1
|
Wei Y, Chen Y, Cao X, Xiang M, Huang Y, Li H. A Critical Review of Groundwater Table Fluctuation: Formation, Effects on Multifields, and Contaminant Behaviors in a Soil and Aquifer System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2185-2203. [PMID: 38237040 DOI: 10.1021/acs.est.3c08543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The groundwater table fluctuation (GTF) zone is an important medium for the hydrologic cycle between unsaturated soil and saturated aquifers, which accelerates the migration, transformation, and redistribution of contaminants and further poses a potential environmental risk to humans. In this review, we clarify the key processes in the generation of the GTF zone and examine its links with the variation of the hydrodynamic and hydrochemistry field, colloid mobilization, and contaminant migration and transformation. Driven by groundwater recharge and discharge, GTF regulates water flow and the movement of the capillary fringe, which further control the advection and dispersion of contaminants in soil and groundwater. In addition, the formation and variation of the reactive oxygen species (ROS) waterfall are impacted by GTF. The changing ROS components partially determine the characteristic transformation of solutes and the dynamic redistribution of the microbial population. GTF facilitates the migration and transformation of contaminants (such as nitrogen, heavy metals, non-aqueous phase liquids, and volatile organic compounds) through colloid mobilization, the co-migration effect, and variation of the hydrodynamic and hydrochemistry fields. In conclusion, this review illustrates the limitations of the current literature on GTF, and the significance of GTF zones in the underground environment is underscored by expounding on the future directions and prospects.
Collapse
Affiliation(s)
- Yaqiang Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuling Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minghui Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuan Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Li D, Zhao H, Wang G, Liu R, Bai L. Room-temperature ultrasonic-assisted self-assembled synthesis of silkworm cocoon-like COFs@GCNTs composite for sensitive detection of diuron in food samples. Food Chem 2023; 418:135999. [PMID: 37001360 DOI: 10.1016/j.foodchem.2023.135999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Diuron (DU) exhibits good weed control effect but possesses strong hazard to human health, thereby designing a fast and sensitive method to detect DU is highly urgent. Herein, we report the ultrasonic-assisted self-assembly synthesis of porous covalent organic frameworks (COFs) spheres@graphitized multi-walled carbon nanotubes (GCNTs) composite based on π-π conjugation effect at room temperature, which was employed for DU determination. For the COFs@GCNTs composite, COFs with ultrahigh specific surface area shows strong adsorption ability towards DU, whereas GCNTs with favorable conductivity help to form the 3D interconnected conductive network around COFs spheres, thereby effectively compensating for the poor conductivity of COFs. Because of the synergistic effect between COFs and GCNTs, the developed sensor presented a low detection limit of 0.08 µM in the concentration range of 0.30-18.00 µM. Moreover, the actual sample analysis in the tomato and cucumber yielded satisfactory recoveries (96.40%-103.20%), proving reliable practicability of the developed sensor.
Collapse
|
3
|
Nigović B. New approach on sensitive analysis of pimavanserin, levodopa and entacapone based on synergistic effect of graphene nanoplatelets and graphitized carbon nanotubes in functionalized polymer matrix. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Liu Z, Lv Y, Wang Y, Wang S, Odebiyi OS, Liu B, Zhang Y, Du H. Oxidative leaching of V-Cr-bearing reducing slag via a Cr(III) induced Fenton-like reaction in concentrated alkaline solutions. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129495. [PMID: 35868080 DOI: 10.1016/j.jhazmat.2022.129495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
V-Cr-bearing reducing slag (VCRS) is considered a hazardous waste that can create ecosystem disasters if handled improperly. It consists of a considerable amount of heavy metals, such as vanadium (V) and chromium (Cr). In this study, we propose a novel process featuring a VCRS self-induced Cr(III)-Fenton-like reaction to efficiently recover V and Cr from hazardous VCRS. The generation of hydroxyl radicals (·OH) and determination of their effect on V and Cr oxidation were examined via electron spin resonance detection, free radical quenching, and terephthalic acid fluorescence probe methods. The V and Cr oxidative leaching processes were directly controlled by the amount of added H2O2 and generated·OH from the Cr(III)-Fenton-like reaction, which in turn was dependent on the amount of dissolved Cr(OH)4-. In a single oxidative leaching process, the leaching efficiencies of V and Cr reached 97.5 ± 0.6 % and 85.2 ± 0.8 %, respectively, and reached 99.4 ± 0.5 % and 94.6 ± 0.9 %, respectively, from circular leaching owing to a continuous supply of dissolved Cr(OH)4- from fresh VCRS. This study identifies a novel approach to discovering deep oxidation of the VCRS while minimizing environmental contamination via a waste control strategy and can be considered an attractive alternative approach for the green treatment of VCRS.
Collapse
Affiliation(s)
- Zhiqiang Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yeqing Lv
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yaru Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaona Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Oluwasegun Samuel Odebiyi
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Biao Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yi Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hao Du
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
5
|
Dakroury G, El-Shazly EA, Eliwa A, MubarkEl-Azony A. Utilization of titanium nanocomposites as prospective materials for recycling of vanadium (V) from waste solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Wang T, Zhao D, Cao J, Zeng Q, Li W, Liu B, He D, Liu Y. FeS-mediated mobilization and immobilization of Cr(III) in oxic aquatic systems. WATER RESEARCH 2022; 211:118077. [PMID: 35065338 DOI: 10.1016/j.watres.2022.118077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Reduction of soluble Cr(VI) into insoluble Cr(III) by iron sulfide (FeS) minerals under anoxic conditions has been widely observed in natural and engineered systems. Yet, information has been lacking on the FeS-mediated oxidation and remobilization potential of Cr(III) under varying environmental conditions. The objective of this study was to investigate FeS-mediated redox transformation of Cr(III) to Cr(VI) and the associated mobilization and immobilization when Cr(III)-FeS systems are exposed to atmospheric conditions. The results showed that FeS nanoparticles facilitated rapid and strong Fenton-like reactions during the early-stage oxygenation of FeS, resulting in rapid production of hydroxyl radicals (•OH). Consequently, Cr(III) was rapidly oxidized into Cr(VI). Yet, as the reactions proceeded, the oxidative potential was counteracted by competitive scavenging of •OH by Fe(II) and S(-II) from FeS and the reduction reactions by these electron donors. At equilibrium, all Cr(VI) was reduced back to Cr(III) at an FeS-Cr(III) molar ratio of 10:1, while a small fraction of Cr(VI) persisted in solid products of Cr(OH)3(s) at an FeS-Cr(III) molar ratio of 1:1. Acidic conditions favored the generation of Cr(VI) and the equilibrium concentration of Cr(VI) in oxic FeS NPs systems at pH 5.0 was 1.7 times higher than at pH 9.0. Overall, the FeS-induced Fenton-like reactions and the oxidation of Cr(III) were favored in the early stage, but quenched in the later stage and outcompeted by the reduction of Cr(VI) if sufficient FeS was available. The findings provide new insights into the hydrochemical processes that can affect the speciation, toxicity, and mobility of Cr in aquatic systems containing FeS and Cr.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dongye Zhao
- Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Jun Cao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiling Zeng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Wei Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Bin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dan He
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yuanyuan Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Han B, Wang X, Wu P, Jiang H, Yang Q, Li S, Li J, Zhang Z. Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125984. [PMID: 34020360 DOI: 10.1016/j.jhazmat.2021.125984] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Graphitized multi-walled carbon nanotubes (GMWCNTs) are a new type of nanomaterial. Recently, their production and application in biological medicine have grown rapidly. However, GMWCNTs may cause adverse health effects, including the common occupational disease of pulmonary fibrosis. Pulmonary fibrosis is a serious progressive disease that often leads to lung failure, high mortality, and disability, and there is no effective therapy currently available. Therefore, identifying new biomarkers of the disease is important to better understand the disease mechanisms and explore new therapeutic strategies. In this study, 40 μg of GMWCNTs was used to treat mice in vivo by pharyngeal aspiration, and different genes were screened by transcriptome sequencing. Activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signal pathway had an important effect on the development of pulmonary inflammation and fibrosis. GMWCNTs were then administered to the mice with a STING inhibitor (C-176). Inhibition of STING effectively decreased pulmonary inflammation and fibrosis in mice induced by GMWCNTs. Collectively, activation of the cGAS-STING signaling pathway is involved in GMWCNT-induced pulmonary inflammation and fibrosis in mice.
Collapse
Affiliation(s)
- Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
8
|
Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13105717] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As the world human population and industrialization keep growing, the water availability issue has forced scientists, engineers, and legislators of water supply industries to better manage water resources. Pollutant removals from wastewaters are crucial to ensure qualities of available water resources (including natural water bodies or reclaimed waters). Diverse techniques have been developed to deal with water quality concerns. Carbon based nanomaterials, especially carbon nanotubes (CNTs) with their high specific surface area and associated adsorption sites, have drawn a special focus in environmental applications, especially water and wastewater treatment. This critical review summarizes recent developments and adsorption behaviors of CNTs used to remove organics or heavy metal ions from contaminated waters via adsorption and inactivation of biological species associated with CNTs. Foci include CNTs synthesis, purification, and surface modifications or functionalization, followed by their characterization methods and the effect of water chemistry on adsorption capacities and removal mechanisms. Functionalized CNTs have been proven to be promising nanomaterials for the decontamination of waters due to their high adsorption capacity. However, most of the functional CNT applications are limited to lab-scale experiments only. Feasibility of their large-scale/industrial applications with cost-effective ways of synthesis and assessments of their toxicity with better simulating adsorption mechanisms still need to be studied.
Collapse
|
9
|
Nair KM, Kumaravel V, Pillai SC. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. CHEMOSPHERE 2021; 269:129325. [PMID: 33385665 DOI: 10.1016/j.chemosphere.2020.129325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hydrogen peroxide (H2O2) via 2e─ oxygen reduction reaction (ORR) and the generation of hydroxyl radicals (●OH). This could be achieved through an efficient cathode material which operates over a wide pH range (pH 3-9). Herein, the current progresses on the advancements of carbonaceous cathode materials for EF reactions are comprehensively reviewed. The insights of various materials such as, activated carbon fibres (ACFs), carbon/graphite felt (CF/GF), carbon nanotubes (CNTs), graphene, carbon aerogels (CAs), ordered mesoporous carbon (OMCs), etc. are discussed inclusively. Transition metals and hetero atoms were used as dopants to enhance the efficiency of homogeneous and heterogeneous EF reactions. Iron-functionalized cathodes widened the working pH window (pH 1-9) and limited the energy consumption. The mechanism, reactor configuration, and kinetic models, are explained. Techno economic analysis of the EF reaction revealed that the anode and the raw materials contributed significantly to the overall cost. It is concluded that most reactions follow pseudo-first order kinetics and rotating cathodes provide the best H2O2 production efficiency in lab scale. The challenges, future prospects and commercialization of EF reaction for wastewater treatment are also discussed.
Collapse
Affiliation(s)
- Keerthi M Nair
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Vignesh Kumaravel
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Suresh C Pillai
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland.
| |
Collapse
|
10
|
He X, Han H, Shi W, Dong J, Lu X, Yang W, Lu X. A label-free electrochemical DNA biosensor for kanamycin detection based on diblock DNA with poly-cytosine as a high affinity anchor on graphene oxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3462-3469. [PMID: 32672254 DOI: 10.1039/d0ay00025f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is urgent to develop a more simple and sensitive method to detect antibiotic residues considering the harm of antibiotic residues in food to the human body. Herein we designed a label-free electrochemical DNA biosensor for the sensitive detection of kanamycin (KAN) based on diblock DNA with a 15-mer of poly-cytosine (poly-C). The diblock DNA can be immobilized on graphene oxide (GO) due to strong physical adsorption between the 15-mer of poly-C and GO. The aptamer of KAN acted as the other block for rapidly binding the target. It can specifically capture the target, which leads to the change of electrochemical signal. Consequently, the DNA biosensor exhibited high sensitivity and specificity towards KAN, the linear range was from 0.05 pM to 100 nM with a detection limit of 0.0476 pM. The developed DNA biosensor was constructed easily and showed promising applications for the detection of antibiotic residues for food safety.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Huimin Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wenyu Shi
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jiandi Dong
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Xiong Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wu Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
11
|
Peng H, Yang L, Chen Y, Guo J, Li B. Recovery and Separation of Vanadium and Chromium by Two-Step Alkaline Leaching Enhanced with an Electric Field and H 2O 2. ACS OMEGA 2020; 5:5340-5345. [PMID: 32201823 PMCID: PMC7081394 DOI: 10.1021/acsomega.9b04346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/26/2020] [Indexed: 05/25/2023]
Abstract
This paper focused on the treatment of vanadium-chromium reducing residue with a two-step alkaline leaching process: electro-oxidation leaching of vanadium and H2O2 as well as oxidation leaching of chromium in an alkaline medium. The effects of experimental parameters on the leaching performance of vanadium and chromium were investigated. The experimental data showed that in the first alkaline leaching in stage I, the leaching efficiency of vanadium reached up to 95.32% under optimal conditions, while most of the chromium could not leach out (about 4% of chromium was leached out). Chromium was easily oxidized to high valence (CrO4 2-) with H2O2 in the second alkaline leaching stage II. Under optimal conditions, 96.24% chromium was leached out.
Collapse
|
12
|
Wang Y, Zhang G, Xue Y, Tang J, Shi X, Zhang C. In situ anodic induction of low-valence copper in electro-Fenton system for effective nitrobenzene degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32165-32174. [PMID: 31494854 DOI: 10.1007/s11356-019-06387-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
To achieve superior advanced oxidation processes (AOPs), transitional state activators are of great significance for the production of active radicals by H2O2, while instability limits their activation efficiency. In this study, density functional theory calculation (DFT) results showed that Cu+ exhibits excellent H2O2 activation performance, with Gibbs free energy change (ΔG) of 33.66 kcal/mol, two times less than that of Cu2+ (77.83 kcal/mol). Meanwhile, an electro-Fenton system using Cu plate as an anode was proposed for in situ generation of Cu+. The released Cu with low-valence state can be well-confined on the surface of the exciting electrode, which was confirmed by X-ray photoelectron spectroscopy (XPS), Raman, and UV-vis spectroscopy. The hydroxyl radicals in this Cu-based electro-Fenton system were determined by the electron spin resonance (ESR). The nitrobenzene degradation ratio was greatly increased by 43.90% with the introduction of the proposed in situ electrochemical Cu+ generation process. Various characterization results indicated that the production of Cu+ was the key factor in the highly efficient Cu-based electro-Fenton reaction.
Collapse
Affiliation(s)
- Yunting Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, PR China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yudong Xue
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Jiawei Tang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, PR China
| | - Xuelu Shi
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, PR China
| | - Chunhui Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, PR China.
| |
Collapse
|
13
|
Espinoza LC, Aranda M, Contreras D, Henríquez A, Salazar R. Effect of the sp
3
/sp
2
Ratio in Boron‐Doped Diamond Electrodes on the Degradation Pathway of Aniline by Anodic Oxidation. ChemElectroChem 2019. [DOI: 10.1002/celc.201901218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- L. Carolina Espinoza
- Laboratorio de Electroquímica del Medio Ambiente. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH Av. Libertador Bernardo O'Higgins 3363 Casilla 40 Santiago Chile
| | - Mario Aranda
- Laboratorio de Estudios Avanzados en Fármacos y Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de FarmaciaUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - David Contreras
- Centro de Biotecnología, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - Adolfo Henríquez
- Centro de Biotecnología, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH Av. Libertador Bernardo O'Higgins 3363 Casilla 40 Santiago Chile
| |
Collapse
|
14
|
Zhang Y, Wang A, Ren S, Wen Z, Tian X, Li D, Li J. Effect of surface properties of activated carbon fiber cathode on mineralization of antibiotic cefalexin by electro-Fenton and photoelectro-Fenton treatments: Mineralization, kinetics and oxidation products. CHEMOSPHERE 2019; 221:423-432. [PMID: 30648647 DOI: 10.1016/j.chemosphere.2019.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Solutions of 200 mg L-1 cefalexin (CLX), an antibiotic with high usage frequency and biodegradation resistance, have been comparatively degraded by electro-Fenton (EF) and photoelectro-Fenton (PEF) processes using two kinds of activated carbon fiber (ACF) cathodes with different physical properties. These two ACFs shared similar pore volumes and pore diameters but varied BET surface areas, which were confirmed to be 0.5210 cm3 g-1, 2.26 nm and 921 m2 g-1 for ACF1, while 0.6508 cm3 g-1, 2.16 nm and 1206 m2 g-1 for ACF2, respectively. Their oxidation abilities were comparatively assessed in terms of degradation kinetics and mineralization rates, which increased in the order: ACF1-EF < ACF2-EF < ACF1-PEF < ACF2-PEF. These results confirmed the superiority of ACF with higher surface area, which was correlated to faster H2O2 and OH accumulation in more reaction sites provided. After 120 min electrolysis, ACF1 exhibited 1510 μM H2O2 and 37 μM OH accumulation, while ACF2 generated 1934 μM H2O2 and 85 μM OH. Moreover, ACF cathode with more developed pore structure also revealed faster formation of degradation by-products like inorganic ions (NH4+ and NO3- ions) and short-chain carboxylic acids (acetic, formic, oxamic and oxalic acids), as well as enhanced removal for partial acids. In order to gain a deeper understanding of degradation mechanisms for ACF2-PEF system, evolutions of six aromatic by-products generated from sulfoxidation, hydroxylation and decarboxylation were confirmed by UPLC-QTOF-MS/MS determination. Based on the above identifications of the degradation intermediates, a plausible reaction pathway for CLX removal was proposed.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| | - Songyu Ren
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhenjun Wen
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Desheng Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
15
|
Zhu B, Xu X, Luo J, Jin S, Chen W, Liu Z, Tian C. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC–MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent. Food Chem 2019; 276:202-208. [DOI: 10.1016/j.foodchem.2018.09.152] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 09/08/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022]
|
16
|
Peng H, Wang F, Li G, Guo J, Li B. Highly Efficient Recovery of Vanadium and Chromium: Optimized by Response Surface Methodology. ACS OMEGA 2019; 4:904-910. [PMID: 31459366 PMCID: PMC6648086 DOI: 10.1021/acsomega.8b02708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/28/2018] [Indexed: 05/25/2023]
Abstract
Response surface methodology was applied to optimize the processing parameters (dosage of NaOH, dosage of H2O2, reaction temperature, liquid-to-solid ratio, stirring rate, and reaction time) that affected the leaching process of vanadium and chromium. The results indicated that the leaching process of vanadium was significantly affected by the dosage of NaOH and dosage of H2O2 used in the experiments, whereas the processing parameters affected the leaching efficiency of chromium in the following order: dosage of H2O2 (F) > reaction temperature (C) > dosage of NaOH (A) > reaction time (B) > stirring rate (D) > liquid-to-solid ratio (E). Almost 98.60% of vanadium and 79.82% of chromium were leached out during the leaching process.
Collapse
Affiliation(s)
- Hao Peng
- E-mail: . Phone: +8615123031643 (H.P.)
| | | | | | | | | |
Collapse
|
17
|
Peng H, Guo J, Li G, Cheng Q, Zhou Y, Liu Z, Tao C. Highly efficient oxidation of chromium (III) with hydrogen peroxide in alkaline medium. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:366-374. [PMID: 30865608 DOI: 10.2166/wst.2019.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Many technologies have been proposed to oxidize chromium, such as roasting-water leaching technology and hydrometallurgical methods such as pressure oxidative leaching coupled with oxygen, ozone, permanganate and ferrate, but the problems associated with the high temperature, low overall resource utilization efficiency, high energy consumption, and the environmental pollution, still remain unsolved. This paper focuses on the oxidation process of chromium (III) with hydrogen peroxide (H2O2) in an alkaline medium. The effect of parameters including dosage of H2O2, dosage of NaOH, reaction time, reaction temperature and stirring rate on the oxidation efficiency of chromium were investigated. The oxidation efficiency was significantly affected by the dosage of H2O2 and NaOH, reaction time and reaction temperature took second place; last was the stirring rate. Oxidation efficiency was nearly 100% under the optimal conditions: volume ratio of H2O2 to mass of Cr2(SO4)3 of 2.4 mL/g, mass ratio of NaOH to Cr2(SO4)3 0.6 g/g, reaction time of 90 min, reaction temperature of 90 °C and stirring rate of 500 rpm.
Collapse
Affiliation(s)
- Hao Peng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408102, China E-mail:
| | - Jing Guo
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408102, China E-mail:
| | - Gang Li
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408102, China E-mail:
| | - Qinzhe Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408102, China E-mail:
| | - Yuju Zhou
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408102, China E-mail:
| | - Zuohua Liu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Changyuan Tao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
18
|
Direct advanced oxidation process for chromium(III) with sulfate free radicals. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0020-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
19
|
Li F, Guo Y, Wang X, Sun X. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk. Biosens Bioelectron 2018; 115:7-13. [PMID: 29783082 DOI: 10.1016/j.bios.2018.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
A dual-target electrochemical aptasensor was developed for the simultaneous detection of multiple antibiotics based on metal ions as signal tracers and nanocomposites as signal amplification strategy. Metal ions such as Cd2+ and Pb2+ could generate distinct differential pulse voltammetry (DPV) peaks. When targets were present, kanamycin (KAN) and streptomycin (STR) as models, the KAN aptamer (KAP) and STR aptamer (STP) were released from their complementary strands, with more change of Cd2+ and Pb2+ corresponding to peak currents. At the same time, complementary strand of KAP (cKAP) and STP (cSTP) were linked with the poly (A) structure (cSTP-PolyA-cKAP) to increase their conformational freedom. Graphitized multi-walled carbon nanotubes (MWCNTGr) and carbon nanofibers-gold nanoparticles (CNFs-AuNPs) as a biosensor platform enhanced the surface area to capture a large amount of cSTP-PolyA-cKAP, thus amplifying the detection response. Under the optimal conditions, the aptasensor could detect KAN and STR as low as 74.50 pM and 36.45 pM respectively with the range from 0.1 to 100 nM and exhibited excellent selectively. Moreover, this aptasensor showed promising applications for the detection of other analytes by changing corresponding aptamers.
Collapse
Affiliation(s)
- Falan Li
- School of Engineering, Northeast Agricultural University, No. 59 Mucai Street Xiangfang District, Harbin 150000, Heilongjiang Province, PR China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China
| | - Xiangyou Wang
- School of Engineering, Northeast Agricultural University, No. 59 Mucai Street Xiangfang District, Harbin 150000, Heilongjiang Province, PR China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China.
| |
Collapse
|
20
|
Shamsipur M, Taherpour A(A, Sharghi H, Lippolis V, Pashabadi A. A low-overpotential nature-inspired molecular chromium water oxidation catalyst. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Jin T, Wan J, Dai C, Qu S, Shao J, Ma F. A simple method to prepare high specific surface area reed straw activated carbon cathodes for in situ generation of H2O2 and ·OH for phenol degradation in wastewater. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1162-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Xue Y, Zheng S, Zhang Y, Jin W. Reinforced As(III) oxidation by the in-situ electro-generated hydrogen peroxide on MoS2 ultrathin nanosheets modified carbon felt in alkaline media. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|