1
|
Zupančič M, Miler M, Žibret G. The relationship between the inhalation bioaccessibility of potentially toxic elements in road dust from a heavily polluted industrial area and the source of their pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124810. [PMID: 39181302 DOI: 10.1016/j.envpol.2024.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
One of the sources of chronic exposure to potentially toxic elements (PTE), especially in polluted environments, is the inhalation of resuspended road dust (RD). The aim of this study is to assess the inhalation bioaccessibility of PTE in RD from highly polluted environments from mining/smelting industries and traffic, and to identify any correlations between the bioaccessibility fraction of PTE and the physicochemical characteristics of the particles. RD from the studied area contains extremely high total concentrations of Cr, V, and Mn, which are likely due to pollution from the smelting industry. Additionally, elevated total concentrations of other elements associated with traffic emissions including Zn, Cu, Pb, Sb, and Sn were also measured. The bioaccessibility of PTE was assessed using two synthetic extraction solutions - Gamble's solution (GS) and Artificial Lysosomal Fluid (ALF). The majority of elements showed negligible bioaccessibility in GS. However, quite high inhalation bioaccessibility was observed for Zn, Pb, Sb, Cd, and Mn in the ALF solution, with a mean bioaccessible fraction of 49, 51.5, 41, 50, and 40% respectively. The highest bioavailable fraction was measured for Cd (97%) in a sample collected near a steel production facility and for Pb (95%) in a sample collected near the highway. These results indicate that increased mobility of the elements in inhaled particles occurs only in the case of phagocytosis. The lowest inhalation bioavailability was measured for Cr (mean is 3%). Differential individual particle analysis revealed that about 60% of phases, mostly major (Cr,Ti,V)-bearing metallic alloys, silicates, oxides and sulphides, are stable in ALF solution, while 40% of phases, mostly (Fe,Ca,Mn)-bearing oxides, silicates, sulphides, metals and metallic alloys originating from steel production, ferrochrome, ferrosilicon and vanadium production and from traffic emissions have been heavily corroded or completely dissolved. The study provides valuable information to further assess health hazards from various emission sources.
Collapse
Affiliation(s)
- Marija Zupančič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Miloš Miler
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia
| | - Gorazd Žibret
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Wang X, Gao Q, Wang W, Yan J, Liu Y, Kuang S, Lu J. Determining priority control factors for heavy metal management in urban road dust based on source-oriented probabilistic ecological-health risk assessment: A study in Xi'an during peak pollution season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122105. [PMID: 39213844 DOI: 10.1016/j.jenvman.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Urban road dust (URD) is essential for transporting heavy metals (HMs), which can be a major danger to both the environment and human health. Moreover, URD has the potential to be carried into bodies of water, leading to contamination of the aquatic ecosystem. A study was conducted in Xi'an, a city in northwestern China known for high air pollution levels, during January 2024 - a period characterized by peak pollution due to frequent low wind speeds and temperature inversions. The research investigated the presence of 10 types of HMs (Cu, Zn, Cd, Cr, Pb, As, Ni, Hg, Co, and Mn) in URD. Findings revealed elevated levels of Cu, Zn, Cd, Cr, Pb, As, and Hg in URD compared to background levels. Hg showed the most significant contamination (moderate to heavy), followed by moderate contamination of Cd, and lower levels of As, Zn, and Cu. The main sources of HMs were traffic (58.2%), mixed natural and industrial (30.3%), and industrial (11.5%). The ecological risk in the area was deemed to be very high, primarily because of Hg and Cd. Based on probabilistic health risk assessments, it was determined that non-carcinogenic risks were deemed acceptable for all groups. Nevertheless, the possibility of carcinogenic risks should not be disregarded. Strategies for controlling ecological-health risks prioritize mixed natural and industrial sources, with a focus on Hg, Cd, and As in URD. The results offer a foundation for policymakers to create specific control strategies.
Collapse
Affiliation(s)
- Xuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qi Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weizhou Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jiaxin Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yunchong Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shixiang Kuang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
3
|
Sannoh F, Fatmi Z, Carpenter DO, Santoso M, Siddique A, Khan K, Zeb J, Hussain MM, Khwaja HA. Air pollution we breathe: Assessing the air quality and human health impact in a megacity of Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173403. [PMID: 38844217 DOI: 10.1016/j.scitotenv.2024.173403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
With 24 million inhabitants and 6.6 million vehicles on the roads, Karachi, Pakistan ranks among the world's most polluted cities due to high levels of fine particulate matter (PM2.5). This study aims to investigate PM2.5 mass, seasonal and temporal variability, chemical characterization, source apportionment, and health risk assessment at two urban sites in Karachi. Samples were analyzed using ion chromatography and dual-wavelength optical transmissometer for various inorganic components (anions, cations, and trace elements) and black carbon (BC). Several PM2.5 pollution episodes were frequently observed, with annual mean concentrations at Kemari (140 ± 179 μg/m3) and Malir (95 ± 40.9 μg/m3) being significantly above the World Health Organization's guidelines of 5 μg/m3. Chemical composition at both sites exhibited seasonal variability, with higher pollution levels in winter and fall and lower concentrations in summer. The annual average BC concentrations were 4.86 ± 5.29 μg/m3 and 4.52 ± 3.68 μg/m3, respectively. A Positive Matrix Factorization (PMF) analysis identified 5 factors, crustal, sea salt, vehicular exhaust, fossil-fuel combustion, and industrial emission. The health risk assessment indicated a higher number of deaths in colder seasons (fall and winter) at the Kemari (328,794 and 287,814) and Malir (228,406 and 165,737) sites and potential non-carcinogenic and carcinogenic risks to children from metals. The non-carcinogenic risk of PM2.5 bound Pb, Fe, Zn, Mn, Cr, Cu and Ni via inhalation exposure were within the acceptable level (<1) for adults. However, potential non-carcinogenic and carcinogenic health risk posed by Pb and Cr through inhalation were observed for children. The findings exhibit critical levels of air pollution that exceed the safe limits in Karachi, posing significant health risks to children and sensitive groups. Our study underscores the urgent need for effective emission control strategies and policy interventions to mitigate these air pollution risks.
Collapse
Affiliation(s)
- Fatim Sannoh
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - Zafar Fatmi
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - David O Carpenter
- Institute for the Health and the Environment, University at Albany, Albany, NY, United States
| | | | - Azhar Siddique
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kamran Khan
- Chemistry Department, University of Karachi, Karachi, Pakistan
| | - Jahan Zeb
- Department of Environmental and Health Research, The Custodian of the Holy Two Mosques Institute for Hajj and Umra Research, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mirza M Hussain
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - Haider A Khwaja
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, United States.
| |
Collapse
|
4
|
Fouladi-Fard R, Jafari A, Kamarahie B, Karimi M, Ghaderpoori M, Karami M, Alinejad N, Azimi F. Health risk assessment of heavy metals in the dust street of Mehran city, as a busy city in religious times, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49601-49614. [PMID: 39080171 DOI: 10.1007/s11356-024-34484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The concentration of various potentially toxic metals (Pb, Cd, As, Ni, Zn, and Cr) in street dust samples collected from Mehran city, Iran, was analyzed. The samples were obtained during normal traffic conditions, NTT, prior to the Arbaeen ceremony, as well as after the pilgrims' return, which corresponds to high traffic time, HTT. Street dust samples were analyzed for HM content using ICP-OES, following acid digestion. The subsequent evaluation of the data involved the application of the geo-accumulation index, enrichment factor, and potential ecological risk index (PER) and health risk assessment. The findings demonstrate a notable increase in the levels of HMs during HTT compared to the NTT. The highest enrichment values for Pb and Cd were observed in Mehran Street dust during the HTT. The mean of PER for all sampling points increased to 138.24, indicating a moderate-potential ecological risk at this time. Based on the health risk assessment, it was found that the hazard index for all samples was below one. The incremental lifetime cancer risk was below 10-6. This indicates that the exposed population is not exposed to substantial health risks. Despite the heavy traffic caused by the Arbaeen ceremony in this area and the high enrichment of HMs, along with potential ecological risks, no significant health risks were observed for individuals exposed to street dust. However, it is important to note that the continuation of this trend, in the absence of proper traffic management, could lead to significant environmental and health problems in the future.
Collapse
Affiliation(s)
- Reza Fouladi-Fard
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Ali Jafari
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahram Kamarahie
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Karimi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mansour Ghaderpoori
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mohammadamin Karami
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Navid Alinejad
- Department of Public Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Faramarz Azimi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
Aguilera A, Gallegos Á, Luna V, Hernández L, Gutiérrez M, Amaro D, Goguitchaichvili A, Quintana P, Bautista F. Higher heavy metal contamination indoors than outdoors during COVID-19 in Mexico City. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16696-16709. [PMID: 38326683 PMCID: PMC10894124 DOI: 10.1007/s11356-024-32085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
People spend most of their time indoors, especially during the coronavirus disease. Prolonged exposure to heavy metal-contaminated dust can be harmful to human health. The objectives of this study were to identify the contamination level in outdoor and indoor dust, compare contamination in both environments, and assess the human health risk. Two-hundred thirty-nine samples of dust were taken by Mexico City citizens in 38 homes on the weekends of May 2020. Heavy metal concentrations were measured through XRF. The contamination level was set using the contamination factor with a local and global background value, mixed linear models were used to identify indoor and outdoor differences, and USEPA human health risk methodology was used. Pb, Zn, and Cu had the highest contamination levels, followed by Sr and Mn, using both the local and global background values. The Pb, Zn, and Cu contamination was greater indoors, while higher Mn, Sr, and Fe were detected outdoors. According to the outdoor/indoor ratios, the main sources of Ca, Pb, Zn, and Cu must be indoors, while the main sources of Fe, Mn, Sr, Y, and Ti are outdoors. A human health risk was not detected, as the hazard index was lower than one. However, ailments can be developed due to exposure to Pb, Mn, and Fe in children (hazard index > 0.1). A higher risk due to Pb exposition was found indoors. Indoor environments in Mexico City were more contaminated by heavy metals and represented a higher risk to human health than outdoors during the pandemic isolation.
Collapse
Affiliation(s)
- Anahí Aguilera
- Centro de Investigaciones en Geografía Ambiental, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico
| | - Ángeles Gallegos
- Centro de Investigaciones en Geografía Ambiental, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico
| | - Víctor Luna
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Luciano Hernández
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Margarita Gutiérrez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Daniel Amaro
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Avto Goguitchaichvili
- Instituto de Geofísica, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico
| | - Patricia Quintana
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados. Carr. Mérida - Progreso, Loma Bonita, 97205, Merida, Yucatan, Mexico
| | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico.
- Colegio de Postgraduados, Periférico Carlos A. Molina S/N Km. 3, Periférico Carlos A Molina SN, Ranchería Río Seco y Montaña, 86500, Heroica Cardenas, Tabasco, Mexico.
| |
Collapse
|
6
|
Wang F, Li W, Wang H, Hu Y, Cheng H. The leaching behavior of heavy metal from contaminated mining soil: The effect of rainfall conditions and the impact on surrounding agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169877. [PMID: 38185143 DOI: 10.1016/j.scitotenv.2024.169877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/10/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Contaminated mining soils could lead to heavy metal pollution of surrounding farmlands under rainfall conditions. With the aids of sequential extraction, batch leaching, and dynamic leaching experiments, this study was carried out to investigate the characteristics of heavy metals in contaminated mining soils, understand their leaching behavior under different rainfall conditions, and evaluate the potential effects on surrounding farmlands. The results indicated that the concentrations of heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) in the contaminated mining soils were several or even twenty times higher than their corresponding background values, and Cd, Zn, Cu and Pb had considerable proportions (>50 %) in mobile forms. The leaching amounts of heavy metals from the contaminated mining soils had positive correlation with their contents in acid soluble form, and showed strong dependence on rainfall pH conditions. Acid rainfalls (pH = 4.32) can greatly increase the average annual release of Cd, Zn, Cu and Pb from mine soils in the study area, with increments ranging from 72.4 % (Pb) to 85.9 % (Cd) compared to those under alkaline conditions (pH = 7.42). The leaching of heavy metals was well fitted by two-constant, pseudo second-order and parabolic equations, indicating that their multi-layer sorption/desorption behavior on soil surface was dominated by chemical processes and their release was controlled by the diffusion within the soil pore channels. The two-column leaching experiment showed that the metal-rich leachate can lead to obvious increments of heavy metals in non-residual fractions (in particular Cd in acid soluble form) in surrounding farmlands, which would significantly raise the potential ecological risk associated with heavy metals. These findings indicate the importance of contaminated mining soils as a long-term source of heavy metals and the needs for mitigating the releases of toxic elements, especially in areas with heavy acid precipitation.
Collapse
Affiliation(s)
- Fei Wang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hao Wang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Lu X, Wang Z, Chen Y, Yang Y, Fan X, Wang L, Yu B, Lei K, Zuo L, Fan P, Liang T, Cho JW, Antoniadis V, Rinklebe J. Source-specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119056. [PMID: 37757688 DOI: 10.1016/j.jenvman.2023.119056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Contamination, hazard level and source of 10 widely concerned potentially toxic metal(loid)s (PTMs) Co, As, Pb, Cr, Cu, Zn, Ni, Mn, Ba, and V in fine dust with particle size below 63 μm (FD63) were investigated to assess the environmental quality of college campuses and influencing factors. PTMs sources were qualitatively analyzed using statistical methods and quantitatively apportioned using positive matrix factorization. Probabilistic contamination degrees of PTMs were evaluated using enrichment factor and Nemerow integrated enrichment factor. Eco-health risk levels of content-oriented and source-oriented for PTMs were evaluated using Monte Carlo simulation. Mean levels of Zn (643.8 mg kg-1), Pb (146.0 mg kg-1), Cr (145.9 mg kg-1), Cu (95.5 mg kg-1), and Ba (804.2 mg kg-1) in FD63 were significantly larger than soil background values. The possible sources of the concerned PTMs in FD63 were traffic non-exhaust emissions, natural source, mixed source (auto repair waste, paints and pigments) and traffic exhaust emissions, which accounted for 45.7%, 25.4%, 14.5% and 14.4% of total PTMs contents, respectively. Comprehensive contamination levels of PTMs were very high, mainly caused by Zn pollution and non-exhaust emissions. Combined ecological risk levels of PTMs were low and moderate, chiefly caused by Pb and traffic exhaust emissions. The non-cancer risks of the PTMs in FD63 to college students fell within safety level, while the carcinogenic PTMs in FD63 had a certain cancer risks to college students. The results of source-specific health risk assessment indicated that Cr and As were the priority PTMs, and the mixed source was the priority pollution source of PTMs in FD63 from college campuses, which should be paid attention to by the local government.
Collapse
Affiliation(s)
- Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yurong Chen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Woo Cho
- Department of Environment, Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| |
Collapse
|
8
|
Wang Y, Liu Q, Tian Z, Cheng B, Guo X, Wang H, Zhang B, Xu Y, Sun L, Hu B, Chen G, Sheng J, Liang C, Tao F, Wei J, Yang L. Short-term effects of ambient PM 1, PM 2.5, and PM 10 on internal metal/metalloid profiles in older adults: A distributed lag analysis in China. ENVIRONMENT INTERNATIONAL 2023; 182:108341. [PMID: 38006770 DOI: 10.1016/j.envint.2023.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
There is limited evidence linking exposure to ambient particulate matter (PM) with internal doses of metals and metalloids (metal(loid)s). This study aimed to evaluate the effects of short-term exposure to ambient PM on urine metal(loid)s among Chinese older adults. Biological monitoring data of 15 urine metal(loid)s collected in 3, 970 community-dwelling older adults in Fuyang city, Anhui Province, China, from July to September 2018, were utilized. PMs with an aerodynamic diameter ≤ 1 µm (PM1), ≤ 2.5 µm (PM2.5), and ≤ 10 µm (PM10) up to eight days before urine collection were estimated by space-time extremely randomized trees (STET) model. Residential greenness was reflected by Normalized Difference Vegetation Index (NDVI). We used generalized additive model (GAM) combined with distributed lag linear/non-linear models (DLMs/DLNMs) to estimate the associations between short-term PM exposure and urine metal(loid)s. The results suggested that the cumulative exposures to PM1, PM2.5, or PM10 over two days (lag0-1 days) before urine collection were associated with elevated urine metal(loid)s in DLMs, while exhibited linear or "inverted U-shaped" relationships with seven urine metal(loid)s in DLNMs, including Gallium (Ga), Arsenic (As), Aluminum (Al), Magnesium (Mg), Calcium (Ca), Uranium (U), and Barium (Ba). Aforementioned results indicated robust rather than spurious associations between PMs and these seven metal(loid)s. After standardizations for three PMs, PM1 was the greatest contributor to U, PM2.5 made the greatest contributions to Ga, As, Al, and Ba, and PM10 contributed the most to Mg and Ca. Furthermore, the effects of three PMs on urine Ga, As, Al, Mg, Ca, and Ba were reduced when exposed to higher levels of NDVI. Overall, short-term exposures to ambient PMs contribute to elevated urinary metal(loid) levels in older adults, and three PMs exhibit various contributions to different urine metal(loid)s. Moreover, residential greenness may attenuate the effects of PMs on urine metal(loid)s.
Collapse
Affiliation(s)
- Yuan Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qiang Liu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ziwei Tian
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Beijing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xianwei Guo
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hongli Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Bo Zhang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Xu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang, Anhui 236069, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang, Anhui 236069, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jie Sheng
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Chunmei Liang
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, Anhui, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Linsheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Zhang X, Sun M, Aikawa M. Characteristics of PM 2.5-bound metals in Japan over six years: Spatial distribution, health risk, and source analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118750. [PMID: 37573701 DOI: 10.1016/j.jenvman.2023.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Air sampling campaigns were conducted at 100 survey sites across Japan from April 2014 to February 2020, and a comprehensive database of atmospheric particles was obtained. In this study, the characteristics of PM2.5 and 26 metals were investigated in depth. Spatially, the concentration of PM2.5 gradually increased from the northeast to the southwest of Japan. The pollution in Kitakyushu City was the most serious, reaching 19.8 μg m-3. As an important particle component, metals did not show obviously spatial variation in Japan, with a sum concentration of 0.4 μg m-3. Anthropogenic metals only accounted for about 8% of the total metals, but they could pose a serious threat to public health. For children, the non-carcinogenic risk and carcinogenic risk due to exposure to anthropogenic metals could not be neglected in Japan; the corresponding HI and CR values at 100 survey sites ranged from 2.7 to 15.0 and 4.1 × 10-5 to 3.4 × 10-4, respectively. Adults faced lower health risks than children, with HI values ranging from 0.2 to 2.0 and CR values ranging from 2.0 × 10-5 to 1.6 × 10-4. The integrated health risk assessment results showed that the coastal region of the Seto Inland Sea and the north Tohoku Region were the most heavily polluted areas of Japan; in this study, 20 survey sites were finally determined to be high-risk sites, among which pollution control for Niihama City, Kitakyushu City, Hachinohe City, and Shimonoseki City were of first priority. With further combination with a positive matrix factorization model, it can be known that these four cities mainly had five to seven metal sources, and their heavy pollution was mainly caused by ship emissions, industrial emissions, biomass burning, and coal combustion. Overall, our study comprehensively revealed the regional patterns of PM2.5-bound metal pollution across Japan, which can help in making cost-effective risk management policies with limited national/local budgets.
Collapse
Affiliation(s)
- Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Meng Sun
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
10
|
Lin TS, Wu JW, Vo TDH, Nguyen VT, Ju YR. Accumulation degree and risk assessment of metals in street dust from a developing city in Central Taiwan. CHEMOSPHERE 2023; 339:139785. [PMID: 37567257 DOI: 10.1016/j.chemosphere.2023.139785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Due to the numerous industrial parks and high traffic density in Miaoli, Taiwan, large amounts of metals may be released into the atmosphere, accumulating in street dust. Therefore, this study aimed to collect street dust in Miaoli to quantify the metals and assess the accumulation degree, sources, and potential risks. The enrichment factor (EF), geological accumulation index (Igeo), ecological risk, and non-carcinogenic and lifetime carcinogenic risk were estimated to assess the accumulation degree and the potential environmental and health risks. Pearson correlation analysis, principal component analysis, and positive matrix factor model were used to clarify the relationship between levels of metals and identify possible sources. The levels of metals in street dust in order were Fe > Zn > Mn > Cu > Cr > Ni > Pb > Sr > Co > Sb. According to Igeo, the level of Ni indicated moderately polluted. The levels of Zn, Cu, and Pb showed moderate to strong pollution, strong pollution, and very strong pollution, respectively. Results of average ecological risk analysis pointed out that Pb and Cu represent a very high risk, while other metals posed low-to moderate-level ecological risks. Excluding the Steel Enterprise area, based on the EF value and source identification, it might be concluded that Co, Sr, Fe, Mn, and Sb were mainly from natural sources, while Cu, Pb, and Zn come from anthropogenic pollution sources. Based on the results of the risk assessments, most metals pose no serious adverse health risk to humans. But, in comparison to Miaoli townships, the health risks of residents living in the Steel Enterprise area were higher. However, given that children and adolescents exposure to Co, Cr, Pb, and Ni together constitute a relatively higher carcinogenic risk (CR > 10-6), more attention needs to be paid to the populations most susceptible.
Collapse
Affiliation(s)
- Tser-Sheng Lin
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Jun-Wei Wu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Truc Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan.
| |
Collapse
|
11
|
Wang Z, Lu X, Yu B, Yang Y, Wang L, Lei K. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164022. [PMID: 37172841 DOI: 10.1016/j.scitotenv.2023.164022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Re-suspended surface dust (RSD) often poses higher environmental risks due to its specific physical characteristics. To ascertain the priority pollution sources and pollutants for the risk control of toxic metals (TMs) in RSD of medium-sized industrial cities, this study took Baotou City, a representative medium-sized industrial city in North China, as an example to systematically study TMs pollution in RSD. The levels of Cr (242.6 mg kg-1), Pb (65.7 mg kg-1), Co (54.0 mg kg-1), Ba (1032.4 mg kg-1), Cu (31.8 mg kg-1), Zn (81.7 mg kg-1), and Mn (593.8 mg kg-1) in Baotou RSD exceeded their soil background values. Co and Cr exhibited significant enrichment in 94.0 % and 49.4 % of samples, respectively. The comprehensive pollution of TMs in Baotou RSD was very high, mainly caused by Co and Cr. The main sources of TMs in the study area were industrial emissions, construction, and traffic activities, accounting for 32.5, 25.9, and 41.6 % of the total TMs respectively. The overall ecological risk in the study area was low, but 21.5 % of samples exhibited moderate or higher risk. The carcinogenic risks of TMs in the RSD to local residents and their non-carcinogenic risks to children cannot be ignored. Industrial and construction sources were priority pollution sources for eco-health risks, with Cr and Co being the target TMs. The south, north and west of the study area were the priority control areas for TMs pollution. The probabilistic risk assessment method combining of Monte Carlo simulation and source analysis can effectively identify the priority pollution sources and pollutants. These findings provide scientific basis for TMs pollution control in Baotou and constitute a reference for environmental management and protection of residents' health in other similar medium-sized industrial cities.
Collapse
Affiliation(s)
- Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| |
Collapse
|
12
|
Zhao Z, Tian J, Zhang W, Zhang Q, Wu Z, Xing Y, Li F, Song X, Li Z. Chemical Source Profiles and Toxicity Assessment of Urban Fugitive Dust PM 2.5 in Guanzhong Plain, China. TOXICS 2023; 11:676. [PMID: 37624181 PMCID: PMC10458601 DOI: 10.3390/toxics11080676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Urban fugitive dust is a significant contributor to atmospheric PM2.5 and a potential risk to humans. In 2019, both road dust and construction dust were collected from four cities, including Xi'an, Xianyang, Baoji, and Tongchuan, in Guanzhong Plain, China. Elements, water-soluble ions, and carbonaceous fractions were determined to establish the chemical source profile. High enrichment degrees of Se, Sc, Cl, and Zn in both road dust and construction dust indicated that the industrial system and energy consumption influenced Guanzhong Plain strongly. According to the coefficient of divergence, the two datasets within Xianyang and Tongchuan were similar. Combined with the chemical profile, road dust was affected by more stationary emission sources than construction dust in Xi'an, while biomass burning and vehicle exhaust contributed more to road dust than construction dust in Baoji. Moreover, the health risk of heavy metal was assessed, and corresponding influencing factors were identified. Road dust in all cities showed a non-negligible non-carcinogenic risk for children. Ingestion and inhalation were the main exposure pathways to which As and Co contributed the most, respectively. The land-use regression model revealed that the first-class road in a 100 m radius impacted all high-risk level metals, and the commercial building material and enterprises weakly influenced Co and Pb, respectively.
Collapse
Affiliation(s)
- Ziyi Zhao
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Z.Z.); (Z.W.); (Z.L.)
| | - Jie Tian
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China;
| | - Wenyan Zhang
- Zhongsheng Environmental Technology Development Company Limited, Shaanxi Environmental Protection Industry Group Company Limited, Xi’an 710065, China;
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Z.Z.); (Z.W.); (Z.L.)
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China;
| | - Zhichun Wu
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Z.Z.); (Z.W.); (Z.L.)
| | - Yan Xing
- Key Laboratory of Shaanxi Environmental Medium Trace Pollutants Monitoring and Early Warning, Shaanxi Environmental Monitoring Center, Xi’an 710054, China; (Y.X.); (F.L.); (X.S.)
| | - Fei Li
- Key Laboratory of Shaanxi Environmental Medium Trace Pollutants Monitoring and Early Warning, Shaanxi Environmental Monitoring Center, Xi’an 710054, China; (Y.X.); (F.L.); (X.S.)
| | - Xinyu Song
- Key Laboratory of Shaanxi Environmental Medium Trace Pollutants Monitoring and Early Warning, Shaanxi Environmental Monitoring Center, Xi’an 710054, China; (Y.X.); (F.L.); (X.S.)
- Environmental Monitoring Station of Baqiao Branch, Xi’an Ecology of Environment Bureau, Xi’an 710038, China
| | - Zhihua Li
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Z.Z.); (Z.W.); (Z.L.)
| |
Collapse
|
13
|
Rehman A, Liu G, Yousaf B, Ijaz S, Irshad S, Cheema AI, Riaz MU, Ashraf A. Spectroscopic fingerprinting, pollution characterization, and health risk assessment of potentially toxic metals from urban particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92842-92858. [PMID: 37495807 DOI: 10.1007/s11356-023-28834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
The unprecedented stride of urbanization and industrialization has given rise to anthropogenic input of tiny particulates into the air. Urban particulate matter (PM) armored with potentially toxic metals (PTMs) could be lethal to the environment and human health. Therefore, the present study was planned to investigate the spectroscopic fingerprinting, pollution status and health risk of PM-associated PTMs collected from ten functional areas of Lahore, Pakistan. The diverged results of studied qualitative and quantitative analyses showed distinct compositional and pollution characteristics of PTMs in urban PM with respect to selected functional areas. The XRD results evident the fractional presence of metal-containing minerals, i.e., pyrite (FeS2), calcite (CaCO3), zinc sulfate (ZnSO4), and chalcostibite (CuSbS2). Several chemical species of Zn, Pb, and As were found in PM of various functional areas. However, morphologies of PM showed anthropogenic influence with slight quantitative support of PTMs presence. The cumulative representation of PTMs pollution of all selected areas depicted that Cd was heavily polluted (Igeo=3.21) while Cr (Igeo=1.82) and Ni (Igeo=2.11) were moderately polluted PTMs. The industrial area having high pollution status of Cd (Igeo=5.54 and EF=18.07), Cu (Igeo=6.4 and EF=32.61), Cr (Igeo=4.03 and EF=6.53), Ni (Igeo=5.7 and EF=20.17), and Zn (Igeo=4.87 and EF=11.27) was prominent among other studied areas. The PTMs were likely to pose a high non-cancerous risk in IndAr (HI = 7.48E+00) and HTV (HI = 1.22E +00) areas predominantly due to Zn with HQ > 1. However, Cr was prominent to cause cancerous risks with values beyond the tolerable range (1.00E-04 to 1.00E-06).
Collapse
Affiliation(s)
- Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, People's Republic of China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Samina Irshad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Umair Riaz
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, 38000, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
14
|
Taye AE, Chandravanshi BS. Health and ecological risk assessment of potentially toxic metals in road dust at Lalibela and Sekota towns, Ethiopia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:765. [PMID: 37249712 DOI: 10.1007/s10661-023-11406-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The ecological and health problems resulted from heavy metals (Mn, Fe, Ni, Co, Cu, Zn, Cd, Hg, Pb, As, and Cr) in the road dust in the towns of Sekota and Lalibela, Ethiopia were assessed. The average heavy metal concentrations were ranged from 0.088 (Cd) to 2.714 (Fe) mg/kg. Individual metal and cumulative metals pollution levels in both towns revealed that Lalibela is moderately polluted by Zn, Pb, and Ni and Sekota being moderately polluted by Zn, Pb, Ni, As, Hg, and Cu. Furthermore, the United States Environmental Protection Agency's health risk evaluation model showed that the total heavy metal health risk levels in the road dust ranged from 5.71 × 10-3 (adult) to 2.57 × 10-2 (children), with an average risk of 7.35 × 10-2. Lalibela was found to have higher chance of risk than Sekota. The total lifetime cancer risk varied from 4.51 × 10-9 (for adults, Sekota) to 7.75 × 10-9 (for children, Lalibela), with a mean risk of 6.12 × 10-9 implying a low chance of getting cancer. The hazard quotient and hazard index of all the metals were below the limit. In general, children were found to be more susceptible than adults.
Collapse
Affiliation(s)
- Asamene Embiale Taye
- Department of Chemistry, College of Natural and Computational Science, Woldia University, P.O. Box 400, Woldia, Ethiopia.
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Dos Santos-Silva JC, Potgieter-Vermaak S, Medeiros SHW, da Silva LV, Ferreira DV, Moreira CAB, de Souza Zorzenão PC, Pauliquevis T, Godoi AFL, de Souza RAF, Yamamoto CI, Godoi RHM. A new strategy for risk assessment of PM 2.5-bound elements by considering the influence of wind regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162131. [PMID: 36773898 DOI: 10.1016/j.scitotenv.2023.162131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
For regulatory purposes, air pollution has been reduced to management of air quality control regions (AQCR), by inventorying pollution sources and identifying the receptors significantly affected. However, beyond being source-dependent, particulate matter can be physically and chemically altered by factors and elements of climate during transport, as they act as local environmental constraints, indirectly modulating the adverse effects of particles on the environment and human health. This case study, at an industrial site in a Brazilian coastal city - Joinville, combines different methodologies to integrate atmospheric dynamics in a strategic risk assessment approach whereby the influence of different wind regimes on environmental and health risks of exposure to PM2.5-bound elements, are analysed. Although Joinville AQCR has been prone to stagnation/recirculation events, distinctly different horizontal wind circulation patterns indicate two airsheds within the region. The two sampling sites mirrored these two conditions and as a result we report different PM2.5 mass concentrations, chemical profiles, geo-accumulation, and ecological and human health risks. In addition, feedback mechanisms between the airsheds seem to aggravate the air quality and its effects even under good ventilation conditions. Recognizably, the risks associated with Co, Pb, Cu, Ni, Mn, and Zn loadings were extremely high for the environment as well as being the main contributors to elevated non-carcinogenic risks. Meanwhile, higher carcinogenic risks occurred during stagnation/recirculation conditions, with Cr as the major threat. These results highlight the importance of integrating local airshed characteristics into the risk assessment of PM2.5-bound elements since they can aggravate air pollution leading to different risks at a granular scale. This new approach to risk assessment can be employed in any city's longer-term development plan since it provides public authorities with a strategic perspective on incorporating environmental constraints into urban growth planning and development zoning regulations.
Collapse
Affiliation(s)
| | - Sanja Potgieter-Vermaak
- Ecology & Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sandra Helena Westrupp Medeiros
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Luiz Vitor da Silva
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Danielli Ventura Ferreira
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | | | | | - Theotonio Pauliquevis
- Department of Environmental Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | | | - Carlos Itsuo Yamamoto
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ricardo Henrique Moreton Godoi
- Postgraduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
16
|
Kumar P, Singh AB, Arora T, Singh S, Singh R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162163. [PMID: 36781134 DOI: 10.1016/j.scitotenv.2023.162163] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality (IAQ) is one of the fundamental elements affecting people's health and well-being. Currently, there is a lack of awareness among people about the quantification, identification, and possible health effects of IAQ. Airborne pollutants such as volatile organic compounds (VOCs), particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), nitrous oxide (NO), polycyclic aromatic hydrocarbons (PAHs) microbial spores, pollen, allergens, etc. primarily contribute to IAQ deterioration. This review discusses the sources of major indoor air pollutants, molecular toxicity mechanisms, and their effects on cardiovascular, ocular, neurological, women, and foetal health. Additionally, contemporary strategies and sustainable methods for regulating and reducing pollutant concentrations are emphasized, and current initiatives to address and enhance IAQ are explored, along with their unique advantages and potentials. Due to their longer exposure times and particular physical characteristics, women and children are more at risk for poor indoor air quality. By triggering many toxicity mechanisms, including oxidative stress, DNA methylation, epigenetic modifications, and gene activation, indoor air pollution can cause a range of health issues. Low birth weight, acute lower respiratory tract infections, Sick building syndromes (SBS), and early death are more prevalent in exposed residents. On the other hand, the main causes of incapacity and early mortality are lung cancer, chronic obstructive pulmonary disease, and cardiovascular disorders. It's crucial to acknowledge anticipated research needs and implemented efficient interventions and policies to lower health hazards.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India
| | - A B Singh
- Institute of Genomics and Integrative Biology (IGIB), Mall Road Campus, Delhi 07, India
| | - Taruna Arora
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India; Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
17
|
Khan YK, Toqeer M, Shah MH. Mobility, bioaccessibility, pollution assessment and risk characterization of potentially toxic metals in the urban soil of Lahore, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1391-1412. [PMID: 35429312 DOI: 10.1007/s10653-022-01270-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The present study is based on the measurement of potentially toxic metal contents employing various extraction methodologies aimed at the evaluation of their mobility, bioaccessibility and bioavailability in the urban soil (n = 56) of Lahore, Pakistan. Selected metal levels in the soil were quantified using flame atomic absorption spectrometry. On the average basis, aqua regia and glycine extracts revealed comparatively higher contents for most of the metals; average concentrations of Fe, Mn, Zn, Pb, Cu, Cr, Co and Cd were found at 1566, 451.1, 114.8, 52.84, 39.15, 24.82, 12.59 and 3.953 mg/kg in aqua regia extract, while in glycine extract the metal levels were found at 579.6, 174.2, 74.72, 49.74, 19.28, 7.103, 4.692 and 3.357 mg/kg, respectively. However, Cd, Pb, Cu and Zn showed significantly higher mobility and bioavailability in the soil, while Co, Fe and Mn were least mobile/bioavailable. The pollution index was assessed in terms of enrichment factor and modified degree of contamination which revealed severe to significant contamination and anthropogenic enrichment of Cd, Pb, Cu and Zn. Multivariate analysis showed mostly anthropogenic contributions for Zn-Cu-Cr-Pb-Cd. Health risk assessment revealed relatively higher exposure of the metals through ingestion, while only minor contributions were noted for inhalation and dermal contact. Hazard quotient index was within the safe limit (< 1.0) in all soil extractions, thereby indicating no significant non-carcinogenic health risks. The incremental lifetime cancer risk for Cr (4.1E-06) through ingestion was comparatively higher than the safe limit which showed significant lifetime cancer risk to the local population.
Collapse
Affiliation(s)
- Yasir Karim Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Toqeer
- Department of Earth Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
18
|
Shen M, Liu G, Zhou L, Yin H, Arif M. Comparison of pollution status and source apportionment for PCBs and OCPs of indoor dust from an industrial city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2473-2494. [PMID: 36006579 DOI: 10.1007/s10653-022-01360-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, the pollution status of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was investigated in indoor and outdoor dust from three different functional areas of Hefei, China. The relationship between the concentrations of PCBs and OCPs and different influencing factors in dwellings was studied. The results showed that the concentrations of PCBs and OCPs were higher in samples from dwellings with higher smoking frequency, lower cleaning frequency, higher floors and smaller household size. The results of Spearman's correlation coefficient analysis indicated that PCBs and OCPs were not consistently associated with each other, while sources of low-chlorinated PCBs and high-chlorinated PCBs were different. Scanning electron microscopy (SEM) shows the shape of indoor dust was a mixture of blocky, flocculated, spherical structures, and irregular shapes. The results of principal component analysis (PCA) and positive matrix factorization model (PMF) showed that the PCBs and OCPs of indoor dust came from both indoor and outdoor sources between local and regional transport. Carbon (δ13C) and Nitrogen (δ15N) stable isotope results indicate or show that the indoor dust (δ13C: - 24.37‰, δ15N: 6.88‰) and outdoor dust (δ13C: - 12.65‰, δ15N: 2.558‰) is derived from fossil fuel, coal combustion, road dust, fly ash, C4 biomass and soil. Potential source contribution factor (PSCF) and concentration weighted-trajectory analysis suggest that sources of pollutants were local and regional transport from surrounding provinces and marine emissions. The average daily dose (adult: 8.20E-04, children: 2.37E-03) of pollutants and the carcinogenic risks (adult: 1.23E-02, children: 2.65E-02) were relatively greater for children than adults. This study demonstrates the utility of SEM to characterize indoor dust morphology while combining PMF, PSCF, and stable isotope methods in identifying indoor PCBs and OCPs sources and regions.
Collapse
Affiliation(s)
- Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Hao Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| |
Collapse
|
19
|
Ullah H, Lun L, Rashid A, Zada N, Chen B, Shahab A, Li P, Ali MU, Lin S, Wong MH. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1359-1389. [PMID: 35972610 PMCID: PMC9379879 DOI: 10.1007/s10653-022-01354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655 China
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat, 50700 Pakistan
| | - Noor Zada
- Department of Chemistry, Government Post Graduate College, Lower Dir, Timergara, 18300 Pakistan
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077 China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Yuan J, E S, Che Z, Cao K. Temporal variation of heavy metals in sewage sludge in typical cities in Gansu Province, northwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:453. [PMID: 36892665 DOI: 10.1007/s10661-023-11091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To investigate the temporal behaviors of heavy metals in sewage sludge in typical cities of industrial, industrial-agricultural, agricultural, or energy focused. Samples were collected every 10 days for a period of 1 year in four types of cities of Lanzhou, Tianshui, Qingyang, and Zhangye. The average annual values for all four cities were Cd (1.59-3.16 mg/kg), Pb (41.9-55.1 mg/kg), Cr (63.8-92.0 mg/kg), Cu (75.7-92.6 mg/kg), Zn (498-612 mg/kg), and Ni (3.66-4.25 mg/kg). The highest values were observed in June for Cd, Cr, and Zn, at Lanzhou and Tianshui. At Qingyang and Zhangye, the Cd, Cr, and Zn contents were stable throughout the year. There was a similar monthly change among the four cities regarding the levels of Ni content, and it was far below the background value. The monthly fluctuations in Cd, Pb, Cr, and Zn are mainly due to street dust effect. For cities with a developed industry, the impact of street dust during the first rains of the year on sewage sludge's heavy metal content must be highlighted as being of particular importance.
Collapse
Affiliation(s)
- Jinhua Yuan
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
- Gansu Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture, Lanzhou, 730070, China.
| | - Shengzhe E
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Gansu Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture, Lanzhou, 730070, China
| | - Zongxian Che
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Gansu Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture, Lanzhou, 730070, China
| | - Kun Cao
- Qingyang Wozhong Agricultural Technology Corporation Limited, Qingyang, 74500, China
| |
Collapse
|
21
|
Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, Ullah H, Rashid A, Taha MR, Zada N. A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:585-606. [PMID: 35347514 DOI: 10.1007/s10653-022-01255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 05/25/2023]
Abstract
In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
Collapse
Affiliation(s)
- Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zhang Hui
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - He Xiao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jamil Siddique
- Department of the Earth Sciences Quaid I, Azam University, Islamabad, 45320, Pakistan
| | - Liang Liang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Audil Rashid
- Department of Botany, University of Gujrat, Gujrat, 50700, Pakistan
| | - Mohd Raihan Taha
- Department of Civil Engineering, University Kebangsaan Malaysia UKM, Bandar Baru Bangi, 43600, Selangor, Malaysia
| | - Noor Zada
- Department of Chemistry, Government Postgraduate College Timergara, 18300, Timergara, Lower Dir, Pakistan
| |
Collapse
|
22
|
Tawabini B, Al-Enazi M, Alghamdi MA, Farahat A, Shemsi AM, Al Sharif MY, Khoder MI. Potentially Harmful Elements Associated with Dust of Mosques: Pollution Status, Sources, and Human Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2687. [PMID: 36768064 PMCID: PMC9916264 DOI: 10.3390/ijerph20032687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Potentially harmful elements (PHEs) associated with dust generated from anthropogenic sources can be transported into mosques and deposited on the filters of the air-conditioners (AC); thereby, children and adults are exposed to such PHEs while visiting mosques. Data dealing with the assessment of PHEs pollution and its human health risk in mosques dust in Saudi Arabia are scarce. Therefore, this work aims to examine the levels and pollution status of PHEs in AC filter dust (ACFD) of mosques and their associated human health risk in three Saudi cities: Jubail, Jeddah, and Dammam metropolitan. A similar concentration pattern of PHEs is observed in three cities' mosques with noticeably higher concentrations than both global crustal and local background values for Zn, Cu, Pb, As, and Cd only. Except for Fe, Al, and Mn, the highest PHEs concentrations were found in Jeddah (1407 mg/kg), followed by Dammam (1239 mg/kg) and Jubail (1103 mg/kg). High PHEs' concentrations were also recorded in mosques located near workshops and suburban areas compared to urban areas. Based on the spatial pattern, enrichment factor, geo-accumulation index, pollution load index, and ecological risk values, Jubail, Jeddah, and Dammam have shown moderate pollution levels of Cd, As, Pb, and Zn. On the other hand, Cu. Zn, Cu, Cr, Pb, Ni, As, and Cd had degrees of enrichment levels that varied from significantly enriched to extremely highly enriched in the ACFD of the three cities. Heavy pollution is found in Jubail, which posed a higher potential ecological risk than in Jeddah and Dammam. Cd presents the highest ecological risk factors (ER) in the three cities. Carcinogenic and non-carcinogenic risks for children and adults follow the order: Jeddah > Dammam > Jubail, and the ingestion pathway was the main route for exposure. Carcinogenic and con-carcinogenic risks in the mosques of the various studied cities were generally within the acceptable range.
Collapse
Affiliation(s)
- Bassam Tawabini
- Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mubarak Al-Enazi
- Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Ashraf Farahat
- Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ahsan M. Shemsi
- Environmental Chemistry and Analytical Laboratories Section, Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Marwan Y. Al Sharif
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Mamdouh I. Khoder
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| |
Collapse
|
23
|
Li J, Deng L, You S, Xiao H, Li K, Shahab A. A comprehensive study of potentially toxic element contamination and source quantitative assessment by positive matrix factorization model: risk from the fine road dust of Chehe mining area, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1189-1200. [PMID: 35915304 DOI: 10.1007/s11356-022-22175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Extreme mining activities can risk human life and the environment via potentially toxic elements (PTEs) in road dust, thus making their quantification and assessment unavoidable. For this purpose, we collected 50 fine road dust samples from the Chehe mining area, China, to quantify the level of contamination and ecological and health risks of PTEs comprising As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, and Zn, and their quantitative source apportionment using the positive matrix factorization model (PMF). Results indicated that the average values of Cd, Sb, As, Zn, Pb, and Cu in road dust were 1555.21, 586.78, 429.68, 429.43, 72.88, and 26.61 times higher than their background values. Pollution indices of PTEs revealed a strong level of contamination by Cd, Sb, As, Zn, and Pb, which were extremely polluted in the study area. The average values of the Nemerow integrated risk index (NIRI) and potential ecological risk index (RI) were 104.09 and 86.49 times the highest risk limit, respectively, which are extremely high ecological risks. Based on PMF for quantitative source identification, mining activities and fuel combustion were the main sources of PTEs in road dust contributing 57.25% and 35.95%, respectively. Furthermore, the health risk assessment indicated that Sb, As, Cr, Cd, and Pb in the Chehe road dust could lead to significantly serious carcinogenic and non-carcinogenic risks to both children and adults. The results of this study could be used to opt for strategies to mitigate the ecological and human health risk in the mining area of Hechi, China.
Collapse
Affiliation(s)
- Jieyue Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liming Deng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - He Xiao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Kemeng Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
24
|
Rabin MH, Wang Q, Kabir MH, Wang W. Pollution characteristics and risk assessment of potentially toxic elements of fine street dust during COVID-19 lockdown in Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4323-4345. [PMID: 35971052 PMCID: PMC9377810 DOI: 10.1007/s11356-022-22541-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/10/2022] [Indexed: 04/15/2023]
Abstract
Due to the COVID-19 pandemic, Bangladesh government took the measure like partial lockdown (PL) and complete lockdown (CL) to curb the spread. These measures gave a chance for environmental restoration. In this study, street dust samples were collected during PL and CL from four main urban land use categories in Dhaka city, such as industrial area (IA), commercial area (CA), public facilities area (PFA), and residential area (RA). Ten potentially toxic elements (Cr, Mn, Zn, Fe, Pb, Cu, Co, Ni, As, and Cd) in fine street dust particles (diameter < 20 μm) were determined following aqua-regia digestion and measured by inductively coupled plasma mass spectrometry (ICP-MS) to evaluate distribution, pollution sources, and potential risks to ecological systems and human health. Results showed that during PL, the concentrations of toxic elements in the dust were higher than that of CL. Cd and Fe were lowest and highest in concentration with 1.56 to 41,970 µg/g and 0.82 to 39,330 µg/g in partial and complete lockdown period respectively. All toxic elements were detected at high levels above background values where Fe with the highest and Cd with lowest concentrations, respectively. By land use, the levels of toxic elements pollution followed IA > PFA > RA > CA. Correlation analysis (CA), principal component analysis (PCA), and hierarchal cluster analysis (HCA) revealed that the sources of these analyzed toxic elements were mainly from anthropogenic which are related to industrial and vehicular or traffic emissions. Enrichment factor (EF), geoaccumulation index (Igeo), contamination factor (CF), and pollution load index (PLI) also suggested that the dust was more polluted during PL. Exposure of toxic elements to human was mainly via skin contact followed by ingestion and inhalation. Hazard quotient (HQ) values were < 1 except for Mn through dermal contact at all sites during partial and complete lockdown, similar to hazard index (HI), while Cr further showed high non-carcinogenic risks to children. Generally, children HI values were about 5-6 times higher than those of adults, suggesting a greater vulnerability of children to the health concerns caused by toxic elements in street dust. Carcinogenic risk (CR) values via ingestion pathway indicated all elements (except Pb) had significant health effect, while CR value by inhalation results showed no significant health effect. Cumulative carcinogenic risk (CCR) value had significant health effect except Pb in all land use categories. CCR values decreased during CL and reached at acceptable limit for most of the cases. This research provides a message to the local governments and environmental authorities to have a complete assessment of toxic elements in the street dust of Dhaka megacity in order to assuring public health safety and ecological sustainability.
Collapse
Affiliation(s)
- Mominul Haque Rabin
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
- Department of Agricultural Chemistry, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| | - Md Humayun Kabir
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
25
|
Estimation of Pollution Levels and Assessment of Human Health Risks from Potentially Toxic Metals in Road Dust in Mymensingh City of Bangladesh. Processes (Basel) 2022. [DOI: 10.3390/pr10122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The assessment of toxic metals pollution in road dust in Mymensingh city, Bangladesh and its impact on the health risk of human exposure to toxic metals, is inadequate. A comprehensive investigation was conducted in different land use areas, i.e., commercial areas (CA), medically facilitated areas (MFA), residential areas (RA), and park areas (PA), to determine levels of Cr (chromium), Mn (manganese), Ni (nickel), Co (cobalt), Cu (copper), Zn (zinc), As (arsenic), Cd (cadmium), and Pb (lead) using inductively coupled plasma mass spectroscopy (ICP-MS). We planned to use different pollution indices, such as the geoaccumulation index (Igeo), contamination factor (CF), degree of contamination (Cdeg), ecological risk (Er), pollution load index (PLI), and enrichment factor (EF), to measure the level of contamination in the road dust of Mymensingh City. The average concentration (mg/kg) ranges of toxic metals in the road dust at different land use areas of Mymensingh City were: Cr (40.8–85.5), Mn (370.7–589.2), Co (6.2–8.7), Ni (22.7–34.2), Cu (29.5–72.2), Zn (236.2–467.1), As (4.9–6.29), Cd (0.32–1.07), and Pb (27.4–81.7), respectively. The CF and PLI results showed that the road dust in these zones was contaminated with toxic metals. The indicator Igeo revealed that CA was found to be ‘moderately to heavily contaminated’ ranked with Zn and Cd. Calculation of EF indicated that Cu, Zn, As, Cd, and Pb were highly enriched, while others were moderately enriched. According to the Cdeg findings, CA, MFA, and RA have very high degrees of contamination (Cdeg ≥ 24), while PA was classified as having a considerable degree of contamination (12 ≤ Cdeg < 24). The Er index showed that only Cd posed a ‘medium potential ecological risk’ to a ‘high ecological potential risk’ in road dust. The most common route of exposure was ingestion. The study indicated that the hazard quotient (HQ) and hazard index (HI) in CA, MFA, RA, and PA were less than one for children and adults, which were at a noncarcinogenic risk. The only exception was for children exposed to manganese (HI > 1) in all land use areas. In the research area, no significant carcinogenic health risk was observed for Cr, Ni, As, Cd, and Pb.
Collapse
|
26
|
Chen Y, Hu Z, Bai H, Shen W. Variation in Road Dust Heavy Metal Concentration, Pollution, and Health Risk with Distance from the Factories in a City-Industry Integration Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114562. [PMID: 36361440 PMCID: PMC9656356 DOI: 10.3390/ijerph192114562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/23/2023]
Abstract
Road dust samples around three typical factories, F1, F2, and F3, in the National Zhengzhou Economic and Technology Development Zone (ZETZ), China, were collected to study the variation in heavy metal concentration (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn), pollution, and health risk with distance from the factories. The results indicated that the concentrations of all the elements near F1 were higher than near both F2 and F3. Apart from Co, Mn, and Cu in some dust samples, all the element concentrations were higher than the corresponding background values (BCs), to varying degrees. The spatial distributions of the heavy metals surrounding the factories followed the normal distribution. The peak values of element concentrations occurred at 300~400 m away from the factories, except for Hg, which continued increasing more than 500 m away from the factories. The fluctuation curves of the pollution load index value calculated according to the BCs for F1, F2, and F3 all had two peaks, a "small peak" and a "large peak", appearing at about 30 m and 300 m, respectively. For the hazard index and the total carcinogenic risk, the peak values all appeared at 400 m, with the curves following the normal distribution. Exposure to road dust containing non-carcinogenic and carcinogenic elements around F1 was greater than around F2 or F3. In conclusion, our results provide a reference for pursuing effective prevention of dust heavy metal pollution around modern manufacturing factories.
Collapse
Affiliation(s)
- Yinan Chen
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450018, China
| | - Zhiqiang Hu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
| | - He Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Shen
- The College of Environment and Planning, Henan University, Kaifeng 475001, China
| |
Collapse
|
27
|
Chen H, Zhan C, Liu S, Zhang J, Liu H, Liu Z, Liu T, Liu X, Xiao W. Pollution Characteristics and Human Health Risk Assessment of Heavy Metals in Street Dust from a Typical Industrial Zone in Wuhan City, Central China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710970. [PMID: 36078702 PMCID: PMC9518381 DOI: 10.3390/ijerph191710970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to assess the pollution levels, sources, and human health risks of heavy metals in street dust from a typical industrial district in Wuhan City, Central China. In total, 47 street dust samples were collected from the major traffic arteries and streets around Wuhan Iron and Steel (Group) Company (WISC) in Qingshan District, Wuhan. The concentrations of heavy metals (Cr, Mn, Ni, Zn, Fe, Cu, and Cd) in street dust were determined by atomic absorption spectroscopy. Results indicated that the mean concentrations of Zn (249.71 mg/kg), Cu (51.15 mg/kg), and Cd (0.86 mg/kg) in street dust were higher than their corresponding soil background values in Hubei Province. Heavy metal enrichment is closely related to urban transportation and industrial production. The pollution level of heavy metals in street dust was assessed using the geo-accumulation method (Igeo) and potential ecological risk assessment (PERI). Based on the Igeo value, Cr, Mn, Fe, and Ni showed no pollution, Zn and Cu showed light to moderate contamination, and Cd showed moderate contamination. The PERI values of heavy metals in street dust ranged between 76.70 and 7027.28, which represents a medium to high potential ecological risk. Principal component analysis showed that the sources of heavy metals in street dust were mainly influenced by anthropogenic activities. Among the studied metals, Cu, Cr, Zn, Fe, and Mn mainly come from industrial processes, while Ni and Cd come from traffic exhaust. The non-carcinogenic risk indexes of heavy metals for children and adults are ranked as Cr > Cu > Ni > Cd > Zn. The health risks to children through the different exposure pathways are higher than those for adults. Hand-to-mouth intake is the riskiest exposure pathway for non-carcinogenic risk. In addition, Cr, Ni, and Cd do not pose a carcinogenic risk for the residents.
Collapse
Affiliation(s)
- Hong Chen
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changlin Zhan
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
- Correspondence:
| | - Shan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Ziguo Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Ting Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Xianli Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Wensheng Xiao
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| |
Collapse
|
28
|
Fang T, Wang H, Liang Y, Cui K, Yang K, Lu W, Li J, Zhao X, Gao N, Yu Q, Li H, Jiang H. Source tracing with cadmium isotope and risk assessment of heavy metals in sediment of an urban river, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119325. [PMID: 35439598 DOI: 10.1016/j.envpol.2022.119325] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The Nanfei River was one of dominant inflowing rivers of the fifth largest freshwater Chaohu Lake in China, which had been subjected to increasing nutrients and contaminants from population expansion, rapid industrialization and agricultural intensification in recent decades. In present study, surface sediment from the Nanfei River was collected to investigate the anthropogenic impact on distribution and bioavailability of heavy metals. Possible Cd sources along the river were constrained by using Cd isotope signatures and labile concentrations of heavy metals in sediment were determined through the DGT technique for risk assessment. Results showed that Cd in river sediment showed greatest enrichment (EF 0.8-9.4), indicating massive pollution from anthropogenic activities. Among the various possible Cd source materials, urban road dust, industrial soil and chicken manure, displayed higher Cd abundance and enrichment that might contribute to Cd accumulation in river sediment. Cadmium isotopic composition in river sediment was ranged from -0.21 ± 0.01‰ to 0.13 ± 0.03‰, whereas yielded relative variation from -0.31 ± 0.02‰ to 0.23 ± 0.01‰ in source materials. Accordingly, Cd sources along the river were constrained, i.e. traffic and industrial activities in the upper and middle reaches whereas agricultural activities in the lower reaches. Furthermore, the evaluation on ecological risk of heavy metals in sediment on basis of SQGs and DGT-labile concentrations demonstrated that Pb and Zn might pose higher risk on aquatic species. The present study confirmed that Cd isotopes were promising source tracer in environmental studies.
Collapse
Affiliation(s)
- Ting Fang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Hui Wang
- Anhui Key Laboratory of Nutrient Recycling, Resources and Environment, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Kai Cui
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Kun Yang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Wenxuan Lu
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Jing Li
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Xiuxia Zhao
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Na Gao
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Qizhi Yu
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China
| | - Hui Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230001, Anhui, China
| | - He Jiang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China.
| |
Collapse
|
29
|
Wang X, Birch GF, Liu E. Traffic emission dominates the spatial variations of metal contamination and ecological-health risks in urban park soil. CHEMOSPHERE 2022; 297:134155. [PMID: 35240153 DOI: 10.1016/j.chemosphere.2022.134155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Metals in urban park soil are closely related to traffic emissions, which adversely affect soil quality and human health. However, little is known about the quantitative impacts of traffic on the spatial variations of metals in park soil after the banning of leaded gasoline. Herein, concentrations of Cu, Pb and Zn in surface soil of four recreational parks of Sydney (Ashfield, Robson, Lamberts and Leichhardt) were measured to evaluate their spatial characteristics in contamination, ecological and health risks and relationships with traffic emissions. Contamination of metals are assessed by contamination factor (CF). Normalized metal concentrations (<63 μm) in the park soil were 24-614, 23-3520 and 99-3060 mg kg-1 for Cu, Pb and Zn, respectively, and CFs ranged from 1.4 to 207, whose variations inter- and intra-parks were related to traffic volumes. Traffic emission accounted for 72-84% of metals contamination in soil of Ashfield, Robson and Lamberts by sites, whereas the values were 25-70% for Leichhardt due to the absence of a surrounding arterial road. In Ashfield and Robson Parks, metal concentrations from traffic decreased exponentially with distance from arterial roads. Metals in Lamberts Park and in areas near arterial roads in Ashfield and Robson Parks may raise ecological risk, and traffic sources contributed to 61-81% of the risk. The ranges of ecological risk zones away from arterial roads and average daily traffic volumes showed an exponential relationship. Copper and Zn in soil of the four parks have no non-carcinogenic health risk for children and adults, and Pb has negligible health risk for adults. Lead in Lamberts Park and in sites near arterial roads of Ashfield and Robson Parks may raise non-carcinogenic risk for children (HI > 1) due to traffic emissions. These results emphasize the remarkable influence of traffic emissions on urban soil metal, which can be predicated quantitatively by traffic volume.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Gavin F Birch
- Geocoastal Research Group, School of Geosciences, The University of Sydney, NSW, 2006, Australia
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China; Geocoastal Research Group, School of Geosciences, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
30
|
Buonaurio F, Borra F, Pigini D, Paci E, Spagnoli M, Astolfi ML, Giampaoli O, Sciubba F, Miccheli A, Canepari S, Ancona C, Tranfo G. Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents. TOXICS 2022; 10:toxics10050267. [PMID: 35622680 PMCID: PMC9143243 DOI: 10.3390/toxics10050267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
Background: The objective of this study is to evaluate the effects of traffic on human health comparing biomonitoring data measured during the COVID-19 lockdown, when restrictions led to a 40% reduction in airborne benzene in Rome and a 36% reduction in road traffic, to the same parameters measured in 2021. Methods: Biomonitoring was performed on 49 volunteers, determining the urinary metabolites of the most abundant traffic pollutants, such as benzene and PAHs, and oxidative stress biomarkers by HPLC/MS-MS, 28 elements by ICP/MS and metabolic phenotypes by NMR. Results: Means of s-phenylmercaputric acid (SPMA), metabolites of naphthalene and nitropyrene in 2020 are 20% lower than in 2021, while 1-OH-pyrene was 30% lower. A reduction of 40% for 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) and 60% for 8-oxo-7,8-dihydroguanine (8-oxoGua) were found in 2020 compared to 2021. The concentrations of B, Co, Cu and Sb in 2021 are significantly higher than in the 2020. NMR untargeted metabolomic analysis identified 35 urinary metabolites. Results show in 2021 a decrease in succinic acid, a product of the Krebs cycle promoting inflammation. Conclusions: Urban pollution due to traffic is partly responsible for oxidative stress of nucleic acids, but other factors also have a role, enhancing the importance of communication about a healthy lifestyle in the prevention of cancer diseases.
Collapse
Affiliation(s)
- Flavia Buonaurio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Francesca Borra
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, 00154 Rome, Italy;
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
- Correspondence: ; Tel.: +39-0694181436
| |
Collapse
|
31
|
Haque MM, Sultana S, Niloy NM, Quraishi SB, Tareq SM. Source apportionment, ecological, and human health risks of toxic metals in road dust of densely populated capital and connected major highway of Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37218-37233. [PMID: 35034304 DOI: 10.1007/s11356-021-18458-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
This study investigates pollution levels, source apportionment, ecological, and human health risks associated with toxic metals (Pb, As, Hg, Cr, and Cd) in road dust from the most populated Dhaka city and a connected major highway in Bangladesh. The mean concentration of Pb, Hg, and Cd were 1.3, 29.3, and 13.2 times higher than their corresponding background values with spatially uneven distribution all over the study area. Metal pollution indices, the geo-accumulation index (Igeo), NIPI, and PI, indicated extreme contamination at many sites depending on local environmental factors. The potential ecological risk ([Formula: see text] revealed that 84% and 54% of samples showed the extreme ecological risk for Hg and Cd pollution, respectively. On the other hand, the potential ecological risk index (PERI) and Nemerow integrated risk index (NIRI) showed that most sampling sites suffered high to extreme ecological risk. Source apportionment using positive matrix factorization (PMF) identified coal combustion, and gasoline (50.14%), traffic exhaust (35.26%), and industrial and agriculture activity (14.60%) were the main source of toxic metals of the study area. Non-carcinogenic health risk indicated that adults are more vulnerable than children, and hazard index (HI) of Hg for both age groups and Cd for adults were significantly higher than the safe level. The carcinogenic risk (CR) levels of toxic metals were acceptable (10-6 to 10-4), although the maximum limit of Cr for children and As for adults was close to the unacceptable limit (10-4). Continual exposure to toxic metals through road dust might develop lifetime cancer risk in local inhabitants.
Collapse
Affiliation(s)
- Md Morshedul Haque
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
- Department of Environmental Protection Technology, German University Bangladesh, 1702, Gazipur, Bangladesh.
| | - Sajin Sultana
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Beximco Textile Limited Sarabo, Kashimpur, Gazipur, Dhaka, 1702, Bangladesh
| | - Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Shamshad B Quraishi
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| |
Collapse
|
32
|
Bai W, Zhao X, Yin B, Guo L, Zhang W, Wang X, Yang W. Characteristics of PM 2.5 in an Industrial City of Northern China: Mass Concentrations, Chemical Composition, Source Apportionment, and Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095443. [PMID: 35564844 PMCID: PMC9104452 DOI: 10.3390/ijerph19095443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Urban and suburban PM2.5 samples were collected simultaneously during selected periods representing each season in 2019 in Zibo, China. Samples were analysed for water-soluble inorganic ions, carbon components, and elements. A chemical mass balance model and health risk assessment model were used to investigate the source contributions to PM2.5 and the human health risks posed by various pollution sources via the inhalation pathway. Almost 50% of the PM2.5 samples exceeded the secondary standard of China's air quality concentration limit (75 µg/m3, 24 h). Water-soluble inorganic ions were the main component of PM2.5 in Zibo, accounting for 50 ± 8% and 56 ± 11% of PM2.5 at the urban and suburban sites, respectively. OC and OC/EC decreased significantly in the past few years due to enhanced energy restructuring. Pearson correlation analysis showed that traffic emissions were the main source of heavy metals. The Cr(VI) concentrations were 1.53 and 1.92 ng/m3 for urban and suburban sites, respectively, exceeding the national ambient air quality standards limit of 0.025 ng/m3. Secondary inorganic aerosols, traffic emissions, and secondary organic aerosols were the dominant contributors to PM2.5 in Zibo, with the total contributions from these three sources accounting for approximately 80% of PM2.5 and the remaining 20% attributed to traffic emissions. The non-carcinogenic risks from crustal dust for children were 2.23 and 1.15 in urban and suburban areas, respectively, exceeding the safe limit of 1.0 in both locations, as was the case for adults in urban areas. Meanwhile, the carcinogenic risks were all below the safe limit, with the non-carcinogenic and carcinogenic risks from traffic emissions being just below the limits. Strict control of precursor emissions, such as SO2, NOx, and VOCs, is a good way to reduce PM2.5 pollution resulting from secondary aerosols. Traffic control, limiting or preventing outdoor activities, and wearing masks during haze episodes may be also helpful in reducing PM2.5 pollution and its non-carcinogenic and carcinogenic health impacts in Zibo.
Collapse
Affiliation(s)
- Wenyu Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (W.B.); (X.Z.); (B.Y.); (L.G.); (W.Y.)
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xueyan Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (W.B.); (X.Z.); (B.Y.); (L.G.); (W.Y.)
| | - Baohui Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (W.B.); (X.Z.); (B.Y.); (L.G.); (W.Y.)
| | - Liyao Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (W.B.); (X.Z.); (B.Y.); (L.G.); (W.Y.)
| | - Wenge Zhang
- National Institute of Metrology, Beijing 100029, China
- Correspondence: (W.Z.); (X.W.)
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (W.B.); (X.Z.); (B.Y.); (L.G.); (W.Y.)
- Correspondence: (W.Z.); (X.W.)
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (W.B.); (X.Z.); (B.Y.); (L.G.); (W.Y.)
| |
Collapse
|
33
|
Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spatial variations in the bioaccessibility and health risks induced by chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As) and lead (Pb) in roadside dust from different land-use areas, i.e., commercial areas (CA), planned residential areas (PRA), spontaneous residential areas (SRA) and urban green areas (UGA) in Dhaka city, Bangladesh, were investigated. An in vitro simple bioaccessibility extraction test (SBET) method, which allows the simulation of the gastric (GP) and intestinal phases (IP) of human digestion, was applied to evaluate bioaccessibility and human health risk, assessed using United States Environmental Protection Agency (U.S. EPA) modelling. The average bioaccessible concentration of Zn was the highest in both the gastric (74.4–244.5 µg/g) and intestinal phases (74.4–244.5 µg/g) in all the land-use areas except UGA. The bioaccessibility percentages of Co and Cu in the IP phase and As in the GP phase were >40% for all the land-use categories. Carcinogenic (Cr, Ni, As and Pb) and non-carcinogenic human health risks were evaluated for the ingestion pathway, in both children and adults. The results suggest that there were no non-carcinogenic risks for adults and children exposed to roadside dust toxic metals, but the risk levels of roadside dust toxic metals in some sampling areas were high. The carcinogenic risks of Cr in SRA (for children) and Ni in CA (for both adults and children), PRA (for children) and UGA (for children) were found to be within a tolerable range of 10−6 to 10−4.
Collapse
|
34
|
Kormoker T, Kabir MH, Khan R, Islam MS, Shammi RS, Al MA, Proshad R, Tamim U, Sarker ME, Taj MTI, Akter A, Idris AM. Road dust-driven elemental distribution in megacity Dhaka, Bangladesh: environmental, ecological, and human health risks assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22350-22371. [PMID: 34782979 DOI: 10.1007/s11356-021-17369-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Road dust, which reflects ambient air quality, receives various pollutants including toxic metal(oid)s from several natural and/or anthropogenic sources. This manuscript reports a comprehensive evaluation of the levels of seventeen metal(oid)s in road dust of a megacity (Dhaka, Bangladesh). Different evaluation approaches were implemented including statistical analysis and GIS mapping, besides environmental, ecological, and human health risk indices. From 30 sampling sites, representative samples were collected, which were analyzed by neutron activation analysis. The average concentrations (± SD) of Na, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, As, Rb, Sb, Cs, Ba, and W were 11,738 ± 560 µg g-1, 12,410 ± 1249 µg g-1, 62,127 ± 5937 µg g-1, 8.89 ± 0.47 µg g-1, 5224 ± 1244 µg g-1, 66 ± 8 µg g-1, 66.7 ± 6.9 µg g-1, 547 ± 110 µg g-1, 25,150 ± 1723 µg g-1, 8.39 ± 0.65 µg g-1, 125 ± 17 µg g-1, 3.63 ± 0.56 µg g-1, 87 ± 9 µg g-1, 0.75 ± 0.28 µg g-1, 4.40 ± 0.48 µg g-1, 397 ± 87 µg g-1, and 3.82 ± 1.77 µg g-1, respectively. The distance-based redundancy analysis showed that the northern region was enriched with Na, Mn, Al, Fe, Zn, and Rb, while the southern region was enriched with Fe, Al, Ti, Cr, and Mg. The GIS mapping shows hot spots of Sc, Cr, Zn, and Cs were observed mostly in heavy traffic areas. Significant positive correlations of Fe-Sc, Al-Mg, V-Mg, V-Al, Cs-Rb, Cs-Sc, Rb-Sc, As-Na, and Cs-Rb invoked their inter-dependency and persistence in road dust. Depending on a set of environmental and ecological index-based calculation, the degree of metal(oid) pollution followed the descending order as W > Sb > Zn > Cr > As > Ti > Sc > V, while no pollution was recorded by Mn, Fe, Al, Rb, Cs, Co, and Ba. Importantly, the total hazard index values for adults and children were higher than unity, indicating potential non-carcinogenic health risks from exposure of road dust. Furthermore, the total carcinogenic risks from Cr and As through ingestion and dermal contact exceeded the standard guideline values. The implementation of different evaluation approaches strengthens the findings of metal(oid) source apportionment.
Collapse
Affiliation(s)
- Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh.
| | - Md Humayun Kabir
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh
| | - Rifat Shahid Shammi
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Marine Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Ram Proshad
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Umma Tamim
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Md Eusuf Sarker
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | | | - Ayesha Akter
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 9004, Saudi Arabia.
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| |
Collapse
|
35
|
Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation. SUSTAINABILITY 2022. [DOI: 10.3390/su14020919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pollution characteristics and ecological risks for metals in non-magnetic and magnetic road dust from steel industrial areas were investigated by applying a magnetic separation method. Metal (except for Al, Li, Ti, As, and Sb) concentrations in the magnetic road dust were 1.2 (Sn) to 7.8 (Fe) times higher than those in the non-magnetic road dust. For the magnetic road dust, the geo-accumulation index revealed a strongly to extremely polluted status for Cr, Zn, Cd, and Sb, a strongly polluted status for Mn, Cu, and Pb, and a moderately to strongly polluted status for Fe, Ni, Mo, and Hg. This result indicates that the dominant metal pollution sources of road dust in industrial areas were the traffic activities of heavy-duty vehicles. The mean content of magnetic particles accounted for 44.7% of the total road dust. The metal loadings in the magnetic road dust were 86% (Fe), 77% (Cr), 67% (Mn), 86% (Ni), 76% (Cu), 72% (Zn), 64% (Mo), and 62% (Cd), respectively. Removal of the magnetic fraction from road dust using magnetic separation techniques not only reduces metal contamination but can also improve effective road cleaning strategies or reduce waste generation.
Collapse
|
36
|
Alghamdi AG, EL-Saeid MH, Alzahrani AJ, Ibrahim HM. Heavy metal pollution and associated health risk assessment of urban dust in Riyadh, Saudi Arabia. PLoS One 2022; 17:e0261957. [PMID: 34990460 PMCID: PMC8735667 DOI: 10.1371/journal.pone.0261957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/15/2021] [Indexed: 12/07/2022] Open
Abstract
Depending on their particle size and concentration, heavy metals in urban dust pose a health hazard to humans. This study investigated the total concentration, health risk, integrated pollution load index (IPI), and enrichment factor (EF) of various heavy metals in urban dust at different locations in Riyadh City. Surface dust samples were collected from 50 different residential yards in the north, south, west, east, and central corners of the city and analyzed for cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). With respect to concentrations heavy metals were in the following order Zn > Cu > Mn > Cr > Ni > Pb > Cd. The EF trends exposed repeated anthropogenic activities were responsible for Mn, Cr, and Ni, while Pb, Zn, and Cu appeared to come from Earth's crust. Since the heavy metal concentrations were lower than the threshold values, children and adults are exposed to lower health risk in investigated area. Also, there are no pollution of heavy metals in the dust with respect to IPI which is less than the critical limit (<1) with the exception of a sampling location in north side of the city with higher IPI showed unhealthy respiration conditions in particular areas. It was concluded that rapid industrialization and urbanization and their concentrations in dust may cause health problems in near future in north side as well as other sides of Riyadh City.
Collapse
Affiliation(s)
- Abdulaziz G. Alghamdi
- Department of Soil Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed H. EL-Saeid
- Department of Soil Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulhakim J. Alzahrani
- Department of Soil Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hesham M. Ibrahim
- Department of Soil Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Soils and Water, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
37
|
Wang Y, Qian P, Li D, Chen H, Zhou X. Assessing risk to human health for heavy metal contamination from public point utility through ground dust: a case study in Nantong, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67234-67247. [PMID: 34247351 DOI: 10.1007/s11356-021-15243-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination in ground dust presents potential environmental and human health threats. However, the heavy metal contamination status of ground dust in the vicinity of public point utilities remains poorly explored. Therefore, this study has been designed to analyze the heavy metal contaminations in the ground dust collected monthly near a public bronze sculpture in an urban campus of Nantong, China, using geo-accumulation indexes (Igeo), enrichment factors (EF), potential ecological risk indexes (RI), and health risks (noncarcinogenic risks (HI) and carcinogenic risks (CR)). This study revealed that the maximum Cr, Cu, Mn, Ni, Pb, and Zn concentrations in ground dust samples were 156.2, 708.8, 869.8, 140.8, 180.5, and 1089.7 mg kg-1, respectively, in which the mean Cu and Zn concentrations were 9 and 7 times higher than the background level in the soil. Temporally speaking, for the majority of heavy metals (with the exception of Ni), the high-concentration seasons tend to be mainly summer and autumn. It was observed that Cu and Zn exhibited significant enrichment (EF = 11.7 and 8.4, respectively), moderate-to-strong pollution (Igeo = 2.4 and 2.0, respectively), and moderate- and low-potential ecological risks ([Formula: see text] = 45.6 and 6.6, respectively). The noncarcinogenic risks which adults exposed to the heavy metal concentrations suffered were found to be insignificant. However, the carcinogenic risks related to Ni (1.3E-04) had exceeded the acceptable level. Based on principal component analysis (PCA) and correlation analysis, the heavy metal concentrations in the ground dust of urban campuses could be related to public point utilities, traffic-related exhaust sources, and industrial activities. This study's findings demonstrated that urban public utilities require more attention due to their significant enrichment, ecological risk factors, and the significant carcinogenic risks to the population.
Collapse
Affiliation(s)
- Yanping Wang
- School of Geographical Science, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Peng Qian
- School of Geographical Science, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
| | - Dongming Li
- Nantong Water Conservation Project Management Office of Tonglyu Canal River, 397 West Waihuan Road, Nantong, 226005, China
| | - Haifeng Chen
- Nantong Branch of Jiangsu Hydrology and Water Resources Survey Bureau, 31 Yaogang Road, Nantong, 226006, China
| | - Xiangqian Zhou
- Department of Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), 3a Brückstraße, 39114, Magdeburg, Germany
| |
Collapse
|
38
|
Xu L, Dai H, Skuza L, Wei S. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites. CHEMOSPHERE 2021; 285:131350. [PMID: 34265711 DOI: 10.1016/j.chemosphere.2021.131350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the horizontal, vertical and fractional distribution of heavy metals in the soil and the pollution and risk assessment of two smelter sites in Daye (a Cu smelter) and Zhuzhou (a Zn oxide smelter). Nine sampling points were reasonably established at each site, and nine soil samples were collected in each soil profile, with a total of 81 samples at each site. The results indicated that only As concentration was exceeded in most of the samples from the Daye site, and several were contaminated with multiple heavy metals, i.e. As, Cd and Pb; the values exceeding the standard were significant. Most of the samples at the Zhuzhou site were contaminated with many heavy metals, i.e. As, Cd, Pb and Ni. With increasing depth, the proportion of the acid-soluble and reducible heavy metal fraction decreased, while the proportion of the oxidized and residual fraction increased. The pollution index (PI) indicated that As at all positions, and Cd and Pb at several positions at the Daye site, as well as Cd and Pb at all points of Zhuzhou should have received more attention. The Nemerow integrated pollution index (NIPI) showed that a few sampling points in Daye were severely polluted, i.e. the points D5 with the value of 77.49 and the point D7 with 62.33, were more than the threshold value with 3 of severe pollution. Almost all sampling points in Zhuzhou were severely polluted, but the pollution degree was slightly lower than at Daye. The hazard index (HI) indicated the potential non-carcinogenic risk at the Daye and Zhuzhou sites. These values were unacceptable for both adults and children. The carcinogenic risk (CR) index indicated that the potential carcinogen risk due to As and Ni contamination were unacceptable at both sites, especially for children with 9.27E-03 and 1.99E-03 of As and Ni at Daye site, while 4.55E-03 and 4.09E-03 at Zhuzhou site. Strict control of industrial waste residues and smelters emissions into the soil is necessary to avoid further aggravation of heavy metal pollution.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
39
|
Kobya Y, Bilgin A, Yesilkanat CM, Bassari A, Taskin H. Trace element-based geochemical contamination characteristics and potential risks to human health: a case study from Northeast Turkey. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4959-4974. [PMID: 33982184 DOI: 10.1007/s10653-021-00965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Trace elements measured in Artvin province soil samples in Northeast Turkey were assessed using pollution and health indices. The study area is positioned in one of the essential metallogenic belts in Turkey. This attempt is the first endeavor toward the study area in this context. The measured trace elements are As, Co, Cr, Cu, Mn, Ni, Pb and Zn, as they were assessed using pollution indices, enrichment factor, geo-accumulation index, contamination factor, and health risk assessment methods. According to the results of enrichment factor (EF), geo-accumulation index (Igeo), and contamination factor (CF), the soils of Artvin province show a slightly severe enrichment, moderately polluted and very high contaminated with arsenic, respectively. The pollution load index score (PLI) index (1.57) indicates that Artvin province is polluted in terms of trace elements. The hazard index (HI) calculated values for children and adults were 1.55 and 0.18, respectively. This revealed that the aforementioned metals can have non-carcinogenic effects (HI > 1). Total potential carcinogenic health risk (TCR) values for children and adults were 3.22 × 10-5 and 1.40 × 10-5, respectively. The non-carcinogenic risk level indicates that there may be a risk for children rather than adults.
Collapse
Affiliation(s)
- Yasar Kobya
- Faculty of Engineering, Energy Systems Engineering, Artvin Çoruh University, 08100, Artvin, Turkey
| | - Ayla Bilgin
- Faculty of Engineering, Department of Environmental Engineering, Artvin Çoruh University, 08100, Artvin, Turkey
| | | | - Asiye Bassari
- Çekmece Nuclear Research and Training Center, Yarımburgaz Mah, 34303, Halkalı İstanbul, Turkey
| | - Halim Taskin
- Çekmece Nuclear Research and Training Center, Yarımburgaz Mah, 34303, Halkalı İstanbul, Turkey
| |
Collapse
|
40
|
Characteristics and Risk Assessment of 16 Metals in Street Dust Collected from a Highway in a Densely Populated Metropolitan Area of Vietnam. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study focused on investigating the contamination and risk assessment for 16 metals in street dust from Ha Noi highway, Ho Chi Minh City. The results indicated that the concentrations of metals (mg/kg) were found, in decreasing order, to be Ti (676.3 ± 155.4) > Zn (519.2 ± 318.9) > Mn (426.6 ±113.1) > Cu (144.7 ± 61.5) > Cr (81.4 ± 22.6) > Pb (52.2 ± 22.9) > V (35.5 ± 5.6) > Ni (30.9 ± 9.5) > Co (8.3 ± 1.2) > As (8.3 ± 2.5) > Sn (7.0 ± 3.6) > B (5.7 ± 0.9) > Mo (4.1 ± 1.7) > Sb (0.8 ± 0.3) > Cd (0.6 ± 0.2) > Se (0.4 ± 0.1). The geo-accumulation index (Igeo) showed moderate contamination levels for Pb, Cd, Cu, Sn, Mo, and Zn. The enrichment factor (EF) values revealed moderate levels for Cd, Cu, Mo, and Sn but moderate–severe levels for Zn. The pollution load index of the heavy metals was moderate. The potential ecological risk (207.43) showed a high potential. Notably, 40.7% and 33.5% of the ecological risks were contributed by Zn and Mn, respectively. These findings are expected to provide useful information to decision-makers about environmental quality control strategies.
Collapse
|
41
|
Zhang X, Eto Y, Aikawa M. Risk assessment and management of PM 2.5-bound heavy metals in the urban area of Kitakyushu, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148748. [PMID: 34328942 DOI: 10.1016/j.scitotenv.2021.148748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The sampling campaign of PM2.5 was carried out in Kitakyushu City on the western edge of Japan from 2013 to 2019, and 29 heavy metals loaded in PM2.5 were measured in this study. During the whole sampling period, the PM2.5 mass concentration ranged from 6.3 μg·m-3 to 57.5 μg·m-3, with a median value of 21.3 μg·m-3, and the sum concentration of heavy metals only accounted for 3%. According to the enrichment factor (EF) and geo-accumulation index (Igeo) analysis, it can be known that Se, Mo, Pb, As, Zn, W, Sb, Cu, V, Cr, Ni, and Cs were mainly from anthropogenic sources, which had EF values larger than 10 and Igeo values larger than 0. The comprehensive ecological risk index for these 12 anthropogenic metals was far greater than 600. This large index showed severe metal pollution and very high ecological risk in the urban area of Kitakyushu, Japan, which should be paid great attention. The human health assessment result further revealed that children living at the sampling site faced severe non-carcinogenic risk (HI = 7.8) and moderate carcinogenic risk (CR = 1.2 × 10-4), and oral ingestion was basically the most important exposure pathway, followed by dermal contact and inhalation. The priority control metals included Mo, Se, As, Pb, Sb, and Cr; moreover, the concentration-weighted trajectory analysis (CWT) indicated that Mo, Sb, and Cr were from ship emissions because some shipping routes around the Kyushu area were identified as their potential pollution source regions, while Se, As, and Pb were carried by the air masses from the Asian landmass. Overall, although the PM2.5 concentration in the urban area of Kitakyushu, Japan was not high, the heavy metal risk cannot be overlooked; it is necessary to strengthen the source control of high-risk metals and raise public protection awareness.
Collapse
Affiliation(s)
- Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yuko Eto
- Institute of Health and Environmental Sciences, City of Kitakyushu, 1-2-1 Shin-ike, Tobata-ku, Kitakyushu, Fukuoka 804-0082, Japan
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
42
|
Guarino F, Improta G, Triassi M, Castiglione S, Cicatelli A. Air quality biomonitoring through Olea europaea L.: The study case of "Land of pyres". CHEMOSPHERE 2021; 282:131052. [PMID: 34470149 DOI: 10.1016/j.chemosphere.2021.131052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The "Land of pyres", namely "La Terra dei Fuochi", is an area of Campania region (South-Italy), highly inhabited and comprises between the Provinces of Naples and Caserta, sadly known worldwide for the criminal activities related to the illegal waste disposal and burning. These fires, concomitantly with traffic emissions, might be the source of potential toxic element (PTE) dangerous for the human health and causing pathologies. In the framework of Correlation Health-Environment project, funded by the Campania region, eight municipalities (of area "Land of pyres") and three remote sites have been bio-monitored using the olive (Olea europaea L.) plants as biomonitors. Leaves of olive plants were collected in each assayed municipality and the concentration of 11 metal(loid)s was evaluated by means of ICP-OES. Our findings revealed that the air of these municipalities was limitedly contaminated by PTE; in fact, only Sb, Al and Mn were detected in the olive leaves collected in some of the assayed municipalities and showed a high enrichment factors (EC) manly due, probably, to the vehicular traffic emissions. Furthermore, the concentrations of the other assayed PTEs were lower than those of Sb, Al and Mn. For these reasons we suppose that their emissions in the troposphere have been and are limited, and they mainly have a crustal origin. Even if our data are very comforting for those urban area, regarded by many as one of the most contaminated one in Italy, a great environment care, in any case, is always needed.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples Federico II, 80131, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, 80131, Naples, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy
| |
Collapse
|
43
|
He Y, Zhang Y, Peng C, Wan X, Guo Z, Xiao X. Distribution Characteristics and Risk Assessment of Heavy Metals in Soil and Street Dust with Different Land Uses, a Case in Changsha, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10733. [PMID: 34682490 PMCID: PMC8536027 DOI: 10.3390/ijerph182010733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/07/2022]
Abstract
Rapid urbanization and industrialization have led to the accumulation of heavy metals in urban areas. The distribution and health risk of heavy metals in soil and street dust were studied by collecting the samples in pairs from different land uses in Changsha, China. The results showed that the average contents of the heavy metals Pb, Cd, Cu, Zn, Cr and Ni in the soil were 45.3, 0.69, 46.3, 220.4, 128.7 and 32.9 mg·kg-1, and the corresponding heavy metal contents in the street dust were 130.1, 3.9, 130.8, 667.2, 223.2, 50.5 mg·kg-1, respectively. The soils in the parks and roadsides have higher heavy metal contents than those in the residential and agricultural areas. The street dust collected from parks, roadsides and residential areas contained higher heavy metal contents than agricultural areas. Significant correlations were found between heavy metals, suggesting similar sources. However, most of the heavy metals in the soil were uncorrelated with those in the street dust. The contents of heavy metals in soil are the results of long-term pollution. Street dust is easily affected by natural or human disturbances, reflecting pollution emissions in a short period. The health risks posed by heavy metals in the soil are acceptable, but the street dust may threaten children's health, especially in residential areas. Pb, Cr and Cd are the main risk contributors. Reducing the emissions from industrial plants and traffic may reduce the risk of exposure to heavy metals in the street dust.
Collapse
Affiliation(s)
- Yalei He
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; (Y.H.); (Y.Z.); (Z.G.); (X.X.)
| | - Yan Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; (Y.H.); (Y.Z.); (Z.G.); (X.X.)
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; (Y.H.); (Y.Z.); (Z.G.); (X.X.)
| | - Xinxing Wan
- Third Xiangya Hospital, Central South University, Changsha 410083, China;
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; (Y.H.); (Y.Z.); (Z.G.); (X.X.)
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; (Y.H.); (Y.Z.); (Z.G.); (X.X.)
| |
Collapse
|
44
|
Determination of Heavy Metal Contamination and Pollution Indices of Roadside Dust in Dhaka City, Bangladesh. Processes (Basel) 2021. [DOI: 10.3390/pr9101732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Urban roadside dust samples from Dhaka City in Bangladesh were collected from a planned residential area (PRA), spontaneous residential area (SRA), commercial area (CA), and urban green area (UGA) in winter and summer to study how season and different urban land-use categories influence the concentrations of heavy metals (Cr, Mn, Co, Ni, Cu, Zn, As, and Pb) and different pollution indices. The dust samples were fractionated into <32 μm particles, extracted by acid digestion followed by estimation of heavy metals, using ICP-MS. Pollution indices were calculated from the metal concentrations, using standard protocols. The concentrations of heavy metals in roadside dust varied significantly (all p < 0.05), due to sampling seasons and the land-use category. Higher concentrations of heavy metals (Cr, Mn, Ni, Cu, Zn, and Pb) were found in the dust sampled during the winter season than in the summer season, except for As and Co. The geo-accumulation index (Igeo) indicated that the commercial area was heavily contaminated with Cu and Zn during the winter season. The contamination factor (CF) was higher for Cu and Zn in the CA, PRA, and SRA of Dhaka City in winter than in the summer season. The enrichment factor (EF) suggested that Mn and Co were the least enriched metals, and significant enrichment was seen for Cu and Zn for all land-use categories, both in summer and winter. A moderate potential ecological risk for Cu was estimated in CA and PRA in the winter season.
Collapse
|
45
|
Yin H, Huang Y, Wang K. How Do Environmental Concerns and Governance Performance Affect Public Environmental Participation: A Case Study of Waste Sorting in Urban China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18199947. [PMID: 34639253 PMCID: PMC8508034 DOI: 10.3390/ijerph18199947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution threatens public health and has become a social concern in recent years. Despite the conditions for public participation in environmental governance have improved considerably, the level of public engagement in government projects still falls short of expectations. Therefore, this article introduced two key variables, hoping to answer the following research question that how environmental concerns and governance performance affect public environmental participation. Through principal component analysis of the data from the “Survey of Chinese Urban Residents’ Attitudes toward Environmental Protection”, the findings of this article are as follows: First, public environmental concerns have no significant impact on their environmental engagement; second, the improvement of residents’ confidence in the government performance of environmental management reduces their willingness to participate in official projects. The higher the confidence in the government’s performance, the lower the level of public engagement is. Moreover, due to the consideration of self-interest or lack of environmental awareness, those who oppose waste incineration in waste terminal disposal tend to take a non-participatory role in waste sorting programs. Therefore, we suggest that the government have more diverse shareholders in environmental protection, so it should expand public participation through education, publicity, mobilization, and incentives.
Collapse
Affiliation(s)
- Hang Yin
- School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Yixiong Huang
- Department of Economics, Law and Society, ESSCA School of Management, EU-Asia Institute, 49003 Angers, France;
| | - Kuiming Wang
- China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence:
| |
Collapse
|
46
|
Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pollution status of ten potentially toxic elements (PTEs), isotopic compositions (Cu, Zn, Pb), and the potential ecological risk posed by them were investigated in the PM10 fraction of road dust in Busan Metropolitan city, South Korea. Enrichment factors revealed extremely to strongly polluted levels of Sb, Cd, Zn, Pb, and Cu in the PM10 fraction of road dust, with Sb levels being the highest. Statistical analyses showed that the major cause for contamination with PTEs was non-exhaust traffic emissions such as tire and brake wear. Cu and Zn isotopic compositions of road dust were related to traffic-related emission sources such as brake and tires. Pb isotopic compositions were close to that of road paint, indicating that Pb was a different source from Cu and Zn in this study. No significant health risk was posed by the PTEs. Taking into account the total length of road in Busan, a high quantity of PTEs in road dust (PM10) can have serious deleterious effects on the atmospheric environment and ecosystems. The results of metal concentrations and isotopic compositions in road dust will help identify and manage atmospheric fine particle and coastal metal contamination derived from fine road dust.
Collapse
|
47
|
Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The goal of this research is to assess hazardous heavy metal levels in PM2.5 fractioned road dust in order to quantify the risk of inhalation and potential health effects. To accomplish this, Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was used to determine concentrations of eight heavy metals (Cr, Cu, Ni, Zn, Cd, As, Pb, and Hg) in the PM2.5 portion of road dust samples from five different land use areas (commercial, residential, industrial, parks, and educational) in Zhengzhou, China. The following were the average heavy metal concentrations in the city: Cr 46.26 mg/kg, Cu 25.13 mg/kg, Ni 12.51 mg/kg, Zn 152.35 mg/kg, Cd 0.56 mg/kg, As 11.53 mg/kg, Pb 52.15 mg/kg, and Hg 0.32 mg/kg. Two pollution indicators, the Pollution Index (PI) and the Geoaccumulation Index (Igeo), were used to determine the degree of contamination. Both PI and Igeo indicated the extreme pollution of Hg and Cd, while PI also ranked Zn in the extreme polluted range. The US Environmental Protection Agency (USEPA) model for adults and children was used to estimate health risks by inhalation. The results identified non-carcinogenic exposure of children to lead (HI > 0.1) in commercial and industrial areas. Both children and adults in Zhengzhou’s commercial, residential, and park areas are exposed to higher levels of copper (Cu), lead (Pb), and zinc (Zn).
Collapse
|
48
|
Ali MU, Yu Y, Yousaf B, Munir MAM, Ullah S, Zheng C, Kuang X, Wong MH. Health impacts of indoor air pollution from household solid fuel on children and women. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126127. [PMID: 34492921 DOI: 10.1016/j.jhazmat.2021.126127] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 05/12/2021] [Indexed: 05/11/2023]
Abstract
The inefficient and incomplete combustion of solid fuel (SF) is associated with high levels of indoor air pollutants leading to 3.55 million deaths annually. The risk is higher in women and children, due to their higher exposure duration and unique physical properties. The current article aims to provide a critical overview regarding the use of solid fuel, its associated pollutants, their toxicity mechanisms and, most importantly the associated health impacts, especially in women and children. Pollutants associated with SF mostly include polycyclic aromatic hydrocarbons, particulate matter, nitrous oxide, carbon monoxide and sulfur dioxide, and their concentrations are two- to threefold higher in indoor environments. These pollutants can lead to a variety of health risks by inducing different toxicity mechanisms, such as oxidative stress, DNA methylation, and gene activation. Exposed children have an increased prevalence of low birth weight, acute lower respiratory tract infections, anemia and premature mortality. On the other hand, lung cancer, chronic obstructive pulmonary disease and cardiovascular diseases are the major causes of disability and premature death in women. Indoor air pollution resulting from SF combustion is a major public health threat globally. To reduce the risks, it is important to identify future research gaps and implement effective interventions and policies.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Yangmei Yu
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| | - Balal Yousaf
- Department of Environment Engineering, Middle East Technical University, Ankara 06800, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Sami Ullah
- Department of Forestry, Shaheed Benazir Bhutto University Sheringal, Dir Upper, KPK, Pakistan.
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Xingxing Kuang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| |
Collapse
|
49
|
Rahman MS, Kumar S, Nasiruddin M, Saha N. Deciphering the origin of Cu, Pb and Zn contamination in school dust and soil of Dhaka, a megacity in Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40808-40823. [PMID: 33772469 DOI: 10.1007/s11356-021-13565-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, anthropogenic activities have resulted in road dust and roadside soil hosted metal(oid)s pollution in the urban environment. In the South-Asian megacity "Dhaka", schools are situated in the areas with high population density and high traffic emissions. As the school-going children are the most vulnerable receptor, school premises in Dhaka city represent an important yet overlooked exposure point to contaminated dust and soil. Therefore, the present study investigated the metal(oid)s (Cu, Pb, Zn and As) pollution in dust and soil at school compounds, explored their possible sources and estimated the associated human health risk. This study revealed that dust contained higher concentration of metal(oid)s than soil, and the Azimpur Govt. Girls School & College was identified as the most contaminated site. The enrichment of school dust with Cu, Zn and Pb were strictly related to the dense population and substantial traffic activity in the study areas. Arsenic content in school soil was several folds higher than its concentration in the upper crust. Natural and anthropogenic activities possibly posed a synergistic effect on such high soil As. The multivariate statistics suggested that Cu, Zn and Pb were likely to be originated from traffic-related activities, while Zr, Fe, Ti and Rb from natural sources, and K, Sr and Ca from industrial activities. The assessment of health risk suggested the children as a vulnerable receptor and ingestion was identified as the dominant pathway of dust and soil exposure. The hazard index (HI) values were lower than unity, suggesting no possible non-cancer health risk. Arsenic posed a lifetime carcinogenic risk to the population in the study area through soil ingestion and dermal adsorption.
Collapse
Affiliation(s)
- M Safiur Rahman
- Chemistry Division, Atomic Energy Center, Bangladesh Atomic Energy Commission, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka, 1000, Bangladesh
| | - Sazal Kumar
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 1000049, China
| | - Md Nasiruddin
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Narottam Saha
- Center for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
50
|
Zhou L, Liu G, Shen M, Liu Y, Lam PKS. Characteristics of indoor dust in an industrial city: Comparison with outdoor dust and atmospheric particulates. CHEMOSPHERE 2021; 272:129952. [PMID: 33601210 DOI: 10.1016/j.chemosphere.2021.129952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
There is a considerable connection between indoor and outdoor environments. However, few studies have explored their intrinsic relationship until now. This study conducted morphologic observation, heavy metal monitoring and isotopes analysis in indoor and outdoor dust, as well as the atmospheric particulates in Hefei. Morphologic analysis demonstrated atmospheric particulates were affected by fly ash and construction, road dust mainly came from automobile exhaust and indoor dust particles were interfered by multiple sources, including the secondary reaction of fly ash. Chemical speciation analysis of heavy metals showed the exchange of heavy metals between atmospheric particulates and indoor dust was dominated by non-residual metals, while the exchange between road dust and indoor dust tended to rely on residual metals. The assessment results of heavy metals in particulates showed that indoor carcinogenic risks were greater than outdoor for children, however, for adults, outdoor carcinogenic risks were greater than indoor. Stable isotopes analysis indicated carbon in the dust outside buildings was derived from flying dust, and atmospheric particulates might derive from vehicle exhaust, or partly from natural gas. While sulfur in atmospheric particulates was derived mainly from coal combustion. The release from indoor activities, especially natural gas exhaust emitted from cooking had a certain impact on atmospheric particulates.
Collapse
Affiliation(s)
- Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China; State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|