. Besides, dose-dependent inhibitory effects on SOD, CAT, Na+-K+-ATPase, and Ca2+-ATPase activities were also observed in loach cells exposed to ENR. Quantitative gene expression results showed that ENR induced caspase-3- and caspase-8-mediated apoptosis as well as caspase-activated DNase in loach cells. The findings also indicated a role of JNK pathway in ENR-induced apoptosis in loach cells. Transcriptome sequencing results showed 10,016 differentially expressed genes in ENR vs. control groups, which were all enriched in "Molecular Function" process in GO term. Furthermore, 6763 genes were enriched in 291 KEEG pathways, with most of them belonging to immune and material metabolic pathways. The large number of transcriptome data and pathways determined in this study provide a database foundation for the toxicity analysis of ENR in loach cells, which must be thoroughly examined to further investigate the cytotoxic mechanism of antibiotics in fish cells.
Collapse
Affiliation(s)
- Xiaoqian Ding
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Shan Jiang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xia Li
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yu Wang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zhilong Zheng
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yanjie Qin
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
5
|
Cao X, Rao C, Cui H, Sun D, Li L, Guo S, Zhou J, Yuan R, Yang S, Chen J. Toxic effects of glyphosate on the intestine, liver, brain of carp and on epithelioma papulosum cyprinid cells: Evidence from in vivo and in vitro research. CHEMOSPHERE 2022; 302:134691. [PMID: 35489457 DOI: 10.1016/j.chemosphere.2022.134691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) is the most widely used organophosphorus herbicide in agriculture. The present study aimed to analyze the comprehensive toxicological effects of GLY on juvenile common carp and an epithelioma papulosum cyprinid (EPC) cell line. In the in vivo experiments, exposure to GLY (5 and 15 mg/L) for 30 days induced liver inflammation and oxidative damage in common carp and changed the physical barrier of the intestine. Histopathological analysis of the intestine, liver, brain, and changes in oxidative stress biomarkers provided evidence of damage and immune system responses to GLY. Moreover, an inhibitory effect of 15 mg/L GLY on acetylcholinesterase (AChE) activity was found in the brain, which may be an important reason for the significant decrease in both swimming distance and average acceleration of common carp. Cell experiments showed that 0.65 and 3.25 mg/L GLY inhibited the viability of EPCs. Furthermore, oxidative DNA damage, mitochondrial dysfunction, and reactive oxygen species (ROS) production were observed in EPC cells following GLY exposure. Taken together, this study not only highlights the negative effects of GLY on common carp but also enriches the knowledge of the cytotoxicity mechanism to further clarify the comprehensive toxicity of GLY in common carp.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Shuai Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
6
|
Jia R, Hou Y, Feng W, Li B, Zhu J. Alterations at biochemical, proteomic and transcriptomic levels in liver of tilapia (Oreochromis niloticus) under chronic exposure to environmentally relevant level of glyphosate. CHEMOSPHERE 2022; 294:133818. [PMID: 35114268 DOI: 10.1016/j.chemosphere.2022.133818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of glyphosate (Gly) on aquatic animals has received attention from many researchers. However, the chronic toxicity mechanism of Gly on fish has not yet been clarified entirely. Thus, this study aimed to explore the potential toxicity mechanism of Gly at 2 mg/L, a possibly existing concentration in the aquatic environment, via biochemical, transcriptomic and proteomic analyses in the liver of tilapia. Long-term Gly exposure increased lipid content, and altered redox status in liver. Transcriptomic analysis revealed that Gly exposure changed dramatically the expression of 225 genes in liver, including 94 up-regulated genes and 131 down-regulated genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that these genes were predominantly enriched in ion transport, lipid metabolism and PPAR (peroxisome proliferator-activated receptor) signaling pathway. Meanwhile, at proteomic level, long-term Gly exposure resulted in alteration of 21 proteins, which were principally related to hepatic metabolism function. In conclusion, our data displayed a potential toxicity, mainly manifested as redox imbalance and dysregulation of metabolism function, in the liver of tilapia after long-term Gly exposure at 2 mg/L. This study provided novel insight into underlying toxicity mechanism of long-term Gly exposure at an environmentally relevant concentration in fish.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiran Hou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bing Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
7
|
Oláh M, Farkas E, Székács I, Horvath R, Székács A. Cytotoxic effects of Roundup Classic and its components on NE-4C and MC3T3-E1 cell lines determined by biochemical and flow cytometric assays. Toxicol Rep 2022; 9:914-926. [PMID: 35875257 PMCID: PMC9301602 DOI: 10.1016/j.toxrep.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Cytotoxic effects of the market leading broad-spectrum, synthetic herbicide product Roundup Classic, its active ingredient glyphosate (in a form of its isopropylamine (IPA) salt) and its formulating surfactant polyethoxylated tallowamine (POE-15) were determined on two murine cell lines, a neuroectodermal stem cell-like (NE-4C) and a high alkaline phosphatase activity osteoblastic cell line (MC3T3-E1). Cytotoxicity, genotoxicity, effects on cell viability and cell cycles were examined in five flow cytometry tests, the two former of which were compared by the enzymatic-assay and the alkaline single cell gel electrophoresis (Comet) assay. All of the tests indicated the NE-4C cells being more sensitive, than the MC3T3-E1 cell line to the treatments with the target compounds. Higher sensitivity differences were detected in the viability test by flow cytometry (7-9-fold), than by the MTT assay (1.5-3-fold); in the genotoxicity test by the Comet assay (3.5-403-fold), than by the DNA-damage test (9.3-158-fold); and in the apoptosis test by the Annexin V dead cell kit (1.1-12.7-fold), than by the Caspase 3/7 kit (1-6.5-fold). Cell cycle assays indicated high count of cells (~70%) in the G0/G1 phase for MC3T3-E1 cells, than in NE-4C cell (~40%) after 24 h. The order of the inhibitory potency of the target substances has unequivocally been POE-15 > Roundup Classic > > glyphosate IPA salt.
Collapse
Affiliation(s)
- Marianna Oláh
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - Enikő Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| |
Collapse
|
8
|
Vieira C, Marcon C, Droste A. Phytotoxic and cytogenotoxic assessment of glyphosate on Lactuca sativa L. BRAZ J BIOL 2022; 84:e257039. [PMID: 35293479 DOI: 10.1590/1519-6984.257039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
The active ingredient glyphosate is the most commercialized herbicide on the world market due to its capability in eliminating weeds. However, it can harm the development of non-target organisms and threaten environmental quality. This study analyzed the effects of potentially toxic concentrations of glyphosate on germination, growth, cell cycle and genomic stability of Lactuca sativa L., and identified the most sensitive variables for assessing the toxicity of this herbicide to this biomonitor. Seeds of L. sativa were germinated in Petri dishes containing a sheet of filter paper moistened with 5 mL of a concentration of glyphosate (1.34, 3.35, 6.70, 10.05, 13.40 mg L-1). Controls consisted of distilled water (negative) and 3 mg L-1 CuSO4 (positive). Macroscopic and microscopic variables were analyzed. The germination of L. sativa was not affected by the concentrations of glyphosate. Root length and shoot height of the plants and the mitotic index decreased from the lowest concentration tested on. The chromosomal anomaly index and frequency of micronuclei increased by 3.2 and 22 times, respectively, with the presence of the lowest concentration of glyphosate compared to the negative control. The observed phytotoxic and cytogenotoxic effects demonstrate the negative influence that glyphosate has on the development of L. sativa. Root length and microscopic variables showed the highest sensitivity. This study warns of the possible harmful effects that glyphosate can have on non-target organisms and suggests greater control over the use of this herbicide to mitigate its environmental impact.
Collapse
Affiliation(s)
- C Vieira
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| | - C Marcon
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| | - A Droste
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| |
Collapse
|
9
|
Sang Y, Mejuto JC, Xiao J, Simal-Gandara J. Assessment of Glyphosate Impact on the Agrofood Ecosystem. PLANTS (BASEL, SWITZERLAND) 2021; 10:405. [PMID: 33672572 PMCID: PMC7924050 DOI: 10.3390/plants10020405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate herbicides cautiously in order to protect public health. This entails careful testing and risk assessment of available choices, and also educating farmers and users with mitigation strategies in ecosystem protection and sustainable development. The key to success in this endeavour is using scientific research on biological pest control, organic farming and regulatory control, etc., for new developments in food production and safety, and for environmental protection. Education and research is of paramount importance for food and nutrition security in the shadow of climate change, and their consequences in food production and consumption safety and sustainability. This review, therefore, diagnoses on the use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with the risk assessment on human health of glyphosate formulations through environment and dietary exposures based on the impact of glyphosate and its metabolite AMPA-(aminomethyl)phosphonic acid-on water and food. All this to setup further conclusions and recommendations on the regulated use of glyphosate and how to mitigate the adverse effects.
Collapse
Affiliation(s)
- Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Juan-Carlos Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
10
|
Neto da Silva K, Garbin Cappellaro L, Ueda CN, Rodrigues L, Pertile Remor A, Martins RDP, Latini A, Glaser V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:153-167. [PMID: 32085696 DOI: 10.1080/15287394.2020.1731897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several investigators demonstrated that glyphosate formulations produce neurotoxicity associated with oxidative stress, alterations in glutamatergic system, inhibition of acetylcholinesterase activity and mitochondrial dysfunction. However, the underlying molecular mechanisms following exposure to this herbicide on astrocytes are unclear. Thus, the aim of the present study was to determine the activity of enzymes related to energy metabolism, in addition to oxidative stress parameters, mitochondrial mass, nuclear area, and autophagy in astrocytes treated with a glyphosate-based herbicide. Our results showed that 24 h exposure to a glyphosate-based herbicide decreased (1) cell viability, (2) activities of mitochondrial respiratory chain enzymes and creatine kinase (CK), (3) mitochondrial mass, and (4) nuclear area in rat astroglioma cell line (C6 cells). However, non-protein thiol (NPSH) levels were increased but catalase activity was not changed in cells exposed to the herbicide at non-cytotoxic concentrations. Low glyphosate concentrations elevated content of cells positive to autophagy-related proteins. Nuclear factor erythroid 2-related factor (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and PTEN-induced kinase 1 (PINK1) labeling were not markedly altered in cells exposed to glyphosate at the same concentrations that an increase in NPSH levels and positive cells to autophagy were found. It is conceivable that mitochondria and CK may be glyphosate-based herbicides targets. Further, autophagy induction and NPSH increase may be mechanisms initiated to avoid oxidative stress and cell death. However, more studies are needed to clarify the role of autophagy in astrocytes exposed to the herbicide and which components of the formulation might be triggering the effects observed here.
Collapse
Affiliation(s)
- Katriane Neto da Silva
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Laura Garbin Cappellaro
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Caroline Naomi Ueda
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Luana Rodrigues
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Aline Pertile Remor
- Programa De Pós-graduação Em Biociências E Saúde, Universidade Do Oeste De Santa Catarina - Campus Joaçaba, Joaçaba, Brazil
| | - Roberta de Paula Martins
- Departamento De Ciências Da Saúde, Universidade Federal De Santa Catarina - Campus De Araranguá, Araranguá, Brazil
| | - Alexandra Latini
- Laboratório De Bioenergética E Estresse Oxidativo, Departamento De Bioquímica, Universidade Federal De Santa Catarina - Campus De Florianópolis, Florianópolis, Brazil
| | - Viviane Glaser
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| |
Collapse
|
11
|
Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Bonnaud B, Morin S, Clérandeau C, Morin B, Cachot J. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105291. [PMID: 31525644 DOI: 10.1016/j.aquatox.2019.105291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Most pesticides used in agriculture end up in the aquatic environment through runoff and leaching of treated crops. One of the most commonly used herbicides is glyphosate. This compound or its metabolites are frequently detected in surface water in Europe. In the present study, in vivo and in vitro studies were carried out using the early life stages of rainbow trout (Oncorhynchus mykiss) and the cell line RTL-W1 (a liver cell line from rainbow trout) to characterize the toxic effects of glyphosate at environmentally-realistic concentrations. Both studies were performed using the commercial formulation Roundup® GT Max, and technical-grade glyphosate for the in vitro study. Eyed-stage embryos were exposed for 3 weeks to sub-lethal concentrations (0.1 and 1 mg/L) of glyphosate using Roundup. Numerous toxicity endpoints were recorded such as survival, hatching success, larval biometry, developmental abnormalities, swimming activity, genotoxicity (formamidopyrimidine DNA-glycosylase Fpg-modified comet assay), lipid peroxidation (TBARS), protein carbonyls and target gene transcription. Concentrations neither affected embryonic or larval survival nor increased developmental abnormalities. However, a significant decrease was observed in the head size of larvae exposed to 1 mg/L of glyphosate. In addition, a significant increase in mobility was observed for larvae exposed to glyphosate at 0.1 mg/L. TBARS levels were significantly decreased on larvae exposed to 1 mg/L (a.i.), and cat and cox1 genes were differently transcribed from controls. DNA damage was detected by the Fpg-modified comet assay in RTL-W1 cell line exposed to the technical-grade glyphosate and Roundup formulation. The results suggest that chronic exposure to glyphosate, at environmental concentrations, could represent a potential risk for early life stages of fish.
Collapse
Affiliation(s)
- Shannon Weeks Santos
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Patrice Gonzalez
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bettie Cormier
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Nicolas Mazzella
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Bertille Bonnaud
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Soizic Morin
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Christelle Clérandeau
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France.
| |
Collapse
|
12
|
Córdova López AM, Sarmento RA, de Souza Saraiva A, Pereira RR, Soares AMVM, Pestana JLT. Exposure to Roundup® affects behaviour, head regeneration and reproduction of the freshwater planarian Girardia tigrina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:453-461. [PMID: 31030151 DOI: 10.1016/j.scitotenv.2019.04.234] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The demand of glyphosate-based herbicides including Roundup® is rising in the tropics due to increase occurence of glyphosate-resistant weeds that require higher herbicide application rates but also because of their use associated with genetically engineered, glyphosate-tolerant crops. Consequently, there is now an excessive use of glyphosate in agricultural areas with potential adverse effects also for the surrounding aquatic environments. This study aimed to determine the sensitivity of the freshwater planarian Girardia tigrina to acute and chronic exposures of Roundup®. Planarians were exposed to a range of lethal and sub-lethal concentrations of Roundup® to determine the median lethal concentration (LC50) concerning its active ingredient glyphosate and also effects on locomotor velocity (pLMV), feeding rate, regeneration, reproductive parameters and morphological abnormalities. Regeneration endpoints included length of blastema and time for photoreceptors and auricles regeneration after decapitation, while effects on reproduction were assessed measuring fecundity (number of deposited cocoons) and fertility (number of hatchlings) over five weeks of exposure to glyphosate. The estimated 48 h LC50 of was 35.94 mg glyphosate/L. Dose dependent effects were observed for feeding, locomotion and regeneration endpoints with Lowest observed effect concentration (LOEC) values as low as 3.75 mg glyphosate/L. Chronic exposures to environmentally relevant concentrations of glyphosate significantly impaired fecundity and fertility rates of exposed planarians (median effective concentration, EC50 = 1.6 mg glyphosate/L for fecundity and fertility rates). Our results show deleterious effects of Roundup® on regeneration, behavior and reproduction of freshwater planarians and add important ecotoxicological data towards the environmental risk assessment of glyphosate-based herbicide in freshwater ecosystems.
Collapse
Affiliation(s)
- Ana M Córdova López
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil; ICEMR Amazonia Laboratory and Emerging Diseases - Iquitos Headquarters, Universidad Peruana Cayetano Heredia, Iquitos, Perú
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil
| | - Althiéris de Souza Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia Goiano, campus Campos Belos, 73840-000 Campos Belos, GO, Brazil
| | - Renata Ramos Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Qin Y, Li X, Yang Y, Li Z, Liang Y, Zhang X, Jiang S. Toxic effects of copper sulfate on diploid and triploid fin cell lines in Misgurnus anguillicaudatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1419-1426. [PMID: 30189558 DOI: 10.1016/j.scitotenv.2018.06.315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The effects of different concentrations of copper sulfate on diploid and triploid fin cell lines (named DIMF and TRMF, respectively) in Misgurnus anguillicaudatus were studied. The LC50 of copper sulfate estimated by an MTT assay was 268.39 in DIMF cells, and 311.54 μmol/L in TRMF cells, respectively. Activity of superoxide dismutase (SOD) in DIMF cells gradually increased as the concentration of copper sulfate increased (up to 200 μmol/L), and then gradually decreased. SOD activity in triploid loach fin cells, as well as glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) activity in both diploid and triploid cells, decreased as the concentration of copper sulfate increased, which suggested that excessive copper exposure at the concentrations tested in this study was detrimental to anti-oxidative capability. In general, SOD, GST and GSH-Px activity was higher in triploid fin cells than in diploid cells. DNA breaks were observed by comet assays after 24 h exposure to 400 and 800 μM copper; DNA percent in the comet's tail was lower in TRMF than in DIMF. Ultrastructurally, there were no significant differences in the organelles of both cells, although a higher number of vesicles were observed in TRMF cells after copper exposure. Pathological changes induced by copper sulfate were similar in DIMF and TRMF cells, and were indicative of cell necrosis. Results above suggested that excessive copper sulfate exposure would lead to antioxidant enzymes activity reduction, along with antioxidant defenses disruption and superoxide radicals increasing, and then to DNA damage, ultrastructural changes and necrosis features in DIMF and TRMF M. anguillicaudatus fin cells. Triploid cell lines had higher resistance to copper than their diploid counterparts especially at higher concentrations of copper due to larger cells and higher intracellular content of detoxification enzymes to resist the toxicity of heavy metals.
Collapse
Affiliation(s)
- Yanjie Qin
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xia Li
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, PRC, Dalian Ocean University, Dalian 116023, China.
| | - Yanjin Yang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Zhuangzhuang Li
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yan Liang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xiaoyu Zhang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Shan Jiang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, PRC, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
14
|
Lopes FM, Sandrini JZ, Souza MM. Toxicity induced by glyphosate and glyphosate-based herbicides in the zebrafish hepatocyte cell line (ZF-L). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:201-207. [PMID: 29990732 DOI: 10.1016/j.ecoenv.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Glyphosate is the active component of many commonly used herbicides; it can reach bodies of water through irrigated rice plantations. In the present study, we evaluated the effect of glyphosate and Roundup® (a glyphosate-based herbicide) in established culture of the zebrafish hepatocyte cell line ZF-L after 24 and 48 h of exposure to concentrations of 650 and 3250 µg/L. We observed a reduction in metabolic activity and lysosomal integrity, and an increase in cell number after 24 h of Roundup® exposure at the highest concentration. An increase in active mitochondria and apoptotic cells was observed following 24 h exposure to glyphosate and Roundup®, while only exposure to Roundup® induced an increase in necrotic cells. Rhodamine B accumulation decreased after 48 h exposure to 650 µg/L of Roundup®; this reduction is indicative of increased activity of ABC pumps. Overall, the present findings highlighted the hazard of glyphosate exposure not only in the commercial formulation but also glyphosate alone, since both can induce damage in the ZF-L cell line primarily through the induction of apoptosis.
Collapse
Affiliation(s)
- Fernanda Moreira Lopes
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| | - Juliana Zomer Sandrini
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| | - Marta Marques Souza
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
15
|
Fu H, Xia Y, Chen Y, Xu T, Xu L, Guo Z, Xu H, Xie HQ, Zhao B. Acetylcholinesterase Is a Potential Biomarker for a Broad Spectrum of Organic Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8065-8074. [PMID: 29995397 DOI: 10.1021/acs.est.7b04004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.
Collapse
Affiliation(s)
- Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Haiming Xu
- School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia Hui Autonomous Region 750004 , China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| |
Collapse
|
16
|
Santo GD, Grotto A, Boligon AA, Da Costa B, Rambo CL, Fantini EA, Sauer E, Lazzarotto LMV, Bertoncello KT, Júnior OT, Garcia SC, Siebel AM, Rosemberg DB, Magro JD, Conterato GMM, Zanatta L. Protective effect of Uncaria tomentosa extract against oxidative stress and genotoxicity induced by glyphosate-Roundup® using zebrafish (Danio rerio) as a model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11703-11715. [PMID: 29442306 DOI: 10.1007/s11356-018-1350-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress and DNA damage are involved in the glyphosate-based herbicide toxicity. Uncaria tomentosa (UT; Rubiaceae) is a plant species from South America containing bioactive compounds with known beneficial properties. The objective of this work was to evaluate the antioxidant and antigenotoxic potential of UT extract in a model of acute exposure to glyphosate-Roundup® (GR) in zebrafish (Danio rerio). We showed that UT (1.0 mg/mL) prevented the decrease of brain total thiols, the increase of lipid peroxidation in both brain and liver, and the decrease of liver GPx activity caused after 96 h of GR (5.0 mg/L) exposure. In addition, UT partially protected against the increase of micronucleus frequency induced by GR exposure in fish brain. Overall, our results indicate that UT protects against damage induced by a glyphosate-based herbicide by providing antioxidant and antigenotoxic effects, which may be related to the phenolic compounds identified in the extract.
Collapse
Affiliation(s)
- Glaucia Dal Santo
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Alan Grotto
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Aline A Boligon
- Laboratório de Pesquisa Fitoquímica, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Prédio 26, Sala 1115, Santa Maria, CEP 97105-900, Brazil
| | - Bárbara Da Costa
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, RGS, 90610-000, Brazil
| | - Cassiano L Rambo
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, Porto Alegre, RS, 6681, Brazil
| | - Emily A Fantini
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Elisa Sauer
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, RGS, 90610-000, Brazil
| | - Luan M V Lazzarotto
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Kanandra T Bertoncello
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Osmar Tomazelli Júnior
- Epagri, Development Center for Aqua culture and Fisheries, Florianópolis, SC, 8801-970-000, Brazil
| | - Solange C Garcia
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, RGS, 90610-000, Brazil
| | - Anna M Siebel
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Chapecó, SC, 89809-000, Brazil
| | - Denis B Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica e Biodiversidade Animal, Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Jacir Dal Magro
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Greicy M M Conterato
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
- Laboratório de Fisiologia da Reprodução Animal, Universidade Federal de Santa Catarina, Campus Curitibanos, Rodovia Ulisses Gaboardi-Km 3, Curitibanos, SC, 89520-000, Brazil
| | - Leila Zanatta
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil.
- Centro de Educação Superior do Oeste, Departamento de Enfermagem, Universidade do Estado de Santa Catarina, Rua 7 de Setembro 77-D, Centro, Chapecó, SC, 89806-152, Brazil.
| |
Collapse
|