1
|
Radwan IT, Ghazawy NAR, Alkhaibari AM, Gattan HS, Alruhaili MH, Selim A, Salem ME, AbdelFattah EA, Hamama HM. Nanostructure Lipid Carrier of Curcumin Co-Delivered with Linalool and Geraniol Monoterpenes as Acetylcholinesterase Inhibitor of Culex pipiens. Molecules 2024; 29:271. [PMID: 38202854 PMCID: PMC10780757 DOI: 10.3390/molecules29010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: A molecular hybridization docking approach was employed to develop and detect a new category of naturally activated compounds against Culex pipiens as acetylcholinesterase inhibitors via designing a one-pot multicomponent nano-delivery system. (2) Methods: A nanostructure lipid carrier (NLC), as a second generation of solid lipid nanoparticles, was used as a carrier to deliver the active components of curcumin (Cur), geraniol (G), and linalool (L) in one nanoformulation after studying their applicability in replacing the co-crystallized ligand imidacloprid. (3) Results: The prepared nanostructure showed spherical-shaped, polydisperse particles ranging in size from 50 nm to 300 nm, as found using a transmission electron microscope. Additionally, dynamic light scattering confirmed an average size of 169 nm and a highly stable dispersed solution, as indicated by the zeta potential (-38 mV). The prepared NLC-Cur-LG displayed competitive, high-malignancy insecticidal activity against fourth instar C. pipiens with an elevated rate of death of 0.649 µg/mL. The treatment, due to the prepared nanostructure, affects oxidative stress enzymes, e.g., hydrogen peroxide (4 ppm), superoxide dismutase (SOD) (0.03 OD/mg), and protein carbonyl (0.08 OD/mg), and there are observable upward and downward fluctuations when using different concentrations of NLC-Cur-LG, suggesting significant problems in its foreseeable insecticidal activity. The acetylcholinesterase activity was assessed by an enzyme inhibition assay, and strengthened inhibition occurred due to the encapsulated NLCs (IC50 = 1.95 µg/mL). An investigation of the gene expression by Western blotting, due to treatment with NLC-Cur-LG, revealed a severe reduction of nearly a quarter of what was seen in the untreated group. As a preliminary safety step, the nanoformulation's toxicity against normal cell lines was tested, and a reassuring result was obtained of IC50 = 158.1 µg/mL for the normal lung fibroblast cell line. (4) Conclusions: the synthesized nanoformulation, NLC-Cur-LG, is a useful insecticide in field conditions.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | | | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
| | - Mohammed H. Alruhaili
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Mostafa E. Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | | | - Heba M. Hamama
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
2
|
Radwan IT, Sayed-Ahmed MZ, Ghazawy NA, Alqahtani SS, Ahmad S, Alam N, Alkhaibari AM, Ali MS, Selim A, AbdelFattah EA. Effect of nanostructure lipid carrier of methylene blue and monoterpenes as enzymes inhibitor for Culex pipiens. Sci Rep 2023; 13:12522. [PMID: 37532732 PMCID: PMC10397322 DOI: 10.1038/s41598-023-39385-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Solid lipid nanoparticles second generation, nanostructure lipid carrier (NLC), is one of the most important biodegradable nanoparticles. Nanostructure Lipid carrier (NLC) was used to encapsulate methylene blue (MB) dye, carvacrol and citronellal and their efficacy as insecticidal against Culex pipiens (Cx. pipiens) were distinguished. The prepared nanoformulation revealed very good physicochemical properties, especially the homogeneity of the particle size. Transmission electron microscope showed spherical shaped nanoparticles within range less than 200 nm. The prepared NLC-MB-MT system showed a very competitive insecticidal activity and high virulence against the mosquito larvae with higher mortality rate of LC50 of 0.141 µl/mL, in addition to high level of Oxidative stress parameters obtained through all the tested enzymes including hydrogen peroxide (4.8 ppm), protein carbonyl amount (0.12 OD/mg protein), ascorbic acid (0.15 mg) and Superoxide dismutase (SOD) showed strong increasing (0.09 OD/mg protein/min) at 6 µg/mL, respectively. Whereas paradoxical results of the oxidative stress enzymes were obtained from different concentration of nanoformulation that introduce a convenient reason for their potential insecticidal effect. The cytotoxic effect of NLC-MB-MT was evaluated using WI38 human lung cell lines, the LC50 was 6.4 mg/mL. The low cytotoxic reactivity towards the tested cell line makes the NLC-MB-MT nanoformulation has its promising insecticidal efficacy. Molecular docking study for each component were done against acetylcholine esterase protein and accepted binding modes achieved by the three compounds.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Mohamed Z Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia.
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | | | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | | |
Collapse
|
3
|
Alaaeldin Abdelfattah E, Renault D. Does the presence of heavy metal and catechol contaminants in organic waste challenge the physiological performance of the bioconverter Hermetia illucens? JOURNAL OF INSECT PHYSIOLOGY 2023; 144:104469. [PMID: 36525990 DOI: 10.1016/j.jinsphys.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The increased human activities and the worldwide population growth are constantly increasing the production of solid wastes. Over the years, waste management has thus become a prominent issue for several companies and municipalities, and several engineering techniques have been developed over the years in order to convert wastes into other solid materials or fuels. Yet, several techniques are important contributors to environmental pollution, and biological-based solutions have thus become progressively very popular. In particular, insect-based conversion of organic wastes represent eco-friendly tools, and the growth and development of insect species such as the black soldier fly have been tested and improved for a large diversity of organic wastes. However, organic wastes, including food wastes, may contain several pollutants such as heavy metals and catechol which could affect the bioconversion efficiency by incurring physiological costs that would be undetectable at the organismal level, i.e. have null to little effects on the life cycle of Hermetia illucens. In this context, assessments of antioxidant capacities can provide a rapid and low-cost evaluation of the capability of insects to handle exposure to heavy metals and catechol. Here, we aimed at measuring the physiological responses of the black soldier fly H. illucens grown on food wastes (kitchen, fruit or vegetable wastes) contaminated by cadmium, iron, lead or catechol. Biomarkers of oxidative stress (concentrations of hydrogen peroxide and protein carbonyls), non-enzymatic total antioxidant capacity (ascorbic acid amounts) and activity of enzymatic antioxidants (activities of superoxide dismutase and polyphenoloxidase) were measured from the gut of the larvae. We found no evidence of deleterious impacts of food waste contamination by catechol or heavy metals on H. illucens. In most experimental treatments, the array of physiological endpoints we measured for evaluating the degree of oxidative stress experienced by the larvae remained similar to controls. Possible physiological effects were reported for cadmium and catechol only, which tended to increase the oxidation of proteins and hydrogen peroxide in the larvae. Finally, our results suggested that the nature of the food waste could equally affect the physiological responses of the insect.
Collapse
Affiliation(s)
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| |
Collapse
|
4
|
Abdelfattah EA, El-Bassiony GM. Impact of malathion toxicity on the oxidative stress parameters of the black soldier fly Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae). Sci Rep 2022; 12:4583. [PMID: 35301370 PMCID: PMC8931003 DOI: 10.1038/s41598-022-08564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The black soldier fly larvae (BSFL) may serve as a promising tool in the animals feed production industry. The input organic wastes may be contaminated by insecticides that affect both the insect’s mass rearing, and the animals feed process. Therefore, in the current study the assessment of oxidative stress parameters of the black soldier fly (BSF) were investigated to quantify the deleterious effect of malathion-contaminated kitchen waste (1:1 vegetable: fruit waste) container on the insect. The different developmental stages of insect (adult and larva) were exposed to different concentrations (0, 0.005, 0.01, 0.015, and 0.02 mg/mL) of malathion. The results showed that the mean value of the reactive oxygen species (ROS), which included hydrogen peroxide (H2O2) and superoxide anion radicals (O2•-) concentrations were lower in larval stage than in adults, in all treated groups (0, 0.005, 0.01, 0.015, and 0.02 mg/mL malathion concentration). Also, the protein carbonyls amount and lipid peroxides levels were decreased in the 0.02 mg/mL Malathion compared to the control values. However, the cluster analysis revealed slight dissimilar patterns for control insects and the highest malathion concentration (0.02 mg/ml). These stage-related differences could occur from the different growth dynamic functions of larvae and adults. The larvae were distinguished by robust growth, and significant oxygen consumption. The results verified that oxidative stress parameters, especially protein carbonyls and α, α-diphenyl-β-picrylhydrazyl (DPPH) were promising, cheap, quick and cost-effective applications for determining the macromolecules damage, and antioxidant ability of H. illucens enclosed with malathion exposure. These findings described that malathion application induces macromolecules damage mediated through oxidative stress injury.
Collapse
Affiliation(s)
- Eman Alaaeldin Abdelfattah
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt.
| | - Ghada M El-Bassiony
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt
| |
Collapse
|
5
|
Abdelfattah EA, Renault D. Effect of different doses of the catecholamine epinephrine on antioxidant responses of larvae of the flesh fly Sarcophaga dux. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10408-10415. [PMID: 34523094 DOI: 10.1007/s11356-021-16325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The production and use of pharmaceutical products have increased over the past decades, and several are considered potential or proved hazardous wastes. When contaminating the environment, they can severely impact biodiversity. The catecholamine epinephrine (adrenaline) is no exception. Epinephrine can be administered as growth promoter in cattle, and is used for anaphylaxis treatment in human. While a range of studies has examined the effects of this catecholamine on vertebrate tissues, and evidenced that it can disrupt the oxidative stress status, the effects epinephrine could have on insects have remained poorly considered. Here, we examined the physiological effects of different concentrations (0, 25, 50, and 100 μg/mL) of epinephrine on larvae of the flesh fly Sarcophaga dux. Following experimental treatments, levels of H2O2, GSH, CAT, GPx, and CEH were measured from the fat body, cuticle, gut, and hemolymph of 3rd instars. Significant differences are reported for these physiological endpoints among the considered body compartments, and epinephrine concentrations. Epinephrine treatments did not increase reactive oxygen species production (H2O2 amounts), except for gut tissues. Increased levels of GSH suggest that epinephrine may have enhanced glucose metabolism and flux towards the pentose phosphate pathway, while reducing glutamine oxidation. CAT activity was slightly increased when the concentration of epinephrine was higher. The decreased GPx activity in the fat body was consistent with GSH variations. In sum, the injection of epinephrine seemed to elicit the antioxidant response in S. dux larvae, in turn attenuating ROS production.
Collapse
Affiliation(s)
- Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, 11221 Al Orman, Giza, Egypt.
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, 74205, F 35000, 35042, Rennes, CS, France.
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France.
| |
Collapse
|
6
|
Abdelfattah EA, Augustyniak M, Yousef HA. Stage-, sex- and tissue-related changes in H 2O 2, glutathione concentration, and glutathione-dependent enzymes activity in Aiolopus thalassinus (Orthoptera: Acrididae) from heavy metal polluted areas. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:478-491. [PMID: 33582930 DOI: 10.1007/s10646-021-02354-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
This study is part of a large project carried out at the Cairo University, Egypt, and focused on assessing physiological and biochemical changes in Aiolopus thalassinus under the influence of environmental pollution with heavy metals (Pb, Cd, Cu, and Zn). The study aimed to investigate parameters related to maintaining redox balance, with particular emphasis on stage-, sex- and tissue-dependent differences in H2O2 and glutathione (GSH) levels and activity of selected enzymes involved in GSH metabolism. A noticeable increase in the concentration of H2O2 was found, especially in the gut of 5th instar nymphs and females from the highly polluted site. An increase in GSH concentration was significant, especially in the gut of adult A. thalassinus from the high polluted site. However, recycling of reduced form of glutathione in the gut by glutathione reductase (GR) was relevant only for females from the high polluted site. Nymphs and females generally showed higher glutathione S-transferase (GST) activity, especially in the gut. These stage- and sex-related differences can result from different growth dynamic and various reproductive functions of nymphs and both sexes. The digestive track is in direct contact with xenobiotics consumed with food. Nymphs are characterized by vigorous growth, they feed intensively, and their development processes are associated with substantial oxygen consumption. Also, maintaining the antioxidant system at a high level can be more important for females than males due to egg production over a long period. It appears that de novo GSH synthesis is a favorable and cost-effective adaptation mechanism for A. thalassinus living in the high polluted site.
Collapse
Affiliation(s)
- Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Kheirallah DAM, El-Samad LM, Abdel-Moneim AM. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141743. [PMID: 32891989 DOI: 10.1016/j.scitotenv.2020.141743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Nickel oxide nanoparticles (NiO-NPs) have extensively used in industrial and consumer products. The present study conducted to gain more knowledge about the safe use of NiO-NPs and also to understand their impact on the environment and biological systems. Herein, we examined the genotoxic and ultra-structural effects of a sublethal dose of NiO-NPs (0.03 mg/g) on the ovarian tissues of the ground beetle, Blaps polycresta. The mean diameter of NiO-NPs was 24.49 ± 3.88 nm, as obtained through transmission electron microscopy (TEM). In terms of DNA damage levels, the frequency of micronucleus (MN) formation was highly significant in the NiO-NPs treated group versus the controls. Besides, NiO-NPs treatment resulted in a significant increase in the tail length of comets. Further, electron microscopy revealed a progressive increase in chromatin condensation of the ovarian nurse and follicular cells, in addition to the accumulation of lysosomes and endo-lysosomes in their cytoplasm. In conclusion, NiO-NPs are capable of gaining access to the ovary of B. polycresta and causing DNA damage and a high degree of cellular toxicity in the ovarian cells. The present study highlights, for the first time, the adverse effects of these NPs to female gonads of insects and raised the concern of its genotoxic potential. It would be of interest to investigate NiO-NPs mediated intracellular ROS generation in future studies.
Collapse
|
8
|
Kheirallah DAM, El-Samad LM, Mokhamer EHM, Abdul-Aziz KK, Toto NAH. DNA damage and oogenesis anomalies in Pimelia latreillei (Coleoptera: Tenebrionidae) induced by heavy metals soil pollution. Toxicol Ind Health 2020; 35:688-702. [PMID: 31818244 DOI: 10.1177/0748233719893200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study used Pimelia latreillei as a biomonitoring insect for heavy metals soil pollution in a populated industrial area at Zawya Abd El-Qader, Alexandria, Egypt. Comet assay and histological analysis were applied to evaluate the potential risk of heavy metals. X-ray analysis of the soil samples collected from the polluted site revealed significantly increased metal percentages compared with the reference site. Moreover, a significant increase in metal percentages was detected by the X-ray analysis in insect ovaries collected from the polluted site. The Tail DNA length was significantly greater in the insects collected from the polluted site-47.6% compared with 11.4% at the reference site. Pronounced disruptions in oogenesis were observed through histological and ultrastructure investigations in insects collected from the polluted site. The study summarized the potential utility of insect biomonitors in predicting the effect of heavy metals soil pollution on occupational health.
Collapse
|
9
|
Yousef HA, Abdelfattah EA, Augustyniak M. Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3823-3833. [PMID: 30539392 DOI: 10.1007/s11356-018-3756-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The response of antioxidant enzymes to oxidative environmental stress was determined in 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae) collected from sites with different level of pollution with heavy metals, PO43-, and SO42-. The high polluted site induced higher DNA damage to individuals compared to the control site. The highest values of tail length (TL), tail moment (TM), and percent of DNA in tail (TDNA) were found in the gut of 5th instar nymphs from a high polluted site. Also, protein carbonyls and lipid peroxide levels were significantly higher in insects collected from polluted sites compared to those from the control site. A strong positive correlation between both protein carbonyl and lipid peroxide concentration and the pollution level of the sites was found in all tissues of the insects. The activity of superoxide dismutase (SOD) in the brain of insects collected from the high polluted site was significantly higher than that in the thoracic muscles and gut. We observed strong inhibition of catalase (CAT) activity. This effect was apparently caused by pollutants present at the high polluted site. The level of pollution significantly influenced polyphenol oxidase (PPO) activity in A. thalassinus nymphs in all examined tissues. The highest values were observed in the brain. The relationship between pollution and ascorbate peroxidase (APOX) activity in the examined tissues had no clear tendency. However, the lowest APOX activity was observed in individuals from the low polluted site. Level of pollution of sampling sites, oxidative stress biomarkers, and enzymatic response in A. thalanthsis 5th instar were negatively or positively correlated. Oxidative damage parameters, especially the percent of severed cells, lipid peroxides, and the activity of APOX, can be perceived as good markers of environmental multistress.
Collapse
Affiliation(s)
- Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
10
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
11
|
de Souza JM, Rabelo LM, de Faria DBG, Guimarães ATB, da Silva WAM, Rocha TL, Estrela FN, Chagas TQ, de Oliveira Mendes B, Malafaia G. The intake of water containing a mix of pollutants at environmentally relevant concentrations leads to defensive response deficit in male C57Bl/6J mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:186-197. [PMID: 29432930 DOI: 10.1016/j.scitotenv.2018.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have individually confirmed the toxic effects from different pollutants on mammals. However, effects resulting from the exposure of these animals to multi-pollutant mixes have not been studied so far. Thus, the aim of the current study is to assess the effect from the chronic exposure (105days) of C57Bl/6J mice to a mix of pollutants on their response to potential predators. In order to do so, the following groups were formed: "control", "Mix 1× [compounds from 15 pollutants identified in surface waters at environmentally relevant concentration (ERC)]", "Mix 10×" and "Mix 25×" (concentrations 10 and 25 times higher than the ERC). From the 100th experimental day on, the animals were subjected to tests in order to investigate whether they showed locomotor, visual, olfactory and auditory changes, since these abilities are essential to their anti-predatory behavior. Next, the animals' behavior towards potential predators (Felis catus and Pantherophis guttatus) was assessed. The herein collected data did not show defensive response from any of the experimental groups to the predatory stimulus provided by P. guttatus. However, the control animals, only, presented anti-predatory behavior when F. catus was introduced in the apparatus, fact that suggests defensive response deficit resulting from the treatments. Thus, the current study is pioneer in showing that the chronic intake of water containing a mix of pollutants (even at low concentrations) leads to behavioral disorders able to affect the survival and population dynamics of mammalian species at ecological level.
Collapse
Affiliation(s)
- Joyce Moreira de Souza
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | | | - Denise Braga Gomes de Faria
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Wellington Alves Mizael da Silva
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | - Bruna de Oliveira Mendes
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil.
| |
Collapse
|